@Research Paper <#LINE#>Activity of oxidative coupling catalysts with carbon disulphide to generate the first new redox dithiocarbonato moiety [(Pip)nCuX]4(CS2O)2<#LINE#>El-Sayed@Mohamed A. ,Salam@Ahmed H. Abdel-,El-Badawy@Hemmat A. ,Dissouky@Ali El- <#LINE#>1-8<#LINE#>1.ISCA-RJCS-2018-015.pdf<#LINE#>Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt@Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt and Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia@Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt@Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt<#LINE#>28/3/2018<#LINE#>24/6/2018<#LINE#>A new series of tetranuclear [(Pip)nCuX]4(CS2O)2, where Pip = Piperidine, n = 1 or 2 X = Cl or Br, are obtained according to the reaction of the lewis acid [(Pip)nCuX]4O2 towards the lewis base CS2 at room temperature. The synthesised compounds are characterized using molecular weight determination, elemental analysis and spectral techniques (FTIR, UV/Vis. and EPR). The FTIR spectral data showed that CS2O2- group acts as a dibasic bidentate or tridentate bridging ligand for n=2 or 1, respectively. The bridging CS2O2- containing tetranuclear complexes display a CS2O2- – Cu2+ Charge transfer band at 430-410nm for all [(Pip)nCuX]4(CS2O)2 complexes with molar absorptivity varying from 4000 to 14000M- cm-1. Bidentate bridging anion (CS2O)2- in [(Pip)2CuX]4(CS2O)2 shows another charge transfer with Cu(II), at 605nm and 575nm with molecular absorptivities 810 and 970M-1cm-1 for X=Cl and Br respectively. The electrochemical behavior of the new tetranuclear complexes are studied where the dithiocarbonato anion in [(Pip)nCuX]4(CS2O)2 is found to be electrochemically active showing quasi-reversible peaks at a more positive potentials, when compared with Cu(II) centres. The complexes are shown to be catalytically inactive toward the oxidation of 2,6-dimethyl phenol unlike their oxo and carbonato analogues.<#LINE#>Wei N., Murthy N.N., Chen Q., Zubieta J. and Karlin K.D. (1994).@Copper(I)/Dioxygen Reactivity of Mononuclear Complexes with Pyridyl and Quinolyl Tripodal Tetradentate Ligands: Reversible Formation of Cu:O2 = 1:1 and 2:1 Adducts.@Inorganic Chemistry, 33, 1953-1965. DOI: 10.1021/ic00087a036@Yes$Lewis E.A. and Tolman W.B. (2004).@Reactivity of Dioxygen−Copper Systems.@Chemical reviews, 104(2), 1047-1076. DOI: 10.1021/cr020633r@Yes$Wendt F., Näther C. and Tuczek F. (2016).@Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure–reactivity correlations.@JBIC Journal of Biological Inorganic Chemistry, 777-792. DOI:org/10.1007/s00775-016-1370-y@Yes$Schindler S. (2000).@Reactivity of Copper(I) Complexes Towards Dioxygen.@European Journal of Inorganic Chemistry, 11, 2311-2326. https://doi.org/10.1002/1099-0682(200011)2000:11<2311::AID-EJIC2311>3.0.CO;2-7@Yes$Weitzer M., Schindler S., Brehm G., Schneider S., Hörmann E., Jung B., Kaderli S. and Zuberbühler A.D. (2003).@Reversible binding of dioxygen by the copper(I) complex with tris(2-dimethylaminoethyl)amine (Me6tren) ligand.@Inorganic chemistry, 42(6), 1800-1806. DOI:10.1021/ic025941m@Yes$Börzel H., Comba P., Hagen K.S., Kerscher M., Pritzkow H., Schatz M., Schindler S. and Walter O. (2002).@Copper-bispidine coordination chemistry: syntheses, structures, solution properties, and oxygenation reactivity.@Inorganic chemistry, 41, 5440-5452. DOI: 10.1021/ic011114u@Yes$Fujisawa K., Tanaka M., Moro-oka Y. and Kitajima N. (1994).@A Monomeric Side-On Superoxocopper(II) Complex: Cu(O2)(HB(3-tBu-5-iPrpz)3).@Journal of the American Chemical Society, 116(26), 12079-12080. DOI: 10.1021/ja00105a069@Yes$Würtele C., Gaoutchenova E., Harms K., Holthausen M.C., Sundermeyer J. and Schindler S. (2006).