@Research Paper <#LINE#>Gold nanoparticles encapsulated alginate microspheres as an adsorbent for the separation of the dye safranin orange from the aqueous solutions through batch method<#LINE#>Barna @Paul,Alka @Tiwari <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2016-168.pdf<#LINE#>Research Centre, Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg- 491001, C.G., India@Research Centre, Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg- 491001, C.G., India<#LINE#>21/4/2016<#LINE#>10/3/2017<#LINE#>Gold nanoparticles encapsulated alginate microspheres were synthesized and evaluated as a nanoadsorbent for removing Safranin Orange from aqueous solutions. Gold nanoparticles were prepared and characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and FT-IR. The adsorption of Safranin Orange was examined by batch technique. The effects of pH, initial Safranin Orange concentration, adsorbent dosage and contact time on the efficiency of Safranin Orange removal were studied for the batch method. The equilibrium data analyzed by using Langmuir and Freundlich isotherm models showed better agreement with the latter model. Kinetic studies were conducted and the resulting data were analyzed using first- and second-order equations; pseudo-second-order kinetic equation was found to provide the best correlation. Repeated adsorption and desorption cycles were performed to examine the stability and reusability of the nanoadsorbent. The result of this study proved high stability and reusability of Gold nanoparticles encapsulated alginate microspheres as an adsorbent for Safranin Orange dye.<#LINE#>Kiran I., Akar T., Ozcan A.S., Ozcan A. and Tunali S. (2006).@Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions.@Biochemical Engineering Journal, 31(3), 197-203.@Yes$Vijayaraghavan K. and Yun Y.S. (2008).@Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp.@Dyes and Pigments, 76(3), 726-732.@Yes$Mahony T.O., Guibal E. and Tobin J.M. (2002).@Reactive dye biosorption by Rhizopus arrhizus biomass.@Enzyme and Microbial Technology, 31(4), 456-463.@Yes$Ozcan A.S. and Ozcan A. (2004).@Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite.@Journal of Colloid and Interface Science, 276(1), 39-46.@Yes$Shokry Hassan H., Elkady M.F., El-Shazly A.H. and Bamufleh Hisham S. (2014).@Formulation of Synthesized Zinc Oxide Nanopowder into Hybrid Beads for Dye Separation.@Journal of Nanomaterials, Article ID 967492, 1-14.@Yes$McMullan G., Meehan C., Conneely A., Kirby N., Robinson T., Nigam P., Banat I.M., Marchant R. and Smyth W.F. (2001).@Microbial decolourisation and degradation of textile dyes@Appl. Microbiol. Biotechnol., 56(1), 81-87.@Yes$Pearce C.I., Lloyd J.R. and Guthrie J.T. (2003).@The removal of colour from textile wastewater using whole bacterial cells: a review.@Dyes and Pigments, 58(3), 179-196.@Yes$Ozmen E.Y., Sezgin M., Yilmaz A. and Yilmaz M. (2008).@Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions.@Bioresour. Technol., 99(3), 526-531.@Yes$Christie R. (2001).@Colour Chemistry.@The Royal Society of Chemistry, Cambridge, United Kingdom.@Yes$Shrivastava V.S. (2010).@Metallic and organic nanomaterials and their use in pollution control: A Review.@Arch. Appl. Sci. Res, 2(6), 82-92.@Yes$Ncibi M.C., Mahjoub B. and Seffen M. (2007).@Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres.@Journal of Hazardous Materials, 139(2), 280-285.@Yes$Robinson T., Chandran B. and Nigam P. (2002).@Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw.@Water Research, 36(11), 2824-2830.@Yes$Inbaraj B.S., Wang J.S., Lu J.F., Siao F.Y. and Chen B.H. (2009).@Adsorption of toxic mercury (II) by an extracellular biopolymer poly(𝛾-glutamic acid).@Bioresource Technology, 100(1), 200-207.