@Research Paper <#LINE#>Estimation of nickel emission in the urban environment of an industrial city Bhilai, India<#LINE#>Pandey @Piyush Kant ,Trivedi @Rekha ,Pandey @Madhurima <#LINE#>1-6<#LINE#>1.ISCA-RJCS-2017-021.pdf<#LINE#>Bhilai Institute of Technology Raipur, Kendri, NH-43, New Raipur-493661, Chhattisgarh, India@Department of Chemistry, Shri shankaracharya Technical Campus, Bhilai-490020 Chhattisgarh, India@Department of Chemistry, Bhilai Institute of Technology, Durg-491001, Chhattisgarh, India<#LINE#>8/4/2017<#LINE#>30/7/2017<#LINE#>Air and rainwater samples were collected in Durg (Chhattisgarh) at sampling site Bhilai Institute of Technology and concentration of nickel was investigated. The obtained concentration was compared with the results which were obtained in 1998 by another study. The concentration of nickel was found higher than data of 1998. The obtained result represented that nickel was present in rain water as well as in air in considerable amount but did not exceeded their legislative limit. The concentration of nickel in air was found between the ranges of 0.87 ng/m3 to 215.4 ng/m3 and in rainwater the range of nickel was found between 312 ng/l to 584 ng/l. The objective of this paper is to estimation and regular monitoring of nickel in the ambient air and in rain water of industrial city during particular time period.<#LINE#>ATSDR (1997).@Toxicological Profile for Nickel (Update).@Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.@No$Alloway B.J. (1995).@Heavy Metals in Soils (2nd edn.).@London: Blackie Academic & Professional.@Yes$WHO (2000).@Air quality guidelines for Europe.@Copenhagen.@Yes$Goyer R. (1991).@Toxic effects of metals.@Casareh and Doull@Yes$Coogan T.P., Latta D.M., Snow E.T., Lawrence A. and Costa M. (1989).@Toxicity and carcinogenicity of nickel compounds.@Crit. Rev. Toxicol, 19(4), 341-384.@Yes$Beauregard Dennis and Emission Inventory Branch (1994).@Locating and Estimating Air Emissions from Sources of Toluene.@United States Office of Air Quality Environmental Protection Planning and Standards Agency Research Triangle Park, NC 27711.@Yes$Environment Agency (2009).@Contaminants in soil: updated collation of toxicological data and intake values for humans.@Nickel. Science Report SC050021/SR TOX8. Bristol: Environment Agency.@No$Von Burg R. (1997).@Nickel and some nickel compounds.@J. Appl Toxicol, 17(6), 425-431.@Yes$Chervona Y., Arita A. and Costa M. (2012).@Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium.@Metallomics, 4(7), 619-627. doi: 10.1039/c2mt20033c. Epub 2012 Apr 3. Review.@Yes$Nriagu J.O. and Pacyna J.M. (1988).@Quantitative assessment of worldwide contamination of air, water and soils by trace metals.@Nature, 333, 134-139.@Yes$Mukherjee A.B. (1998).@Nickel: a review of occurrence, uses, emissions, and concentration in the environment in Finland.@Environ Rev, 6(3-4), 173-187.@Yes$Pacyna J.M. and Pacyna E.G. (2001).@An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide.@Environ Rev, 9, 269-298.@Yes$Pacyna E.G., Pacyna J.M., Fudala J., Strzelecka-Jastrzab E., Hlawiczka S. and Panasiuk D. (2007).@Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe.@Atmos Environ, 41(38), 8557-8566.@Yes$Tian H.Z., Cheng L.Lu. K., Hao J.M., Zhao D., Wang Y., Jia W.X. and Qiu P.P. (2012).@Anthropogenic atmospheric nickel emissions and its distribution characteristics in China.@Science of the Total Environment, 417-418, 148-157.@Yes$Pandey P.K. (1998).@Analytical studies on atmospheric deposition.@(Ph.D. Thesis) Pt. Ravishankar Shukla University of Raipur, India.@Yes$Bencko V. (1983).@Nickel: A review of its occupational and environmental toxicology.@J. Hyg. Epidem. Micro. Immun, 27(2), 237-247.@Yes$Spectrum. Chemical fact sheet. Nickel, (1998).@undefined@undefined@No$Environment Minister’s Directive, (2003). (Polish) Web site: http://bap- psp.lex.pl/serwis/du/2003/0012.htm.@undefined@undefined@No$Blum E.D. (1984).@Nickel and Chromium Levels in Oils.@Union Oil to Lahre, T., U.S. EPA.@No$Koponen M., Gustafsson Tom, Kalliomäki Pirkko-Liisa and Pyy Lauri (1981).@Chromium and Nickel Aerosols in Stainless Steel Manufacturing, Grinding, and Welding.@American Industrial Hygiene Journal, 42(8), 596-601.@Yes$Radian Corporation (1980).@Industry Profile-Phase I Study of Nickel.@1. August 31, (Prepared for Occupational Safety and Health Administration under Contract No. J-9-F-9-0007). 90-105.@No$Lim M.Y. (1979).@Trace Elements from Coal Combustion – Atmospheric Emissions.@IEA Coal Research Report No. ICTIS/TROS. London, England. 17-24.90. 4-18-166.@Yes$Baig S., Haro M., Richard G., Sarro T. and Wolf S. (1981).@Conventional Combustion Environmental Assessment.@(Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC.) EPA Contract No. 68-02-3138, 3-53.@Yes$Gupta Sunita (2011).@Study on the Flora and Soil of Central East India For Pollution Indication or Remediation and Other Novel Chemical Properties.@(Unpublished Ph.D. Thesis). CSVTU Bhilai, India.@No$Technical report no.3 (2002).@Review of data on heavy metals in ambient air in Australia.@Environment Australia. ISBN 0 6425 4781 5.@No$Adelekan B.A. and Abegunde K.D. (2011).@Heavy metals contamination of soil and groundwater at automobile mechanic villages in Ibadan, Nigeria.@International Journal of the Physical Sciences, 6(5), 1045-1058.@Yes$Kar D., Sur P., Mandal S.K., Saha T. and Kole R.K. (2008).@Assessment of Heavy Metal Pollution in Surface Water.@Int. J. Environ. Sci. Tech., 5(1), 119-124.@Yes$Zorana K.G., Danijela B. and Ivana U. (2008).