@Crystallographic Characterization of a Synthetic 1:1 End‐On Copper Dioxygen Adduct Complex.@Angewandte Chemie International Edition, 45(23), 3867-3869. https://doi.org/10.1002/anie.200600351@Yes$Henson M.J., Vance M.A., Zhang C.X., Liang H.-C., Karlin K.D. and Solomon E.I. (2003).@Resonance Raman Investigation of Equatorial Ligand Donor Effects on the Cu2O22+ Core in End-On and Side-On μ-Peroxo-Dicopper(II) and Bis-μ-oxo-Dicopper(III) Complexes.@Journal of the American Chemical Society, 125(17), 5186-5192. DOI: 10.1021/ja0276366@Yes$Jacobson R.R., Tyeklar Z., Farooq A., Karlin K.D., Liu S. and Zubieta J. (1988).@A copper-oxygen (Cu2-O2) complex. Crystal structure and characterization of a reversible dioxygen binding system.@Journal of the American Chemical Society, 110(11), 3690-3692. DOI: 10.1021/ja00219a071@Yes$Tyeklar Z., Jacobson R.R., Wei N., Murthy N.N., Zubieta J. and Karlin K.D. (1993).@Reversible reaction of dioxygen (and carbon monoxide) with a copper (I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo) dicopper (II) product.@Journal of the American Chemical Society, 115(7), 2677-2689. DOI: 10.1021/ja00060a017@Yes$Chiang L., Keown W., Citek C., Wasinger E.C. and Stack T.D.P. (2016).@Simplest Monodentate Imidazole Stabilization of the oxy‐Tyrosinase Cu2O2 Core: Phenolate Hydroxylation through a CuIII Intermediate.@Angewandte Chemie International Edition, 55(35), 10453-10457. DOI: 10.1002/anie.201605159@Yes$Klinman J.P. (1996).@Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates.@Chemical reviews, 96(7), 2541-2562. DOI: 10.1021/ cr950047g@Yes$Mirica L.M., Vance M., Rudd D.J., Hedman B., Hodgson K.O., Solomon E.I. and Stack T.D.P. (2005).@Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.@Science, 308, 1890-1892. DOI:10.1126/ science.1112081@Yes$El-Sayed M.A., AbdEl-Salam A.H., El-Zayat T.A., El-Dissouky A. and Ismail K.Z. (2004).@Homogeneous oxidative coupling catalysts: stoichiometry and characterization of the first stable oxotetranuclear solids [(Pip)nCuX]4O2 (n=1 or 2, Pip=piperidine, X=Cl, Br, I).@Inorganica chimica acta, 357, 4057-4064. https://doi.org/ 10.1016/j.ica.2003.06.021@Yes$Schramm V. (1978).@Crystal and molecular structure of tetrameric copper (I) iodide-piperidine, a complex with a tetrahedral tetrakis [copper (I) iodide] core.@Inorganic Chemistry, 17(3), 714-718. DOI: 10.1021/ic50181a043@Yes$Davies G., El-Sayed M.A. and Henary M. (1987).@Stoichiometry and kinetics of the low-temperature oxidation of L2Cu2Cl2 (L = N,N,N′,N′-tetraethylethylenediamine) by dioxygen in methylene chloride and properties of the peroxocopper products.@Inorganic Chemistry, 26(20), 3266-3273. DOI: 10.1002/chin.198804106@Yes$El-Sayed M.A., Abdel Salam A.H., Abo-El-Dahab H.A., Refaat H.M. and El-Dissouky A. (2009).@Homogeneous oxidative coupling catalysts: stoichiometry and product characterization of the oxidation of copper(I) complexes [(Pyr) nCuX]4 ( n = 1 or 2, Pyr = pyrrolidine, X = Cl, Br or I) by dioxygen in aprotic media.@Journal of Coordination Chemistry, 62, 1015-1024. https://doi.org/10.1080/ 00958970802353652@Yes$El-Sayed M.A., Abdel Salam A.H., Abo-El-Dahab H.A. and Refaat H.M. (2012).@Homogeneous Oxidative Coupling Catalysts: Reactivity of [(Pyr)nCuX]4O2 with Carbon Dioxide to Generate New Active Initiators [(Pyr)nCuX]4(CO3)2 (n = 1 or 2, X = Cl, Br or I, Pyr = Pyrrolidine).@Journal of Chemistry and Chemical Engineering, 6, 74-83. DOI:10.17265/1934-7375/2012.01.011@Yes$Davies G. and El-Sayed M.A. (1983).@Stoichiometry and kinetics of the oxidation of halo(pyridine)copper(I) complexes by dioxygen in aprotic solvents. Effects of copper (I) reactant molecularity on the rate law and evidence for ligand-dependent product structures.