@Yes$McKay G. (1983).@The adsorption of dyestuffs from aqueous solution using activated carbon: analytical solution for batch adsorption based on external mass transfer and.@The Chemical Engineering Journal, 27(3), 187-196.@Yes$McKay G. (1984).@Analytical solution using a pore diffusion model for a pseudo irreversible isotherm for the adsorption of basic dye on silica.@AIChE Journal, 30(4), 692-697.@Yes$Mak S.Y. and Chen D.H. (2004).@Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles.@Dyes and Pigments, 61(1), 93-98.@Yes$Prachi Pranjali Gautam, Madathil Deepa and Nair A.N. Brijesh (2013).@Nanotechnology in Waste Water Treatment: A Review.@International Journal of ChemTech Research, 5(5), 2303-2308.@Yes$Alkilany Alaaldin m. and Murphy Catherine J. (2010).@Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?.@Journal of nanoparticle research, 12(7), 2313-2333.@Yes$Park S., Lee J.C., Lee D.W. and Lee J.H. (2003).@Photocatalytic ZnO nanopowders prepared by solution combustion method for noble metal recovery.@Journal of Materials Science, 38(22), 4493-4497.@Yes$Marinkovi´c Z.V., Miloˇsevi´c O., Nikoli´c M.V., Kakazey M.G., Karpec M.V., Tomila T.V. and Ristić M.M. (2004).@Evolution of the microstructure of disperse ZnO powders obtained by the freeze-drying method.@Materials Science and Engineering A, 375-377(1-2), 620-624.@Yes$Li H., Wang J., Liu H., Zhang H. and Li X. (2005).@Zinc oxide films prepared by sol-gel method.@Journal of Crystal Growth, 275(1-2), e943-e946.@Yes$Kaur R., Singh A., Sehrawat K., Mehra N. and Mehra R. (2006).@Sol gel derived yttrium doped ZnO nanostructures.@Journal of Non-Crystalline Solids, 352(23-25), 2565-2568.@Yes$Varshney K.G. and Pandith A.H. (2001).@Synthesis and ion exchange behavior of acrylonitrile-based zirconium phosphate—a new hybrid cation exchanger.@Journal of the Indian Chemical Society, 78(5), 250-253.@Yes$Khan A.A., Khan A. and Inamuddin (2007).@Preparation and characterization of a new organic-inorganic nano-composite poly-o-toluidine Th (IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode.@Talanta, 72(2), 699-710.@Yes$Nilchi A., Atashi H., Javid A.H., and Saberi R. (2007)@Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes.@Applied Radiation and Isotopes, 65(5), 482-487.@Yes$Liu Y., Liang P. and Guo L. (2005).@Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry.@Talanta, 68(1), 25-30.@Yes$Bajpai A.K., Rajput M. and Mishra D.D. (2000).@Studies on the correlation between structure and adsorption of sulfonamide compounds.@Colloid Surfaces A: Physico. Chem. Eng. Aspect, 168(3), 193-195.@Yes <#LINE#>Estimation of total solar radiation using RadEst 3.0 software at Dang, Nepal<#LINE#>Bed Raj @K.C. <#LINE#>8-13<#LINE#>2.ISCA-RJCS-2016-234.pdf<#LINE#>Mahendra Multiple Campus, Tribhuvan University, Nepalganj, Nepal<#LINE#>16/11/2016<#LINE#>10/3/2017<#LINE#>The RadEst 3.0 version software estimates total solar radiation using meteorological parameters such as precipitation, temperatures and solar radiation of Dang (Lat.28.7°N, Lon.82.18°E, and Alt.659m). The annual average daily global solar radiation is about 16.7 MJ/m2/day which is sufficient to generate the solar energy. Radiation is calculated as the product of the atmospheric transmissivity of radiation and radiation outside earth atmosphere. The model parameters are fitted in two years data. The values estimated by the models are compared with measured solar radiation data. The performance of the model was evaluated using root mean square error (RMSE), mean bias error (MBE), Coefficient of Residual Mass (CRM) and coefficient of determination (R2). The RadEst 3.0 software which showed the better results using BC, CD, DB and DCBB, among them the DB model is the best model for this site. The values of RMSE, MBE, CRM and R2 are 2.98, 1.27, 0.00 and 0.66 respectively. The finding coefficients of different models can be utilized for the estimation of solar radiation at the similar meteorological sites of Nepal. The result conformed that there is strong correlation of total solar radiation with altitude and local weather condition.