@Trace metals (Cd, Pb, Cu, Zn and Ni) in sediment of the submarine pit Dragon ear (Soline Bay, Rogoznica, Croatia).@Springer-Verlag, Environ Geol, 58(4), 751. DOI 10.1007/s00254-008, 1549-9.@Yes$Prohic E. and Juracic M. (1989).@Heavy Metals in Sediments-Problems Concerning Determination of the Antropogenic Influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia.@Environ Geol Water Sci., 13(2), 145-151.@Yes$Jinwal A., Dixit S. and Malik S. (2009).@Some trace Elements Investigation in Ground Water of Bhopal & Sehore District in M. P. India.@J. Appl. Sci. Environ. Manage., 13(4), 47-50. JASEM ISSN 1119-8362.@Yes$Environmental Agency (2007).@Environmental Concentrations of Heavy Metals in UK Soil and Herbage. UK soil and herbage pollutant survey.@Bristol: Environ. Agency, 7.@No$Dojlido J.R. and Best G.A. (1993).@Chemistry of Water and Water Pollution.@Chemistry of water and water pollution, Ellis Horwood Limited, NewYork.@Yes$Zerbe J., Sobczynski T. and Siepak J. (1995).@Metale Ciezkie Wosadach Dennych, Ich Specjacja Na Drodze Ekstrakcji Sekwencyjnej.@Ekologia Technia, 3(3), 7-12.@Yes$Pandey P.K., Patel K.S. and Subrut P. (1998).@Trace elemental composition of atmospheric particulate at Bhilai in central- east India.@The science of total environment. 215(1-2), 123-134.@Yes$Profumo A., Spini G., Cucca L. and Pesavento M. (2003).@Determination of Inorganic Nickel Compounds in the Particulate Matter of Emissions and Workplace Air by Selective Sequential Dissolutions.@Talanta, 61(4), 465-472.@Yes <#LINE#>Synthesis and characterization of 2-[(hydroxy(4-nitrophenyl) methyl] cyclohexanone for its potential application as off-on fluorescent sensor for selective cadmium detection<#LINE#>Sadia @Maria ,Umar @Muhammad Naveed ,Naz @Robina ,Khan @Jahangir ,Khan @Rizwan <#LINE#>7-18<#LINE#>2.ISCA-RJCS-2017-034.pdf<#LINE#>Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan@Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan@Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan@Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan@Department of Chemistry, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan<#LINE#>25/4/2017<#LINE#>4/8/2017<#LINE#>2-[hydroxy(4-nitrophenyl)methyl]cyclohexanone (R) has been synthesized, purified (column chromatography) and characterized by 1H NMR. The fluorescence properties of chemosensor (R) were studied in acetonitrile for the sensing of alkali, alkaline and transition metal ions (Mg2+, Cd2+, Ni2+, Zn2+, Ba2+, Co2+, Cu2+, Pb2+, Na1+). Interaction of Cd2+ with chemosensor R displayed a significant fluorescence enhancement as compared to other examined cations. Maximum emission was observed at pH 10. According to job’s plot analysis binding ratio of the complex R-Cd2+ was found to be 1:1. No significant interference was observed in the presence of competitive metal ions. The fluorescence of chemosensor R exhibits a good linear fluorescent response towards Cd2+ in the range 1-140 µM. The chemosensor R showed good binding constant to Cd2+ calculated as 1×106 M-1 using Benesi-Hilderbrand equation. The synthesized fluorescent chemosensor R was used successfully to determine Cd2+ in aqueous solution with a detection limit in µ range.<#LINE#>Belete T., Fekadu C., Solomon M. and Shimelis A. (2016).@Adsorption of Pb (II) ions from aqueous solutions using lignin from Hagenia Abbyssinica.@Bull. Chem. Soc. Ethio., 30(3), 473-484.@Yes$Bernard A. (2008).@Cadmium and its adverse health effects on humans.@Indian. J. Med. Res., 128(4), 557-564.@Yes$Singh B.R. and McLaughlin M.J. (1999).@Cadmium in Solis and Plants.@Springer, Netherlands, 257-267. ISBN: 978-94-011-4473-5@No$Lu C., Xu Z., Cui J., Zhang R. and Qian X. (2007).@Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: A new strategy to discriminatecadmium from zinc.@J. Org. Chem., 72(9), 3554-3557.@Yes$Waalkes M.P. (2003).@Cadmium carcinogenesis.@Mutat. Res., 533(1-2), 107-120.@Yes$Friberg L. (1984).@Cadmium and the kidney.@Environ. Health. Perspect., 54, 1-11. https://www.ncbi.nlm.nih.gov@Yes$Wei W., Ying-mu Z., Yao-xian L. and Qing Z. (2013).@Easily accessible and highly selective “Turn-on” fluorescent sensor for imaging cadmium in living cells.@Chem. Res. Chin. Univ., 29(4), 632-637.@Yes$Godt J., Scheidig F., Grosse-Siestrup C., Esche V., Brandenburg P., Reich A. and Groneberg A.D. (2006).@The toxicity of cadmium and resulting hazards for human health.@J. Occup. Med. Toxicol., 1, 1-22.@Yes$Nasser G. (2009).@Solvent microextraction-Flame atomic absorption spectroscopy (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.@J. Agric. Food Chem., 57(3), 1099-1104.@Yes$Liu W.H., Jiang J.S.U. and Shin-Hung L.H.S. (1999).@Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometr.@Spectrochim. Acta B., 54(9), 1367-1375.@Yes$Bruland W.K. and Coale H.K. (1985).@Analysis of seawater for dissolved cadmium, copper and lead:an intercomparison of voltammetric and atomic absorption methods.@Mar. Chem., 17(4), 285-300.@Yes$Sahan A., Banerjee A., Lohar S., Guha S., Das S.K., Mukhopadhyay K.S. and Das D. (2012).@Cd(II)-triggered excimer–monomer conversion of a pyrene derivative: time dependent red-shift of monomer emission with cell staining application.@Analyst., 137(17), 3910-3913.@Yes$Coskun A. and Akkaya U.E. (2005).@Ion sensing coupled to resonance energy transfer: A highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach.@J.Am.Chem.Soc., 127(30), 10464-10465.@Yes$Ding L., Cui A.X., Han Y., Lu F. and Fang Y. (2007).@Sensing performance enhancement via chelating effect: A novel fluorescent film chemosensor for copper ions.