@Inorganic Chemistry, 22(9), 1257-1266. DOI: 10.1021/ ic00151a001@Yes$El-Sayed M.A., Elwakeil H.A., Abdel Salam A.H. and Elbadawy H.A. (2016).@Kinetics of Oxidation of 2,6-Dimethylphenol (DMP) Using Novel μ-Carbonato [(Pip)4nCu4X4(CO3)2] Complexes.@Open Journal of Inorganic Chemistry, 6(3), 183-194. DOI: 10.4236/ ojic.2016.63014@Yes$El-Sayed M.A., Kassem T.S., Abo-El-Dahab H.A. and El-Kholy A.E. (2005).@Homogeneous oxidative coupling catalysts. Mechanism of catalysts formation by oxidation of [(Pip)nCuX]4 (n = 1 or 2, Pip = piperidine, X = Cl, Br or I) by dioxygen in aprotic media.@Inorganica chimica acta, 358, 22-28. https://doi.org/10.1016/j.ica.2004.08.025@Yes$Soori F. and Nezamzadeh-Ejhieh A. (2018).@Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution.@J. Mol. Liq., 255, 250-256. https://doi.org/ 10.1016/j.molliq.2018.01.169@Yes$Liu S., Lei Y.J., Xin Z.J., Lu Y.B. and Wang H.Y. (2018).@Water splitting based on homogeneous copper molecular catalysts.@J. Photochem. Photobio. A: Chem, 355, 141-151. https://doi.org/10.1016/j.jphotochem.2017.09.060@Yes$Hong S., Lee Y.M., Ray K. and Nam W. (2017).@Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes.@Coord. Chem. Rev., 334, 25-42. https://doi.org/10.1016/ j.ccr.2016.07.006@Yes$Sawyer D.T.B., Heineman J.M., Sawyer W.R.D., Heineman W.R., Beebe J.M., Shakhashiri B.Z., Furr A.K., Ford L.A., Winston E. and Roesky H.W.H. (1984).@Chemistry experiments for instrumental methods.@John Wiley & Sons.@Yes$Gupta B., Kalgotra N., Andotra S. and Pandey S.K. (2012).@O-Tolyl/benzyl dithiocarbonates of phosphorus (III) and (V): syntheses and characterization.@Monatshefte für Chemie - Chemical Monthly, 143(7), 1087-1095. doi.org/10.1007/s00706-011-0704-2@Yes$Gupta B., Kumar D., Kalgotra N., Andotra S., Kour G., Gupta V.K., Kant R. and Pandey S.K. (2015).@Dialkyltin (IV) bis (O-tolyl/benzyldithiocarbonate) complexes: spectroscopic, thermogravemetric, antifungal and crystal analysis of n-Bu2Sn (S2COCH2C6H5) 2.@Acta Chimica Slovenica, 62, 204-212. DOI: http://dx.doi.org/ 10.17344/acsi.2014.1027@Yes$Davies G., El-Toukhy A., Onan K.D. and Veidis M. (1985).@Synthesis, structure and properties of the isomeric dinuclear complexes [(DENC)2CuX2]2 (DENC = N,N-diethylnicotinamide; X = Cl or Br) and the kinetics of their reactions with DENC in methylene chloride.@Inorganica chimica acta, 98(2), 85-94. https://doi.org/10.1016/S0020-1693(00)84916-6@Yes$El-Sayed M.A, Davies G. and Kassem T.S. (1990).@Products and kinetics of the oxidation of neutral dimeric iodo(N,N,N@Inorganic chemistry, 29(23), 4730-4735. DOI: 10.1021/ic00348a029@Yes$Hathaway B.J. (1984).@A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion.@Complex Chemistry, Springer, 55-118.@Yes <#LINE#>Evaluation of physiochemical properties of crude oil and its impact on water quality<#LINE#>Abel@Otache Monday ,Chinomso@Chiegeiro Precious ,Johuel@Birma Godwin <#LINE#>9-14<#LINE#>2.ISCA-RJCS-2018-018.pdf<#LINE#>Department of Industrial Chemistry, Michael and Cecilia Ibru University, Delta State, Nigeria@Department of Biochemistry, Michael and Cecilia Ibru University, Delta State, Nigeria@Department of Petroleum Analysis Laboratory, Petroleum Training Institute, Effurun<#LINE#>10/4/2018<#LINE#>5/7/2018<#LINE#>The Nigerian economy has improved overtime due to the prevailing role of Crude oil generation, but its spillage poses a big threat to agriculture and human health in all oil producing regions potentially causing damage to the structure and function of the ecosystem. In this investigation, the physiochemical properties of unrefined petroleum and its conductivity as its impacts on water quality was investigated. Series