<#LINE#>Poudyal K.N., Bhattarai B.K., Sapkota B. and Kjeldstad B. (2012).@Estimation of the Daily Global Solar Radiation using RadEst 3.00 software- A case Study at Low land Plain Region of Nepal.@J. Nepal Chem. Soc., 29, 48-57.@Yes$Poudyal K.N. (2015).@Estimation of Global Solar Radiation Potential in Nepal.@Doctoral Thesis at IOE 2015, Institute of Engineering Central Campus PulchowkTribhuvan University, Kathamndu@No$IEA (2010).@Key world energy statistics 2014.@International Energy Agency, Paris.@Yes$Janjai S. (2008).@Assessment of Solar Energy Potentials for Combodia.@@No$Poudyal K.N., Daponte P., Vito L.De, Bhattarai B.K. and Sapkota B. (2010).@Study of Diurnal Variation of Global Solar Irradiance Using Pyranometer on Horizontal Surface and Investigation of the Trend of Irradiance at the Solar Noon at Kathmandu, Nepal@Proc. of XVII IMEKO TC-4 Int. Symposium, Kosice, SKIMA 2010.@Yes$UNFCO, (2012). District profile Jumla. Nepalgunj: United Nations FieldCoordination,Mid WesternRegion@undefined@undefined@No$McVicar T.R. and Jupp D.L.B (1999).@Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance model.@Agric. For. Meteorol., 96(4), 219-238.@Yes$Chegaar M., Lamri A. and Chibani A. (1998).@Estimating Global Solar Radiation Using Sunshine Hours.@Rev. Energ. Ren, 7-11.@Yes$Are you looking for www.sipeaa.it? (2017) http://www.sipeaa.it/tools@undefined@undefined@No$Bristow K.L. and Campbell G.S. (1984).@On the relationship between incoming solar radiation and daily maximum and minimum temperature.@Agric. For. Meterol, 31(2), 159-166.@Yes$Donatelli M. and Campbell C.S. (1998).@A simple model to estimate global solar radiation.@proceedings of the fifth congress of the European Society for Agronomy Nitra, Slovakia, II, PP. 133-134@Yes$Bechini L., Duccob G., Donatelli M. and Stein A. (2000)@Modelling, Interpolation and Stochastic Simulation in space and time of Global Solar Radiation.@Agric. Eco. Environ., 81(1), 29-42.@Yes$Donatelli M. and Bellocchi G. (2001).@Estimates of Daily Global Solar Radiation: New developments in the software RadEst3.00.@213-214. In: Proc. Int. Symp. Modelling Cropping Syst., 2nd, Florence, Italy,16-18 2001. Inst. for CNR, Florence, Italy@Yes$Donatelli M., Bellocchi G. and Fontana F. (2003).@RadEst 3.00 software to estimate daily Radiation data from commonly available meterological variables.@Europ. J of Agron., 18(3), 363-367.@Yes$Poudyal K.N., Bhattarai B.K., Sapkota B., Kjeldstad B. and Daponte P. (2013).@Estimation of the daily global solar radiation; Nepal experience.@Measurement, 46(6), 1807-1817.@Yes$Kipp and Zonen (2017).@CMP series instruction manual.@Kipp and Zonen B.V., Delftech park 36, Netherlands, 2006.@No <#LINE#>Hydrochemical characterization of water resources in the Santa María Valley, NW of Argentina<#LINE#>Sales @A.,López @J.P.,García @J.,Balverdi @P.,Marchisio @P. <#LINE#>14-23<#LINE#>3.ISCA-RJCS-2017-012.pdf<#LINE#>Instituto de Química Analítica, Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. S. M. de Tucumán. CP 4000, Argentina@Facultad deCiencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205. S. M. de Tucumán. CP 4000. Argentina@Facultad deCiencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205. S. M. de Tucumán. CP 4000. Argentina@Instituto de Química Analítica, Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. S. M. de Tucumán. CP 4000, Argentina@Instituto