@J. Photochem. Photobiol A: Chem., 186(2-3), 143-150.Chattopadhyay N., Mallick A. and Sengupta S. (2006).@Yes$Gunnlaugsson T., Lee C.T. and Parkesh R. (2003).@Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors.@Org. Lett., 5(22), 4065-4068.@Yes$Xiaojun P., Jianjun D., Jiangli F., Jingyun W., Yankou W., Sun Shiguo, Xu Tao and Jianzhang Z. (2007).@A selective fluorescent sensor for imaging Cd2+in living cells.@J. Am. Chem. Soc., 129(6), 1500-1501.@Yes$Thomas C.N., Muhammad N.U. and Ahtaram B. (2010).@Picolylamine as an organocatalyst for highly diastereo- and enantioselective aqueous aldol reactions.@Org. Biomol. Chem., 8(18), 4085-4089.@Yes$Kaya I. and Kamac M. (2013).@Highly selective and stable fluorescent sensor for Cd(II) based on Poly(azomethine-urethane).@J. Floresc., 23(1), 115-121.@Yes$Yao Y., Zhongyue S., Zhilong Z. and Haibing Li. (2011).@Quinoline-triazole linked gold nanoparticle as sensitive ‘Turn on’ fluorescent Cd2+ probe.@Nanotechnology., 22(43), 1-5.@Yes$Chao-rui L., Jing-can Q., Bao-dui W., Long F., Jun Y. and Zheng-yin Y. (2016).@A chromone-derived Schiff-base ligand as Al3+ turn on fluorescent sensor: synthesis and spectroscopic properties.@J. Flouresc., 26(1), 345-353.@Yes$Shi-Rong L. and Shu-Pao W. (2012).@New water-soluble highly selective fluorescent chemosensor for iron (III) ions and its application to living cell imaging.@Sens. Actuators B-Chem., 171-172, 1110-1116. http://doi.org/10.1016/j.nsb.2012.06.04@Yes$Luca P., Marco M., Nelsi Z., Jerald S.B., Reed M.I. and Paul B.S. (2001).@Characterization of 5-chloro-8-methoxyquinoline appendeddiaza-18-crown-6 as a chemosensor for cadmium.@Tetrahedron Lett., 42(16), 2941-2944.@Yes$Priyanka G. and Diganta K.D. (2012).@A new highly sensitive and selective fluorescent cadmium sensor.@J. Fluoresc., 22(1), 391-395.@Yes$Soyoung S. and Jinsung T. (2011).@Rhodamine cyclen-based fluorescent chemosensor for the detection of Cd2+.@Bull. Korean. Chem. Soc., 32(8), 2928-2932.@Yes$Hong-Yuan L., Jian-Hui J., Xiao-Bing Z., Chun-Yan L., Guo-Li S. and Ru-Qin Y. (2007).@Synthesis of porphyrine-appended tetpyridine as a chemosensor for cadmium based on fluorescent enhancement.@Talanta., 72(2), 575-581.@Yes$Mathieu S., Vincent S., Isabelle L. and Bernard V. (2008).@Rhod-5N as a fluorescent molecular sensor of cadmium (II) ion.@J. Fluoresc., 18(6), 1077-1082.@No <#LINE#>Distribution and removal efficiency of heavy metals by a conventional activated sludge at a municipal wastewater treatment plant in Kisumu City, Kenya<#LINE#>Shikuku@Victor O. ,Achieng@George O. ,Ng’eno@Emily ,Okowa@George M. ,Masitsa@Gloria A. ,Owuor@James J. <#LINE#>19-25<#LINE#>3.ISCA-RJCS-2017-050.pdf<#LINE#>Maseno University, P.O. Box 333-40105, Maseno, Kenya@Maseno University, P.O. Box 333-40105, Maseno, Kenya@Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya@Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya@Egerton University, P.O Box 536-20115, Egerton, Kenya@The Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya<#LINE#>2/6/2017<#LINE#>7/8/2017<#LINE#>The aim of this study was to evaluate the occurrence and the instantaneous overall efficiency of the municipal wastewater treatment facility in Kisumu City-Kenya, a highly populated City, and compare the effluent quality parameters to the National Environmental Management Authority (NEMA) regulations. The heavy metals concentrations (Cu, Pb, Zn, Fe, Mg and Mn) were determined from the inflow and at each stage of the water treatment process including sludge to the effluent discharged to the recipient river. Sample preparation and analysis were done according to the recommended methods. The findings on site characteristics show that pH and chemical oxygen demand (COD) in the treated effluent exceeded the allowable limits. All the selected metal ions (Cu, Pb, Zn, Fe, Mg and Mn) were detected with 100% frequency in the influent water except for Pb which was below the instrumental detection limit (0.001 mg/L). The levels of the heavy metals recorded in the sediment samples were significantly higher than those in the corresponding water samples. The ascending order of the metal percentage removal efficiency (%R) from the treatment plant was: Zn (-127.77%) < Fe (3.66%) < Mn (16.64%) < Cu (24.26%) < Mg (46.97%) indicating that the removal efficiency was directly proportional to the initial metal ion levels in the influent. It is concluded that the plant is a point source for Zn loading into the recipient waters and biosorption and dissolution of the metal ions in the liquid fraction of the sludge were the key modes of metal elimination from the wastewater.<#LINE#>Karvelas M., Katsoyiannis A. and Samara C. (2003).@Occurrence and fate of heavy metals in the wastewater treatment process.@Chemosphere, 53(10), 1201-1210.@Yes$Barakat M.A. (2011).@New trends in removing heavy metals from industrial wastewater.@Arabian J. Chem., 4(4), 361-377.@Yes$Achieng G.O., Ongeri D.M.K. and Omwoyo W.N. (2013).@Impact of anthropogenic activities on copper and lead levels in Kisumu city soils.@Sky J. Soil Sci. Environ. Manage., 2(5), 47-52.@Yes$Gulyas G., Fazekas B., Varga R. and Karpati A. (2010).@Biological purification of chemically pre-treated dairy industry.@Current World Environ., 5(2), 373-378.@No$Verma R. and Suthar S. (2015).@Impact of density loads on performance of duckweed bioreactor: A potential system for synchronized wastewater treatment and energy biomass production.@Am. Inst. Chem. Eng. Environ. Program., 34, 1596-1604.@Yes$Kimosop S.J., Getenga Z.M., Orata F.O., Okello V.A. and Cheruiyot J.K. (2016).