of tests performed using methods of American Standard for Testing Material (ASTM) to assess the various physiochemical properties of crude oil. Results from this finding reveal that at higher temperature, there is a corresponding increase in the API value across all the samples ranging from 30.70 to 43.70. All crude oil samples analyzed, showed API values greater than 31 with exception of sample C at 15oC. The results also reveals ranges for the moisture content, freezing point, pour point, Flash point and Specific Gravity as 0.12% to 0.21%, -41.30C to -37.50C, -100C to -70C, +420C to +550C and 0.8364 to 0.9321 respectively. The change in Conductivity values, which varies with different degrees of crude oil contamination, reveals that as the percentage of contamination increases, the conductivity value decreases. This study is appropriately timed as the need to carefully clean crude oil contamination in oil producing areas has been on the increase; thus such research geared towards remediation of such oil contaminated environment should be encouraged towards developing a sustainable environment.<#LINE#>Ite A.E., Ibok U.J., Ite M.U. and Petters S.W. (2013).@Petroleum exploration and production: past and present environmental issues in the Nigeria’s Niger Delta.@American Journal of Environmental Protection, 1(4), 78-90. DOI: 10.12691/env-1-4-2.@Yes$Chete L.N., Adeoti J.O., Adeyinka F.M. and Ogundele O. (2012).@Industrial development and growth in Nigeria: Lessons and challenges.@Nigerian Institute of Social and Economic Research (NISER), Ibadan LEARNING TO COMPETE; WORK PAPER 8.@No$Kadafa A.A. (2012).@Environmental Impacts of Oil Exploration and Exploitation in the Niger Delta of Nigeria.@Global Journal of Science Frontier Research Environment & Earth Sciences, 12(3), 19-28. Version 1.0 Year. Global Journals Inc. (USA) Online ISSN: 2249-4626.@Yes$Sephton M.A. and Hazen R.M. (2013).@On the origins of deep hydrocarbons.@Reviews in Mineralogy and Geochemistry, 75(1), 449-465. DOI: 10.2138/rmg.75.14.@Yes$Aislabie J.M., Balks M.R., Foght J.M. and Waterhouse E.J. (2004).@Hydrocarbon spills on Antarctic soils: Effects and management.@Environmental Science & Technology, 38(5), 1265-1274. doi: 10.1021/es030514.@Yes$Arocena J.M. and Rutherford P.M. (2005).@Properties of hydrocarbon- and salt-contaminated flare pit soils in northeastern British Columbia (Canada).@Chemosphere, 60(4), 567-575. doi: 10.1016/j.chemosphere.2004.12.077.@Yes$Abdel-Moghny T., Mohamed R.S., El-Sayed E., Mohammed Aly S. and Snousy M.G. (2012).@Effect of soil texture on remediation of hydrocarbons-contaminated soil at El-Minia district, Upper Egypt.@ISRN Chemical Engineering, 13, Article ID 406598. doi:10.5402/ 2012/406598.@Yes$Speight J.G. (1997).@Analytical methods and techniques applied to crude oil and petroleum products.@2476 Overland Road, Laramie, WY 82070-4808, USA.@Yes$Liu Y. and Kujawinski E.B. (2015).@Chemical Composition and Potential Environmental Impacts of Water-Soluble Polar Crude Oil Components Inferred from ESI FT-ICR MS.@PLoS ONE, 10(9), e0136376. https://doi.org/10.1371/journal.pone.0136376.@Yes$Hamman C.W. (2010).@Energy for Plastic.@Submitted as coursework for Physics 240, Stanford University.@Yes$Wang Y., Feng J., Lin Q., Lyu X., Wang X. and Wang G. (2013).@Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China.@Chinese geographical science, 23(6), 708-715. doi.org/10.1007/s11769-013-0641-6.@Yes$Benka-Coker M.O. and Ekundayo J.A. (1995).@Effects of an oil spill on soil physico-chemical properties of a spill site in the Niger delta area of Nigeria.@Environmental Monitoring and Assessment, 36(2), 93-104. doi: 10.1007/BF00546783.