de Química Analítica, Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. S. M. de Tucumán. CP 4000, Argentina<#LINE#>15/3/2017<#LINE#>13/4/2017<#LINE#>Hydrochemical researches in Santa María Valley located in Catamarca and Tucumán in the northwest of Argentina were carried out to assess the chemical characteristics of surface water and groundwater, to understand the sources of dissolved ions by defining the principal hydrochemical processes in order to provide theoretical bases to developing strategies of natural resources uses in the region. This region is dominated by a semi-arid climate. A total of twenty five water samples have been collected. The physicochemical parameters determined in water by standardized methods werepH, electrical conductivity (EC), major ions (calcium, magnesium, sodium, potassium, chloride, sulphate, carbonate and bicarbonate) and Total Dissolved Solids (TDS). According to the Piper diagram, the region mainly contains Na-Ca–HCO3 followed by Na-HCO3-Cl, Ca-Na-HCO3-SO4 and Mg-Ca-Na-HCO3 water types. The contents of sodium, calcium, magnesium, chloride, sulphate and bicarbonatein the waters of the area areexplained by the dissolution of halite, calcite, dolomite and gypsum and other reactions like cation exchange and weathering of minerals of basement rocks.<#LINE#>Jalali M. (2005).@Major ion chemistry of groundwaters in the Bahar area, Hamadan, western Iran.@Environ.Geol., 47(6), 763-772.@Yes$Jalali M.(2006).@Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamadan, Iran.@Environ. Geol., 51(3), 433-446.@Yes$Yong-Hong Su, Qi Feng, Gao-Feng Zhu, Jian-Hua Si and Zhang Y.W. (2007).@Identification and evolution of groundwater chemistry in the Ejin sub-basin of the Heithe River, northwest China.@Pedosphere, 17(3), 331-342.@Yes$Abid K.,Zhouari K., Dulinsky M., Chkir N. and Abidi B. (2011).@Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia).@Hydrogeol. J., 19(2), 415-427.@Yes$Tineo A. (2005).@Estudios Hidrogeológicos del Valle del Río Santa María - Provincia de Catamarca.@Serie de Correlación Geológica nº20, INSUGEO, CONICET, Argentina,pp : 1-122. ISSN 1514-4186. ISSN on line 1666-9479.@Yes$Tineo A. and Ruiz A. (2015).@Cuenca Hidrogeológica.@Valle del Río Santa María. Prov. de Tucumán. Miscelánea No. 23. INSUGEO, CONICET. ISSN 16683242 on line. http://www.insugeo.org.ar/publicacion_miscelanea.php?id=58. Last access: april 28, 2016.@No$Dehnavi A.G., Sarikhani R. and Nagaraju D. (2011).@Hydro geochemical and rock water interaction studies in East of Kurdistan, N-W of Iran.@Int. J. of Environ.Sci. Res., 1(1), 16-22.@Yes$Schuh W.M., Klinkebiel D.L., Gardner J.C. and Meyar R.F. (1997).@Tracer and Nitrate movements to groundwater in the Norruem Great plains.@J. Environ. Qual., 26(5), 1335-1347.@Yes$Jacks G. (1973).@Chemistry of groundwater in a district in Southern India.@J.Hydrol., 18(3-4), 185-200.@Yes$Mohan R., Singh A.K., Tripathi J.K. and Chowdhary G.C. (2000).@Hydrochemistryand quality assessment of groundwater in naini industrial area, Allahabad district, Uttar Pradesh.@J. Geol. Soc. India, 55(1), 77-89.@Yes$Carol E. and Kruse E. (2012).@Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary, Argentina.@J. South Am. Earth Sci., 37, 113-121.@Yes$Martinez D.E. and Bocanegra E.M. (2002).@Hydrogeochemistry and cation exchange processes in the coastal aquifer of Mar Del Plata, Argentina.@Hydrogeol. J., 10(3), 393-408.@Yes$Lakshmanan E., Kannan R. and Senthil Kumar M. (2003).@Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India.@Environ.Geosci., 10(4), 157-166.@Yes$Larsen D., Gentry R.W. and Solomon D.K. (2003).@The geochemistry and mixing of leakage in a semi-confined aquifer at a municipal well field, Memphis, Tennessee, U.S.A.