@Residue levels and discharge loads of antibiotics in wastewater treatment plants and hospital lagoons within Lake Victoria Basin, Kenya.@J. Environ. Monit. Assess., 188, 532. DOI: 10.1007/s10661-016-5534-6@Yes$Musungu C.P., Jondiko I.O., Lalah J., Ongeri D., Chepkui R. and Kiema F. (2013).@The extent of nutrient removal by wastewater treatment plants along the Nyalenda Wigwa Stream and the River Kisat (Kenya).@Ecohydrol. Hydrobiol., 13(4), 236-240.@Yes$Environmental Management and Coordination (Water Quality) Regulations (2006).@Legal Notice 120, Third Schedule, Standards for Discharge of Effluent into the Environment.@@No$Eaton A.D., Clesceri L.S. and Greenberg A.E. (1995).@Standard Methods for the Examination of Water and Wastewater.@American Public Health Association, Washington, DC, 8-11.@Yes$APHA-AWWA-WPCF (1998).@Standard methods for the Examination of Water and Wasewater.@American Public Health Association, Washingtion, DC. Part 3000, 3-8.@No$Taha A.W., Dakroury A.M., Sayed G.E. and El-Salam S.A. (2007).@Assessment removal of heavy metals ions from wastewater by cement kiln dust (CKD).@Eleventh International Water Technology Conference, Sharm El-Sheikh, Egypt, 879-893.@No$Oliveira A., Bocio A., Trevilato T., Takayanagui A., Domingo J. and Segura-munoz S. (2007).@Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant.@Environ. Sci. Pollut. Res., 14(7), 483-489.@Yes$Bazrafshan E., Moein H., Kord Mostafapour F. and Nakhaie S. (2013).@Application of electrocoagulation process for dairy wastewater treatment.@J. Chem., 1-8.@Yes$Pathak U., Das P., Banerjee P. and Datta S. (2016).@Treatment of wastewater from a dairy industry using rice husk as adsorbent: treatment efficiency, isotherm, thermodynamics, and kinetics modelling.@J. Thermodyn., 1-7.@Yes$Mostafa A.A. (2013).@Treatment of cheese processing wastewater by physicochemical and biological methods.@Inter. J. Microbiol. Res., 4(3), 321-332.@No$Ravva S.V. and Sarreal C.Z. (2014).@Survival of Salmonella enterica in aerated and non-aerated wastewaters from dairy lagoons.@Inter. J. Environ. Res. Public Health., 11(11), 11249-11260.@Yes$Mohebi-Fard E., Reyahi-Khoram M. and Sobhan-Ardakani S. (2015).@Performance evaluation of the wastewater treatment plant of Pelareh Dairy Industry, Iran.@J. Adv. Environ.Health Res., 3(4), 250-257.@Yes$Penradee C., Kyoung-Woong K. and Suthipong S. (2008).@Metal Contents and Its Variation in Wastewater and Sewage Sludge: A Case Study of Bangkok Central Wastewater Treatment Plants.@Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes (GREAT 2008), 4th IGCP 516, and 5th APSEG; 489-492.@Yes$Council Directive (1986).@Council Directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.@Offic. J. Eur. Comm., 181, 6-12.@Yes$EPA (1994).@Land application of sewage sludge.@A guide for land applies on the requirement of the Federal standards for the use or disposal of sewage sludge, 40 CFR 503.@No$Lazzari L., Sperni L., Bertin P. and Pavoni B. (2000).@Correlation between inorganic (heavy metals) and organic (PCBs and PAHs).@micropollutant concentrations during sewage sludge composting processes.@Yes$Abdel-Shafy H. (1996).@Fate of heavy metals via chemical–biological upgrading of sewage sludge treatment plants.@Environ. Manage. Health, 7(3), 28-36.@Yes$Planquart P., Bonin G., Prone A. and Massiani C. (1999).@Distribution, movement, and plant availability of trace metals in soils amended with sewage sludge composts: application to low Metal loadings.@Sci. Total Environ., 241(1-3), 161-179.@Yes$Voutsa D., Zaxariadis G., Gantidis N., Samara C. and Kouimtzis T. (1996).@Evaluation of municipal and industrial wastewater sludges for agricultural purposes.@Fresenious Environ. Bull., 5, 1-6.@Yes$Chipasa K.B. (2003).@Accumulation and fate of selected heavy metals in a biological wastewater treatment system.@Waste Manage., 23, 135-143.@Yes <#LINE#>Performance, influence of operational parameters and optimization of a corn cob based biofilter treating gas-phase mixture of MTBX<#LINE#>Saxena@Reena ,Dr.@Rahul <#LINE#>26-36<#LINE#>4.ISCA-RJCS-2017-055.pdf<#LINE#>Department of Nanotechnology, Dr. K.N. Modi University, Newai (Rajasthan), India@Chemical Engineering Department, Lakshmi Narain College of Technology, Bhopal (M.P.), India<#LINE#>14/6/2017<#LINE#>6/8/2017<#LINE#>The complete performance of a corn cob biofilter inoculated with microbial culture was optimized for the treatment of polluted air containing gas phase of MTBX. The biofilter was operated for the period of 149 days and this time period was divided into five phases (I-V) to differentiate between the outputs of biofilter. On the removal efficiency (RE) and elimination capacity (EC), the effects of various parameters like gaseous concentration and flow rate were investigated. The removal efficiency was measured with respect to inlet concentration of each component of MTBX and the elimination capacity was varied with change in loading rate of gaseous mixture. The maximum RE in MTBX was of n-butyle acetate (BA) with 99.98% with respect to inlet concentration of 0.118992 gm-3 while the minimum RE was of o-xylene with 98.21% for the concentration of .0.189568 gm-3. In case of EC the maximum value was obtained as 86.27 g m-3 h-1 for n-butyle acetate at the highest value of inlet load of 114.69 g -3 h-1. By performing an analysis of variance the results were statistically interpreted to elucidate the main and interaction effects.<#LINE#>Ondiaka M.N., Mutua J.M., Gitau A.N. and Njoroge B.N.K. (2012).