@Yes$Bennett P.C., Siegel D.E., Baedecker M.J. and Hult M.F. (1993).@Crude oil in a shallow sand and gravel aquifer—I. Hydrogeology and inorganic geochemistry.@Applied Geochemistry, 8(6), 529-549. doi: 10.1016/0883-2927(93) 90012-6.@Yes$Edema N. (2012).@Effects of crude oil contaminated water on the environment.@In Crude Oil Emulsions-Composition Stability and Characterization, InTech., ISBN: 978-953-51-0220-5. DOI: 10.5772/36105.@Yes$Ryder A.G. (2002).@Quantitative Analysis of Crude Oils by Fluorescence Lifetime and Steady State Measurements using 380-nm Excitation.@Appl. Spectrosc., 56, 107-116.@Yes$Santos R.G., Loh W., Bannwart A.C. and Trevisan O.V. (2014).@An overview of heavy oil properties and its recovery and transportation methods.@Brazilian Journal of Chemical Engineering, 31(3), 571-590. dx.doi.org/10.1590/0104-6632.20140313s00001853.@Yes$Mohamed S.A., Bashir D.M. and Rabah A.A. (2014).@Simulation and Characterization in the refining industry: A Review.@Journal of petroleum Technology and Alternative Fuels, 5(3), 26-30. Doi: 10.5897/JPTAF2014.0109.@Yes$George A.K., Singh R.N. and Arafin S. (2013).@Equation of State of Crude Oil Samples.@J Pet Environ Biotechnol, 4, 162. doi:10.4172/2157-7463.1000162.@Yes$ASTM A. (2007).@Annual book of standards.@ASTM International, 100, 19428-2959.@Yes$Abdulkareem A.S. and Kovo A.S. (2006).@Simulation of the viscosity of different Nigerian crude oil.@Leonardo Journal of Sciences, 8(January–June), 7-12.@Yes$Onojake M.C., Osuji L.C. and Oforka N.C. (2013).@Preliminary hydrocarbon analysis of crude oils from Umutu/Bomu fields, south west Niger Delta Nigeria.@Egyptian Journal of Petroleum, 22(2), 217-224. https://doi.org/10.1016/j.ejpe.2013.06.001.@Yes$Dionne S., Guertsman V. and Donati L. (2013).@Analysis of Crude Oil Samples Montreal, Maine & Atlantic Railway, Train MMA-002.@Transportation Safety Board of Canada, 23.@No$Been J., Place T.D., Crozier B., Mosher M., Ignacz T., Soderberg J., Cathrea C., Holm M. and Archibald D. (2011).@Development of a Test Protocol for the Evaluation of Underdeposit Corrosion Inhibitors in Large Diameter Crude Oil Pipelines.@NACE International, Corrosion. Paper No. 11263.@Yes$Been J., Place T.D. and Holm M. (2010).@Evaluating corrosion and inhibition under sludge deposits in large diameter crude oil pipelines.@Paper 10143 presented at the NACE CORROSION conference, NACE International, Houston, TX, USA.@Yes$Aminu J.A.K., Yeung H. and Lao L. (2015).@Study on the Behaviours of Settled Heavier Phase in Two Phase Flows in Pipelines.@SPE Annual Technical Conference and Exhibition. 28-30 September, Houston Texas, USA. https://doi.org/10.2118/175117-MS .@Yes$Groysman A. (2017).@Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry.@Topics in Safety, Risk, Reliability and Quality. Springer International Publishing Switzerland, 32, 37-99. https://doi.org/10.1007/978-3-319-45256-2_4.@Yes$Rahmanian N., Ali S.H.B., Homayoonfard M., Ali N.J., Rehan M., Sadef Y. and Nizami A.S. (2015).@Analysis of physiochemical parameters to evaluate the drinking water quality in the State of Perak, Malaysia.@Journal of Chemistry, 2015. Article ID 716125, 10. doi:10.1155/2015/716125.@Yes$APHA (1992).@Standard methods for the examination of water and wastewater.@18th ed. American Public Health Association, Washington, DC.@No$Nigeria Federal Environmental Protection Agency (1991).@Guidelines and standards for environmental pollution control in Nigeria.@Federal Environmental Protection Agency (FEPA), Environmental policy-238.@Yes$WHO (2010).@Guideline for Drinking Water Quality.@3rd Edition, World Health Organization, Geneva, Switzerland.