@Applied Geochem., 18(7), 1043-1063.@Yes$Toselli A.J. and Rossi de Toselli J.N. (1984).@Metamorfismo de las Cumbres Calchaquíes II: Petrología del basamento esquistoso entre La Angostura y Tafí del Valle, Tucumán.@Rev.Asoc.Geolog.Arg, 39 (3-4), 262-275.@Yes$American Academy of Pediatrics (1992).@American Public Health Association(APHA).@Standard methods for the examination of water and wastewater.Ed. Díaz de Santo,España.@Yes$WHO (World Health Organization) (2006).@Guidelines for drinking water quality.@3rd, Ed., 1, 515.@No$Magaritz M., Nadler A., Koyumdjisky H. and Dan N. (1981).@The use of Na/Cl ratio to trace solute sources in a semiarid zone.@Water Resour. Res., 17(3), 602-608.@Yes$Meybeck M. (1987).@Global chemical weathering of superficial rocks estimated from river dissolved loads.@Am. J. Sci., 287(5), 401-428.@Yes$Tesoriero A.J., Spruill T.B. and Eimers J.L. (2004).@Geochemistry of shallow groundwater in coastal plain environment in the southeastern United States: implications for aquifer susceptibility.@Appl.Geochem., 19(9), 1471-1482.@Yes$Mathess G. (1982).@The properties of groundwater.@Wiley., 406, New York, USA.@Yes <#LINE#>Preparation of magnetic iron oxide nanoparticles activated carbon composite from corncob and its application for removal of organic pollutants<#LINE#>Shripal @Singh,Rinku @Jaiswal <#LINE#>24-33<#LINE#>4.ISCA-RJCS-2017-019.pdf<#LINE#>CIMFR Nagpur Unit-II, 17/C-Telenkhedi area, Civil Lines, Nagpur-440001, India@CIMFR Nagpur Unit-II, 17/C-Telenkhedi area, Civil Lines, Nagpur-440001, India<#LINE#>14/1/2017<#LINE#>11/3/2017<#LINE#>Magnetic iron oxide nanoparticles are attractive to many researchers because of their wide ranging applications viz. data storage, magnetic fluids, adsorbent, catalysis, biotechnology, biomedicine and environmental remediation. In the present study, efforts have been made to develop magnetic iron oxide nanoparticles activated carbon composite (MIONAC). The activated carbon is prepared from corncob using zinc chloride as an activating agent in a modified muffle furnace with N2-gas inflow arrangement and magnetic nanoparticles by chemical co-precipitation method. The prepared corncob activated carbon (CCAC) and Magnetic iron oxide nanoparticles activated carbon composite (MIONAC) are characterized for N2-BET surface area, SEM, FT-IR, XRD, TEM, pHpzc and VSM. The N2-BET surface area of the MIONAC (807 m2g-1) is found lesser than the prepared CCAC (1429 m2g-1). MIONAC exhibits super magnetic properties under external magnetic field with saturation magnetization value 4.15 emu/g at room temperature. SEM of the CCAC and MIONAC shows the presence of cracks and crevices. TEM of MIONAC shows nanoparticles with size in between 10-20 nm. A broad peak at 2θ = 240 in XRD of CCAC and MIONAC indicates the presence of amorphous carbon. The adsorption isotherms and kinetic studies using CCAC and MIONAC as adsorbents and phenols as adsorbates. The adsorption data shows that the adsorption capacity (Q0) value of MIONAC (90 mg/g) is slightly lesser than the CCAC (125 mg/g). Langmuir kinetic model best suits for determination of adsorption and desorption constants for organic pollutants phenols on both CCAC & MIONAC.<#LINE#>Singh Shripal and Yenkie Mahesh K.N. (2006).@Scavenging of Priority Organic Pollutants from Aqueous Waste using Granular Activated Carbon.@Journal of the Chinese Chemical Society, 53(2), 325-334.@Yes$Radke C.J. and Prausnitz J.M.J. (1972).@Adsorption of organic solutes from dilute aqueous solution of activated carbon.@Ind. Eng. Chem. Fundam, 11(4), 445-451.@Yes$Chern J.M. and Chien Y.W.J. (2003).@Competitive adsorption of benzoic acid and p-nitrophenol onto activated carbon: isotherm and breakthrough curves.