@Quantitative structure-activity relationship biodegradability modeling in biofiltration of petroleum volatile organic compounds.@J. Environ. Res.Manag., 3(5), 99-107.@Yes$Ni Ji-Qin (2015).@Research and demonstration to improve air quality for the U.S. animal feeding operations in the 21st century - A critical review.@Environ. Pollution., 200, 105-119.@Yes$Raghuvanshi S. and Babu B.V. (2009).@Experimental studies and kinetic modeling for removal of methyl ethyl ketone using biofiltration.@Bioresource Technol, 100(17), 3855-3861.@Yes$Chang S., Lu C., Hsu S., Lai H.-T., Shang W.-L., Chuang Y.-S., Cho C.-H. and Chen S.-H. (2011).@Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.@Bioresour. Technol., 102(2), 1028-1034.@Yes$Chan W.-C. and Lai Y.Z. (2008).@Kinetic characteristics of n-butyl alcohol and iso-butyl alcohol in a composite bead air biofilter.@Bioresour. Technol., 99(10), 4380-4385.@Yes$Li L., Lian J., Han Y. and Liu J. (2012).@A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.@Bioresour. Technol., 111, 76-83.@Yes$Singh R.S., Agnihotri S.S. and Upadhyay S.N. (2006).@Removal of toluene vapours using agro-waste as biofilter media.@Bioresour. Technol., 97(18), 2296-2301.@Yes$Mudliar S., Giri B., Padoley K., Satpute D., Dixit R., Bhatt R., Pandey R., Juwarkar A. and Vaidya A. (2010).@Bioreactors for treatment of VOCs and odours – a review.@J. Environ. Manage., 91, 1039-1054.@Yes$Rene E.R., Kar S., Krishnan J., Pakshirajan K., Lopez M.E., Murthy D.V.S. and Swaminathan T. (2015).@Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.@Bioresource Technol., 190, 529-535.@Yes$Devinny J.S., Deshusses M.A. and Webster T.S. (1999).@Biofiltration for Air Pollution Control.@Lewis Publisher, Boca Raton, Florida.@No$Rene E.R., Mohammad B.T., Veiga M.C. and Kennes C. (2012).@Biodegradation of BTEX in a fungal biofilter: influence of operational parameters, effect of shock loads and substrate stratification.@Bioresour. Technol., 116, 204-213.@Yes$Estrade J.M., Hernandez S., Mun oz R. and Revah S. (2013).@A comparative study of fungal and bacterial biofiltration treating a VOC mixture.@J. Hazard. Mater., 250-251, 190-197.@Yes$kumar Ashok S., Saravanan V. and Rajasimman M. (2015).@Biotreatment of waste gas containing MEK in a using agro based biofilter.@Inter. J. Chem. Tech. Research., 8, 358-367.@No$Singh R.S., Rai B.N. and Upadhyay S.N. (2010).@Removal of toluene vapour from the air stream using a biofilter packed with polyurethane foam.@Process Safety Environ. Prot., 88(5), 366-371.@Yes @Review Paper <#LINE#>Environmental impact of engineered nanomaterials<#LINE#>Khan@Saima Akram <#LINE#>37-43<#LINE#>5.ISCA-RJCS-2017-047.pdf<#LINE#>Department of Chemistry, St. Xavier’s College - Autonomous, Mumbai 400 001, India<#LINE#>6/6/2017<#LINE#>12/8/2017<#LINE#>Advancements in the field of nanotechnology, have led to a concomitant rise in the incorporation of nanomaterials in consumer products. Engineered nanomaterials today are already being used in diverse commercial products in the fields of energy, sensing, food technology, electronics, pharmaceuticals, cosmetics, and material applications and have an estimated global market value of €20 billion. This has given rise to concerns about the undesirable effects of this technology on the environment. This review presents an overview of published studies about likely impact of nanoparticles in the ecosystem, their ecotoxicology, threat to human health and the environment and lack of sufficient data in the Indian context.<#LINE#>Guzman K.A.D., Taylor M.R. and Banfield J.F. (2006).@Environmental Risks of Nanotechnology:  National Nanotechnology Initiative Funding, 2000−2004.@Environ. Sci. Technol., 40(5), 1401-1407. doi: 10.1021/es0515708@Yes$UNESCO Science Report (2015).@towards 2030.@@No$Roco M.C., Mirkin C.A. and Hersam M.C. (2011).@Nanotechnology research directions for societal needs in 2020: summary of international study.@J. Nanopart. Res., 13, 897-919. doi:10.1007/s11051-011-0275-5@Yes$Nowack B. and Bucheli T.D. (2007).@Occurrence, behavior and effects of nanoparticles in the environment.@Environ. Pollut., 150, 5-22. doi:10.1016/j.envpol.2007.06.006@Yes$Wiesner Mark R., Lowry Greg V., Alvarez Pedro, Dionysiou Dianysios and Biswas Pratim (2006).@Assessing the risks of manufactured nanoparticles.@Environ. Sci. Technol., 40(14), 4336-4345. doi: 10.1021/es062726m@Yes$Maynard A.D. (2007).@Nanotechnology: Overviews and Issues.@Nanotechnology-Toxicological Issues and Environmental Safety, Springer Publications, Netherlands, 1-14,@Yes$Roco M.C., Harthorn B., Guston D. and Shapira P. (2011).@Innovative and responsible governance of nanotechnology for societal development.@Nanotechnology Research Directions for Societal Needs in 2020, Springer Netherlands, 561-617.@Yes$Grieger K.D., Hansen S.F. and Baun A. (2009).@The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks.@Nanotoxicology, 3(3), 222-233. doi: 10.1080/17435390902944069@Yes$Hristozov D. and Malsch I. (2009).@Hazards and risks of engineered nanoparticles for the environment and human health.@Sustainability, 1(4), 1161-1194. doi: 10.3390/su1041161@Yes$Savolainen K., Alenius H., Norppa H., Pylkkanen L., Tuomi T. and Kasper G. (2010).@Risk assessment of engineered nanomaterials and nanotechnologies-a review.@Toxicology, 269(2-3), 92-104. doi:10.1016/j.tox.2010.01.013@Yes$Pettitt M.E. and Lead J.R. (2013).@Minimum physicochemical characterization requirements for nanomaterial regulation.@Environ. Int., 52, 41-50. doi: 10.1016/j.envint.2012.11.009.@Yes$Oberdörster G., Oberdörster E. and Oberdörster J. (2005).@Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles.@Environmental Health Perspectives, 113, 823-839. doi:10.1289/ehp.7339@Yes$Kreyling W.G., Semmler-Behnke M. and Möller W. (2006).@Health Implications of Nanoparticles.@J Nanopart Res., 8(3), 543-562. doi:10.1007/s11051-005-9068-z@Yes$Net Andre, Tian Xia, Mädler Lutz and Ning Li (2006).@Toxic Potential of Materials at the Nanolevel.@Science, 311(5761), 622-627 doi: 10.1126/science.1114397@Yes$Bergamaschi E. (2009).@Occupational exposure to nanomaterials: present knowledge and future development.@Nanotoxicology, 3(3), 194-201. doi:10.1080/17435390903037038@Yes$Maurer-Jones Melissa A., Gunsolus Ian L., Murphy Catherine J. and Haynes Christy L. (2013).@Toxicity of engineered nanoparticles in the environment.@Analytical Chemistry, 85(6), 3036-3049. doi: 10.1021/ac303636s@Yes$Hotze E.M., Phenrat T., Lowry G.V. (2010).@Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment.@J. Environ. Qual., 39(6), 1909-1924.@Yes$Nowack B. (2009).@The Behaviour and Effects of Nanoparticles in the Environment.@Environ Pollut, 157(4), 1063-1064. doi: 10.1016/j.envpol.2008.12.019@Yes$Hassellöv M., Readman J.W., Ranville J.F. and Tiede K. (2008).@Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.@Ecotoxicology, 17, 344-361. doi: 10.1007/s10646-008-0225-x..@Yes$Tiede K., Hassellöv M., Breitbarth E., Chaudhry Q. and Boxall A.B.A. (2009).@Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.@J.Chromatogr. A, 1216(3), 503-509. doi: 10.1016/j.chroma.2008.09.008.@Yes$Lowry G.V., Gregory K.B., Apte S.C. and Lead J.R. (2012).@Transformations of nanomaterials in the environment.@Environ. Sci. Technol., 46(13), 6893-6899. doi: 10,1021/es300839e.@Yes$Handy R.D., von der Kammer F., Lead J.R., Hassellöv Martin, Owen Richard and Crane Mark (2008).@The ecotoxicology and chemistry of manufactured nanoparticles.@Ecotoxicology, 17, 287-314. doi:10.1007/s10646-008-0199-8.@Yes$Kammer Frank von der, Legros Samuel, Hofmann Thilo, Larsen Erik H. and Loeschner Katrin (2011).@Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation.@Trends in Analytical Chemistry, 30(3), 425-436.@Yes$Roth Gary A., Sahil Tahiliani, Neu‐Baker Nicole M. and Brenner Sara A. (2015).@Hyperspectral microscopy as an analytical tool for nanomaterials.@Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(4), 565-579@Yes$White Brittany, Strawbridge Andrew, Grabinski Christin M. and Hussain Saber M. (2013).@Hyperspectral imaging (HSI) to evaluate the interaction of optically active nanoparticles in biological media and cells.@Bios, 84(4), 210-217.@Yes$Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P. and Wiesner M. (2009).@Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.@Nat. Nanotechnol., 4, 634-641.@Yes$Wiesner M.R., Lowry G.V., Jones K.L., Hochella M.F., Di Giulio R.T., Casman E. and Bernhardt E.S. (2009).@Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.@Environ. Sci. Technol., 43(17), 6458-6462.@Yes$Zhao F., Zhao Y., Liu Y., Chang Xueling, Chen Chunying and Zhao Yuliang (2011).@Cellular uptake, intracellular trafficking and cytotoxicity of nanomaterials.@Small, 7(10), 1322-1337. doi: 10.1002/smll.201100001@Yes$Kovochich M., Xia T., Xu J., Yeh J.I. and Nel A.E. (2007).@Principles and procedures to assess nanomaterial toxicity.@Environmental Nanotechnology: Applications and Impacts of Nanomaterials, Mc Graw Hill, New York, 205-229 ISBN: 9780071477505.@Yes$Li J., Chang X., Chen X., Gu Zhanjun, Zhao Feng, Chai Zhifang and Zhao Yuliang (2014).@Toxicity of inorganic nanomaterials in biomedical imaging.@Biotechnol Adv, 32(4), 727-743. doi: 10.1016/j.biotechadv.2013.12.009@Yes$Luna-Velasco A., Field J.A., Cobo-Curiel A. and Sierra-Alvarez R. (2011).@Inorganic nanoparticles enhance the production of reactive oxygen species (ros) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa).@Chemosphere, 85(1), 19-25. doi: 10.1016/j.chemosphere.2011.06.053.@Yes$Shvedova A.A., Pietroiusti A., Fadeel B. and Kagan V.E. (2012).@Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress.@Toxicol Appl Pharmacol, 261(2), 121-133. doi: 10.1016/j.taap.2012.03.023.@Yes$Choi O. and Hu Z. (2008).@Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.@Environ Sci Technol., 42(12), 4583-4588. doi: 10.1021/es703238h.@Yes$Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T. and Schlager J.J. (2005).@In vitro toxicity of nanoparticles in brl 3a rat liver cells.@Toxicol In Vitro, 19(7), 975-983. doi: 10.1016/j.tiv.2005.06.034.@Yes$Zoroddu M., Medici S., Ledda A., Nurchi V., Lachowicz J. and Peana M. (2014).@Toxicity of nanoparticles.@Current Medicinal Chem., 21, 3837-3853. doi: 10.2174/0929867321666140601162314.@Yes$Handy R.D., Owen R. and Valsami-Jones E. (2008).@The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.@Ecotoxicology, 17(5), 315-325. doi:10.1007/s10646-008-0206-0@Yes$Oberdörster Eva, Zhu Shiqian, Blickley T. Michelle, McClellan-Green Patricia and Haasch Mary L. (2006).@Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C 60) on aquatic organisms.@Carbon, 44(6), 1112-1120.@Yes$Dhawan A., Taurozzi J.S., Pandey A.K., Shan W., Miller S.M., Hashsham S.A. and Tarabara V.V. (2006).@Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.@Environ. Sci. Technol., 40(23), 7394-7401. doi: 10.1021/es0609708@Yes$Markovic Z., Todorovic-Markovic B., Kleut D., Nikolic N., Vranjes-Djuric S., Misirkic M., Vucicevic L., Janjetovic K., Isakovic A., Harhaji L., Babic-Stojic B., Dramicanin M. and Trajkovic V. (2007).@The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes.@Biomaterials, 28(36), 5437-5448. doi: 10.1016/j.biomaterials.2007.09.002@Yes$Zhang Leshuai W., Yang Jianzhong, Barron Andrew R. and Monteiro-Riviere Nancy A. (2009).@Endocytic mechanisms and toxicity of a functionalized fullerene in human cells.@Toxicology Letters, 191(2-3), 149-157. doi: 10.1016/j.toxlet.2009.08.017@Yes$Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S.R. and Moussa F. (2005).@[60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity.@Nano Lett., 5(12), 2578-2585. doi:10.1021/nl051866b@Yes$Liu Y., Zhao Y., Sun B. and Chen C. (2013).@Understanding the toxicity of carbon nanotubes.@Acc Chem Res, 46(3), 702-713. doi: 10.1021/ar300028m@Yes$Jackson P., Jacobsen N.R., Baun A., Birkedal Renie, Kühnel Dana, Alstrup Jensen Keld, Vogel Ulla and Wallin Hĺkan (2013).@Bioaccumulation and ecotoxicity of carbon nanotubes.@Chemistry Central Journal, 7, 154. doi:10.1186/1752-153X-7-154@Yes$Johnston H.J., Hutchison G.R., Christensen F.M., Peters S., Hankin S., Aschberger K. and Stone V. (2010).@A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics.@Nanotoxicology, 4(2), 207-246. doi: 10.3109/17435390903569639.@Yes$Jing Wang Xu, Yuanzhi Yang, Zhi Huang, Renhuan Chen, Jing Wang, Raorao Lin and Yunfeng (2013).@Toxicity of carbon nanotubes.@Current Drug Metabolism, 14(8), 891-899(9).@Yes$Bottero Jean-Yves, Auffan Mélanie, Rose Jérôme, Mouneyrac Catherine, Botta Céline, Labille Jérôme, Masion Armand, Thill Antoine and Chaneac Corinne (2011).@Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems.@Comptes Rendus Geoscience, 343(2), 168-176.@Yes$Xia Tian, Kovochich Michael, Liong Monty, Mädler Lutz, Gilbert Benjamin, Shi Haibin, Yeh Joanne I., Zink Jeffrey I. and Nel Andre E. (2008).@Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties.@ACS Nano, 2(10), 2121-2134. doi: 10.1021/nn800511k@Yes$Sharma V., Singh S.K., Anderson D., Tobin D.J., Dhawan A. (2011).@Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes.@J Nanosci Nanotechnol., 11(5), 3782-3788.@Yes$Sharma V., Shukla R.K., Saxena N., Parmar D., Das M. and Dhawan A. (2009).@DNA damaging potential of zinc oxide nanoparticles in human epidermal cells.@Toxicol Lett., 185(3), 211-218.@Yes$Lai X., Wei Y., Zhao H., Chen Suning, Bu Xin, Lu Fan, Qu Dingding, Yao Libo, Zheng Jianyong and Zhang Jian (2015).@The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells.@J Appl Toxicol., 35(6), 651-664. doi: 10.1002/jat.3128.@Yes$Lin W., Xu Y., Huang C.C., Shannon K.B., Chen D.R. and Huang Y.W. (2009).@Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells.@J Nanopart Res., 11, 25-39. doi: 10.1007/s11051-008-9419-7@Yes$Han Z., Yan Q., Ge W., Liu Zhi-Guo, Gurunathan Sangiliyandi, De Felici Massimo, Shen Wei and Zhang Xi-Feng (2016).@Cytotoxic effects of ZnO nanoparticles on mouse testicular cells.@International Journal of Nanomedicine, 11, 5187-5203. doi:10.2147/IJN.S111447.@Yes$Johnson B.M., Fraietta J.A., Gracias D.T., Jennifer L Hope, Stairiker Christopher J., Patel Prachi R., Mueller Yvonne M., McHugh Michael D., Jablonowski Lauren J., Wheatley Margaret A. and Katsikis Peter D. (2015).@Acute exposure to ZnO nanoparticles induces autophagic immune cell death.@Nanotoxicology, 9(6), 737-748. doi: 10.3109/17435390.2014.974709.@Yes$Ahamed M., Akhtar M.J., Raja M., Ahmad Iqbal, Javed Siddiqui Mohammad Kaleem, AlSalhi Mohamad S. and Alrokayan Salman A. (2011).@ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, surviving and bax/bcl-2pathways: role of oxidative stress.@Nanomedicine, 7(6), 904-913. doi: 10.1016/j.nano.2011.04.011.@Yes$Ng K.W., Khoo S.P., Heng B.C., Setyawati Magdiel I., Tan Eng Chok, Zhao Xinxin, Xiong Sijing, Fang Wanru, Leong David T. and Loo Joachim S.C. (2011).@The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles.@Biomaterials, 32(32), 8218-8225. doi: 10.1016/j.biomaterials.2011.07.036@Yes$Hund-Rinke K. and Simon M. (2006).@Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids.@Environ Sci Pollut Res., 13(4), 225-232.@Yes$Federici G., Shaw B.J. and Handy R.D. (2007).@Toxicity of titanium dioxide nanoparticles to rainbow trout, (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects.@Aquat Toxicol, 84(4), 415-430. doi: 10.1016/j.aquatox.2007.07.009@Yes$Sayes Christie M., Wahi Rajeev, Kurian Preetha A., Liu Yunping, West Jennifer L., Ausman Kevin D., Warheit David B. and Colvin Vicki L. (2006).@Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells.@Toxicol. Sci., 92(1), 174-185. doi: 10.1093/toxsci/kfj197@Yes$Pierzchala K., Lekka M., Magrez A., Kulik A.J., Forró L. and Sienkiewicz A. (2012).@Photocatalytic and phototoxic properties of TiO2-based nanofilaments: ESR and AFM assays.@Nanotoxicology, 6(8), 813-24. doi: 10.3109/17435390.2011.625129.@Yes$Montiel-Dávalos A.l., Ventura-Gallegos J.L., Alfaro-Moreno E., Soria-Castro E., García-Latorre E., Cabańas-Moreno J.G., Ramos-Godinez M.P. and López-Marure R. (2012).@TiO2 nanoparticles induce dysfunction and activation of human endothelial cells.@Chem Res Toxicol., 25(4), 920-30. doi: 10.1021/tx200551u@Yes$Pelclova Daniela, Zdimal Vladimir, Kacer Petr, Fenclova Zdenka, Vlckova Stepanka, Syslova Kamila, Navratil Tomas, Schwarz Jaroslav, Zikova Nadezda, Barosova Hana, Turci Francesco, Komarc Martin, Pelcl Tomas, Belacek Jaroslav, Kukutschova Jana and Zakharov Sergey (2016).@Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production.@J. Breath Res., 10(1), 016004. doi:10.1088/1752-7155/10/1/016004@Yes$Sarma Deshpande S. (2011).@Life Cycle of a Nanosilver Based Candle Filter: Examining Issues of Toxicity, Risks, Challenges and Policy Implications.