@No <#LINE#>Conformational study of (E)-4-{1-[2-(carbamothioyl) hydrazin-1-ylidene] ethyl}-phenyl-4-methylbenzoate (C17H17N3O2S)<#LINE#>J.W.@Hounfodji ,A.G.@Kpotin ,G.W.@Kanhounnon ,U.A.@Kuevi ,A.@Kpota-Houngue , S.Y.G. @Atohoun, J.B.@Mensah <#LINE#>15-22<#LINE#>3.ISCA-RJCS-2018-021.pdf<#LINE#>Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin@Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Technique, University of Abomey-Calavi, 03 BP 3409 Cotonou, Benin<#LINE#>26/4/2018<#LINE#>10/7/2018<#LINE#>The (E)-4-{1-[2-(carbamothioyl) hydrazin-1-ylidene] ethyl}-phenyl 4-methylbenzoate is a thiosemicarbazone of C17H17N3O2S formula. As several thiosemicarbazones, it has some pharmacological properties. By HF and DFT/B3LYP methods as implemented in the gaussian 09, in the 6-31G, 6-311G, 6-31G (d, p) and 6-311G (d, p) basis set, the structural study of this molecule was performed. Among the molecule conformers modelled, the calculated values of geometrical parameters of two are very close to crystallographic data. Besides, the trypanocide activity of both conformers has been evaluated with a predicting model established by DFT/B3LYP/6-31G (d, p) calculations.<#LINE#>Tarasconi P., Capacchi S., Pelosi G., Cornia M., Albertini R., Bonati A. and Pinelli S. (2000).@Synthesis, spectroscopic characterization and biological properties of new natural aldehydes thiosemicarbazones.@Bioorganic & medicinal chemistry, 8(1), 157-162.@Yes$Khanye S.D., Smith G.S., Lategan C., Smith P.J., Gut J., Rosenthal P.J. and Chibale K. (2010).@Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity.@Journal of inorganic biochemistry, 104(10), 1079-1083.@Yes$Beraldo H. and Gambino D. (2004).@The wide pharmacological versatility of semicarbazones, thiosemi- carbazones and their metal complexes.@Mini-rev, Med. Chem., 4(1), 31-39.@Yes$Beraldo H. (2004).@Semicarbazonas e tiossemicarbazonas: o amplo perfil farmacológico e usos clínicos.@Química Nova, 27(3), 461-471.@Yes$Mendes I.C., Moreira J.P., Speziali N.L., Mangrich A.S., Takahashi J.A. and Beraldo H. (2006).@N(4)-tolyl-2- benzoylpyridine thiosemicarbazones and their copper(II) complexes with significant antifungal activity: Crystal structure of N(4)-para-tolyl-2- benzoylpyridine thiosemicarbazone.@J.Braz. Chem. Sco., 17(8), 1571-1577.@Yes$Agarwal R.K., Singh L. and Sharma D.K. (2006).@Synthesis, spectral, and biological properties of copper(II) complexes of thiosemicarbazones of Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes, Bioinorg.@Chem. Applic., 96, 1-10.@Yes$Finch R.A., Liu M.C., Cory A.H., Cory J.G. and Sartorelli A.C. (1999).@Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity.@Advances in enzyme regulation, 39(1), 3-12.@Yes$Easmon J., Heinisch G., Holzer W. and Rosenwirth B. (1992).@Novel thiosemicarbazones derived from formyl- and acyldiazines: synthesis, effects on cell proliferation and synergism with antiviral agents.@J Med Chem., 35(17), 3288-3296.@Yes$Pelosi G. (2010).@Thiosemicarbazone Metal Complexes: From Structure to Activity.@Open Crystallography Journal, 3, 16-28.@Yes$Allen F.H., Kennard O. and Taylor R. (1983).@Systematic analysis of structural data as a research technique in organic chemistry.@Acc. Chem. Ress., 16(5), 146-153.@Yes$Gómez-Jeria J.S. (2014).@D-Cent-QSAR.@Santiago, Chile.@Yes$Gómez-Jeria J.S. (2009).@An empirical way to correct some drawbacks of mulliken population analysis.@Journal of the Chilean Chemical Society, 54(4), 482-485.@Yes$Statsoft S. (2007).@8.0, 2300 East 14 th St.@Tulsa, OK, 74104, 1984-2007.@Yes$Kpotin G., Atohoun S.Y., Kuevi A.U., Kpota-Hounguè A., Mensah J.B. and Jeria J.G. (2016).@A Quantum-Chemical study of the Relationships between Electronic Structure and Trypanocidal Activity against Trypanosoma Brucei Brucei of a series of Thiosemicarbazone derivatives.