@Water Res., 37(10), 2347-2356.@Yes$Fritz W. and Schlünder E.U.J. (1981).@Competitive adsorption of two dissolved organics onto activated carbon.@Chemical Engineering Science, 36(4), 731-741.@Yes$Srivastava S.K. and Tyagi R.J. (1995).@Competitive adsorption of substituted phenols by activated carbon developed from the fertilizer waste slurry.@Wat. Res., 29(2), 483-488.@Yes$Khan A.R., Al-Bahri T.A. and Al-Haddad A. (1997).@Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions.@Water Res., 31(8), 2102-2112.@Yes$Reinoso Rodriguez F. and Molina-Sabio M. (1992).@Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview@Carbon, 30(7), 1111-1118.@Yes$Hu Z. and Vansant E.F. (1995).@Carbon molecular sieves produced from walnut shell@Carbon, 33(5), 561-567.@Yes$Daud WMA and Ali WSW (2004).@Comparison on pore development of activated carbon produced from palm shell and coconut shell@Bioresources Technol., (93), 63-69.@Yes$Gratuito M.K.B., Panyathanmaporn T., Chumnanklang R.A., Sirinuntawittya N. and Dutta A. (2008).@Production of activated carbon from coconut shell: optimization using response surface methodology.@Bioresource Technol, 99(11), 4887-4895.@Yes$Pondolfo A.G., Amini-Amoli M. and KIllingley J.S. (1994).@Activated carbons prepared from shells of different coconut varieties@Carbon, 32(5), 1015-1019.@Yes$Caturla F., Molina-Sabio M. and Rodriquez-Reinso F. (1991).@Preparation of activated carbon by chemical activation with ZnCl2@Carbon, 29(7), 999-1007.@Yes$Gergova K., Peteov N. and Eser S. (1994).@Adsorption properties and microstructure of activated carbons produced from agricultural by- products by steam pyrolysis@Carbon, 32(4), 693-702.@Yes$Sentorun-Shalaby C., Ucak-Astarlioglu M.G., Artok L. and Sarici C. (2006).@Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones.@Microporous and Mesoporous Materials, 88(1), 126-134.@Yes$Bouchelta C., Medjram M.S., Bertrand O. and Bellat J.P. (2008).@Preparation and characterization of activated carbon from date stones by physical activation with steam.@Applied Pyrolysis, 82(1), 70-77.@Yes$Boonamnuayvitaya V., Sae-Ung S. and Tanthapanichakoon W. (2005).@Preparation of activated carbons from coffee residue for the adsorption of formaldehyde.@Separation Purification Technol, 42(2), 159-168.@Yes$SrinivasaKannan C. and Abu Bakar M.Z. (2004).@Production of activated carbon from rubber wood sawdust.@Biomass and Bioenergy, 27(1), 89-96.@Yes$Indira T.K. and Lakshmi P.K. (2010).@Magnetic Nanoparticles. A review.@Int. J. Pharm. Sci. & Nano technol., 3(3), 1035-1042@Yes$Liu Q., Wang L., Xiao A., Gao J., Ding W., Yu H., Huo J. and Ericson Marten (2010).@Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater.@J. Hazard. Mater, 181(1), 568-592.@Yes$Hristov J. and Fachikov L. (2007).@An overview of separation by magnetically stabilized beds state of the art and potential applications.@China Particuology, 5(1), 11-18.@Yes$Laurent Sophie, Forge Delphine, Port Marc, Roch Alain, Robic Caroline, Elst Luce Vander and Muller Robert N. (2008).@Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterization, and biological applications.@Chem. Rev., 108(6), 2064-2110.@Yes$Harris P.J.F., Liu Z. and Suenaga K. (2008).@Imaging the atomic structure of activated carbon.@Journal of Physics. Condensed Matter, 20(36), 362201.@Yes$Marel HWvd and Beutelspacher H. (1976).@Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures.@Elsevier: Amsterdam.