@Journal of biomedical nanotechnology, 7(1), 83-84.@Yes$Fabrega J., Luoma Samuel N., Tyler Charles R., Galloway Tamara S. and Lead Jamie R. (2011).@Silver nanoparticles: Behaviour and effects in the aquatic environment.@Environ. Int., 37, 517-531. doi: 10.1016/j.envint.2010.10.012.@Yes$Choi, O., Deng Kathy Kanjun, Kim Nam-Jung, Ross Louis, Surampalli Rao Y. and Hu Zhiqiang (2008).@The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.@Water Research, 42(12), 3066-3074. doi: 10.1016/j.watres.2008.02.021.@Yes$Massarsky A., Trudeau V.L. and Moon T.W. (2014).@Predicting the environmental impact of nanosilver.@Environ. Toxicol. Pharmacol., 38, 861-873. doi: 10.1016/j.etap.2014.10.006.@Yes$Hsiao I.L., Hsieh Yi-Kong, Wang Chu-Fang, Chen I-Chieh and Huang Yuh-Jeen (2015).@Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis.@Environmental Science & Technology, 49(6), 3813-3821. doi: 10.1021/es504705p.@Yes$Wang Zhe, Liu Sijin, Ma Juan, Qu Guangbo, Wang Xiaoyan, Yu Sujuan, He Jiuyang, Liu Jingfu, Xia Tian and Gui- Jiang Bin (2013).@Silver nanoparticles induced RNA polymerase silver binding and RNA transcription inhibition in erythroid progenitor cells.@ACS Nano, 7(5), 4171-4186. doi: 10.1021/nn400594s@Yes$Adjei I.M., Sharma B. and Labhasetwar V. (2014).@Nanoparticles: Cellular uptake and cytotoxicity.@Advances in Experimental Medicine & Biology, 811, 73-91. doi:10.1007/978-94-017-8739-0_5@Yes$Yu S.J., Yin Y.G. and Liu J.F. (2013).@Silver nanoparticles in the environment.@Environmental Science Processes & Impacts, 15, 78-92. doi 10.1039/C2EM30595J@Yes$Marin Stefania, Vlasceanu George Mihail, Tiplea Roxana Elena, Bucur Ioana Raluca, Lemnaru Madalina, Marin Maria Minodora and Grumezescu Alexandru Mihai (2015).@Applications and toxicity of silver nanoparticles: A recent review.@Current Topics in Medicinal Chemistry, 15(16), 1596-1604. doi: 10.2174/1568026615666150414142209@Yes$Kwok Kevin W.H., Dong Wu, Marinakos Stella M., Liu Jie, Chilkoti Ashutosh, Wiesner Mark R., Chernick Melissa and Hinton David E. (2016).@Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation.@Nanotoxicology, 10(9), 1306-1317. doi: 10.1080/17435390.2016.1206150@Yes$Guo Xiaoqing, Li Yan, Yan Jian, Ingle Taylor, Jones Margie Yvonne, Mei Nan, Boudreau Mary D., Cunningham Candice K., Abbas Mazhar, Paredes Angel M., Zhou Tong, Moore Martha M., Howard Paul C. and Chen Tao (2016).@Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.@Nanotoxicology, 10(9), 1373-1384. doi: 10.1080/17435390.2016.1214764@Yes$Chen Nan, He Yao, Su Yuanyuan, Li Xiaoming, Huang Qing, Wang Haifeng, Zhang Xiangzhi, Tai Renzhong and Fan Chunhai (2012).@The cytotoxicity of cadmium-based quantum dots.@Biomaterials, 33(5), 1238-1244. doi: 10.1016/j.biomaterials.2011.10.070.@Yes$Bottrill Melanie and Green Mark (2011).@Some aspects of quantum dot toxicity.@Chem. Commun., 47(25), 7039-7050. doi: 10.1039/C1CC10692A@Yes$Kang S., Mauter M.S. and Elimelech M. (2009).@Microbial cytotoxicity of carbon-based nanomaterials: Implications for river water and wastewater effluent.@Environ. Sci. Technol., 43(7), 2648-2653. doi: 10.1021/es8031506@Yes$Gebel Thomas, Foth Heidi, Damm Georg, Freyberger Alexius, Kramer Peter-Jürgen, Lilienblum Werner, Röhl Claudia, Schupp Thomas, Weiss Carsten, Wollin Klaus-Michael and Hengstler Jan Georg (2014).@Manufactured nanomaterials: categorization and approaches to hazard assessment.@Archives of toxicology, 88(12), 2191-2211. doi:10.1007/s00204-014-1383-7@Yes$Bouwmeester Hans, Lynch Iseult, Marvin Hans J.P., Dawson Kenneth A., Berges Markus, Braguer Diane, Byrne Hugh J., Casey Alan, Chambers Gordon, Clift Martin J.D., Elia Giuliano, Fernandes Teresa F., Fjellsbř Lise B., Hatto Peter, Juillerat Lucienne, Klein Christoph, Kreyling Wolfgang G., Nickel Carmen, Riediker Michael and Stone Vicki (2011).@Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices.@Nanotoxicology, 5(1), 1-11, doi: 10.3109/17435391003775266@Yes$Meng Huan, Xia Tian, George Saji and Nel Andre E., (2009).@A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials.@ACS Nano, 3(7), 1620-1627. doi: 10.1021/nn9005973@Yes$Gottschalk F., Sonderer T., Scholz R.W. and Nowack B. (2009).@Modelled environmental concentrations of engineered nanomaterials (TiO2,ZnO, Ag, CNT, Fullerenes) for different regions.@Environ. Sci. Technol., 43(24), 9216-9222. doi: 10.1021/es9015553.@Yes$Kumar Prashant, Kumar Arun and Lead Jamie R. (2012).@Nanoparticles in the Indian environment: known, unknowns and awareness.@Environmental Science & Technology, 46(13), 7071-7072. doi: 10.1021/es302308h@Yes$Kumar P., Gurjar B.R., Nagpure A. and Harrison R.M. (2011).@Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts.@Environ. Sci. Technol., 45(13), 5514-5521.@Yes$Jayanthi A.P., Beumer K. and Bhattacharya S. (2012).@Nanotechnology:Risk governance in India.@Econ. Political Daily, 47(4), 34-40.@Yes$Sarma Deshpande S. (2011).@How Resilient is India to Nanotechnology Risks? Examining Current Developments, Capacities and an Approach for Effective Risk Governance and Regulation.@European Journal of Law and Technology, 2(3),@Yes$TERI Report (2009).@Report on Regulatory Challenges Posed by Nanotechnology Developments in India.@The Energy and Resources Institute, New Delhi.@No$TERI Report (2009).@Nanotechnology Developments in India: a Status Report.@The Energy and Resources Institute, New Delhi.@No$Beumer K. and Bhattacharya S. (2013).@Emerging technologies in India: Developments, debates and silences about nanotechnology.@Science and Public Policy, 40(5), 628-643. doi:10.1093/scipol/sct016.@Yes