@Pharm. Lett, 8, 215-222.@Yes @Short Review Paper <#LINE#>Review on recovery and recycling of post consumer waste<#LINE#>Mansoori@Sabiha ,Datar@Veena <#LINE#>23-26<#LINE#>4.ISCA-RJCS-2018-027.pdf<#LINE#>Applied Chemistry Department, SATI, Vidisha, MP, India@Dept. of Management and Humanities, SATI, Vidisha, MP, India<#LINE#>17/3/2018<#LINE#>28/6/2018<#LINE#>Over the last few decades, increasing amount of waste generated is an outcome of rapid population growth, unplanned urbanization, production pattern and higher consumption rate. This paper is a review study on how post consumer waste recycling can provide an opportunity to reduce and recover waste, that it can be converted into useful resources. In most of the situation, post consumer waste recycling could also be economically viable, as it generate resources which are in high demand. In India there is a long way to go in the current field due to the less interest of researchers in recycling techniques. The purpose of review study is to discuss mainly recycling, advantages and challenges in five types of post consumer waste products namely, plastics, foot-wears, textiles, wooden and electronic waste. As we know about conventional End of life (EoL) options of these products, these are: landfills and incineration but government as well as most of the industries are adopting 3R’s policy of “Recycle, Reduce and Reuse” for the protection of environment.<#LINE#>Damanhuri E. and Padmi T. (2012).@The role of informal collectors of recyclable waste and used goods in Indonesia.@Post-Consumer Waste Recycling and Optimal Production, Intech-E- Publication, Croatia, 1-306. ISBN: 978-953-51-0632-6@Yes$Environmental Protection Agency (1995).@Report to Congress: Recovery and recycling of plastics from durable goods.@EPA530-R-95-042, United States.@No$Lee M.J. and Rahimifard S. (2012).@An air-based automated material recycling system for postconsumer footwear products.@Resources, Conservation and Recycling, 69, 90-99.https://doi.org/10.1016/j.resconrec. 2012.09.008@Yes$Kishco (2018).@Textile Recycling.@kishcogroup.com/ service/textile-recycling. 06/01/2018@No$Isildar A., Rene E.R., Hullebusch E. D van and Lens P.N.L. (2017).@Two-step leaching of valuable metals from discarded printed circuit boards and process optimization using Response Surface Methodology.@Advances in Recycling and Waste Management, 2(2), 1-9.@No$Greensole (2016).@They Refurbish Your Old Shoes & Create New Pairs for Needy School Children to Walk Comfortably In.@https://www.thebetterindia.com/ 65256/greensole-refurbishing-old-shoes. 09/02/2018.@No$Federation of Indian chambers of Commerce and Industry (2014).@A report on Plastic Industry: Potential of Plastic Industry in Northern India with special focus on plasticulture and food processing.@FICCI New Delhi, India.@No$Erlandson M. and Sundquist J. (2014).@Environmental consequences of different recycling alternatives for wood waste.@IVL Report B 2182 Swedish Environmental Research Institute Ltd, Stockholm, Sweden, 1-31.@Yes$Sustainability Report-2016 ITC Limited (2018). www.itcportal.com/sustainability/sustainability-report 2016/sustainability-report-2016. 15/01/2018@undefined@undefined@No$Katherine Martinko (2017).@Recycling won’t fix the fast fashion problem.@https://www.treehugger.com › Living › Sustainable Fashion. 12/12/2017.@No$Department for Environment, Food and Rural Affairs (2012).@Wood waste: A short review of recent research, Kew, London.@1-29.@No$Environmental Protection Agency (2016).@Recycling Economic Information (REI) Report on Advancing Sustainable Materials Management.@United States, 1-8.@No