@Yes @Short Communication <#LINE#>A Systematic study of stability constants of binary complexes of some peptides with Mg(II), Co(II), Ni(II) and Cu(II) metal ions by analytical methods<#LINE#>R.B. @Pawar,A.Y. @Deshmukh,V.W. @Tathe <#LINE#>34-36<#LINE#>5.ISCA-RJCS-2016-074.pdf<#LINE#>Department of Chemistry, S.S.S.K.R. InnaniMahavidyalaya, Karanja (Lad) Dist. Washim (M.S) India@Department of Chemistry, S.S.S.K.R. InnaniMahavidyalaya, Karanja (Lad) Dist. Washim (M.S) India@Department of Chemistry, S.S.S.K.R. InnaniMahavidyalaya, Karanja (Lad) Dist. Washim (M.S) India<#LINE#>23/3/2016<#LINE#>12/3/2017<#LINE#>A detailed study of complexes with peptides antibiotics under identical set of experimental condition which would cover many aspects of complexation is still lacking. Hence the present work is undertaken to make a systematic study of stability constant of binary complexes of some antibiotics or drugs with Mg (II), Co (II), Ni (II) and Cu (II) metal ions by PH meter.<#LINE#>Irving H.M. and Rossotti H.S. (1956). Acta Chem. Scand., 10, 72.@undefined@undefined@No$Ernst Z.L. and Menashi (1963).@Complex formation between the Fe 3+-ion and some substituted phenols. Part 2.- Spectrophotometric determination of the stability constants of some ferric salicylates.@J. Trans. Faraday Soc., 59, 2838-2844.@Yes$Jones J.C. and Vartak D.G. (1973) Ind. J. Chem., 12, 1306.@undefined@undefined@No$Jahagirdar D.V. (1970).@DD Khanolkar Proceedings.@Atomic Energy Chemistry Symposium, 233.@Yes$Narwade M.L. and Khobragade B.G. (1988). Proc. 75th Ind. Sc. Cong., 91.@undefined@undefined@No$Narwade M.L. (1974).@Metal-ligand stability constants of Co(II), Ni(II) & Cu(II) complexes with p-cresol and diketones.@Ph.D. Thesis in Chemistry Marathwada University, Aurangabad.@No$Bjerrum (1950). J. Chem. Rev., 46, 381@undefined@undefined@No$Irving H.M. and Rossotti H.S. (1953).@680. Methods for computing successive stability constants from experimental formation curves.@J.Chem. Soc., 75, 3397-3405.@Yes$Jones (1973). Ind. J. chem. 12, 1306@undefined@undefined@No$Deshpande R.G. and Jahagirdar D.V. (1977).@Potentiometric studies in transition metal ion (d^5-d^1^0) chelates of substituted salicylhydroxamic acids.@Journal of Inorganic and Nuclear Chemistry, 39(8), 1385-1389.@Yes$Jahagirdar D.V. and Khanolkar D.D. (1973).@Studies of UO “2(II) complexes of substituted salicylic acids.@Journal of Inorganic and Nuclear Chemistry, 35(3), 921-930.Jiles D. (2015).@Yes <#LINE#>Synthesis and characterization of zinc oxide nanoparticles using green method<#LINE#>S.M. @Janjal,A.S. @Rajbhoj ,S.T. @Gaikwad <#LINE#>40-42<#LINE#>6.ISCA-RJCS-2016-115.pdf<#LINE#>Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS 431004, India@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS 431004, India@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS 431004, India<#LINE#>22/3/2016<#LINE#>15/3/2017<#LINE#>Major focus of researchers in recent years the development of efficient method for synthesis of metal nanoparticles. In this article we followed green method for the synthesis of zinc oxide nanoparticles using leaf extract of guava plant. Reduction of metal ions through leaf extract leading to the formation of zinc oxide nanoparticles. The size, structure, morphology of synthesized nanoparticles were characterized by FTIR, X-ray diffraction, SEM-EDS.<#LINE#>Templeton, Allen C., Wuelfing Peter W., and Murray Royce W. (2000).@Monolayer-protected cluster molecules.@Accounts of Chemical Research., 33(1), 27-36.@Yes$Bönnemann H., Hormes J. and Kreibig U. (2001).@Handbook of Surface and Interfaces of Materials.@H.S. Nalwa, Academic Press, San Diego, 3, 1-87.@No$El-Sayed M.A. (2001).@Some interesting properties of metals confined in time and nanometer space of different shapes.@Accounts of chemical research, 34(4), 257-264.@Yes$Bagnall D.M., Chen Y.F., Zhu Z., Yao T., Koyama S., Shen M.Y. and Goto T. (1997).@Optically pumped lasing of ZnO at room temperature.@Applied Physics Letters, 70(17), 2230-2232.@Yes$Zu P., Tang Z.K., Wong G.K., Kawasaki M., Ohtomo A., Koinuma H. and Segawa Y. (1997).@Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature.@Solid State Communications, 103(8), 459-463.@Yes$Cao H., Xu J.Y., Seelig E.W. and Chang R.P.H. (2000).@Microlaser made of disordered media.@Applied Physics Letters, 76(21), 2997-2999.@Yes$Sobha K., Surendranath K., Meena V., Jwala T.K., Swetha N. and Latha K.S.M. (2010).@Emerging trends in nanobiotechnology.@Biotechnology and Molecular Biology Reviews, 4(1), 1-12.@Yes$Rani S., Suri P., Shishodia P.K. and Mehra R.M. (2008).@Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells.@Solar Energy Materials and Solar Cells, 92(12), 1639-1645.@Yes$Khaydarov R.A., Khaydarov R.R., Gapurova O., Estrin Y. and Scheper T. (2009).@Electrochemical method for the synthesis of silver nanoparticles.@Journal of Nanoparticle Research, 11(5), 1193-1200.@Yes <#LINE#>Phytochemical investigation of some Indian medicinal plants and anti bactirial activity<#LINE#>Sharif @Khan,P.C. @Choudhary,M.L. @Gangwal <#LINE#>43-45<#LINE#>7.ISCA-RJCS-2016-245.pdf<#LINE#>Mewar University Chittorgarh Rajasthan, India@Mewar University Chittorgarh Rajasthan, India@PMB Gujrati Science College, Indore M.P., India<#LINE#>22/12/2016<#LINE#>23/3/2017<#LINE#>Since the dawn of human creation and appearance of omnipotence wonderful creation “Adam” and “Eve” on this planet, they were plagued with diseases, decay and death, which threatened his existence. Naturally our ancestor depended on flora surrounding us, and so made an elaborate study of planet. As such the medicinal importance of plants have been recognized since then compound having importance therapeutic values with a view of ameliorate human sufferings. Systematic physiochemical analysis of drug, used in indigenous medicine was taken up on modern scientific lines about fifty years ago and a large number of importance medicinal plants prescribed by Kavirajs and Hakims have been investigated. Similarly a number of plants are being utilized for the preparations of anti fertility and anti-cancer drugs and in a country like India, where population control is must, such type of drugs derived from plants materials will play a significant role in the socio-economic problem of the country. Vigorous researches have therefore, to be carried out plant sources which can be used as anti-cancer drugs. A survey carried out by Gujarat state in 1990 has revealed the presence of about eleven hundred efficacious drugs of which about five hundred are newly discovered.<#LINE#>Singh G.B., Singh S. and Bani S. (1996).@Anti- inflammatory actions of boswellic acids.@Phytomed, 3(1), 81-85.@Yes$Singh G.B. and Atal C.K. (1986).@Pharmacology of an extract of salai guggal ex.Bowellia serrata, a new non steroidal, a new non-steroidal anti inflammatory agent.@Inflammation Research, 18(3), 407-412.@Yes$Gupta I., Parihar A.A., Malhotra P., Singh G.B., Ludtke R., Safahi H. and Ammon H.P. (2008).@Effects of Boswellia serrata serrata gum resin in patient with ulcerative colitis.@Eur J Med Res, 2(1), 37-43.@Yes$Ammon H.P., Safayhi H. and Sailer E.R. (1995).@Mechanism of 5- lipoxygenase inhibition by acetol-11-keto-beta-boswellic acid.@Molecular pharmacology, 47(6), 1212-1216.@Yes$Safayhi H., Mack T., Sabieray J., Anazodo M.I., Subramanian L.R. and AMMON H.P. (1992).@Boswellic acid: novel, specific,nonredox inhibitors of 5-lipoxygenase.@Journal of Pharmacology and Experimental Therapeutics, 261(3), 1143-1146.@Yes$Gupta I., Parihar A., Malhotra P., Gupta S., Ludtke R., Safayhi H. and Ammon H.P. (2008).@Effects of gum resin of Boswellia serrata in patients with chronic colitis.@Planta Med, 67(5), 391-395.@Yes$Krieglstein C.F., Anthoni C., Ricken E.J., Laukotter M., Spiegel Hu, Boden S.E., Schweizer S., Safayhi H., Senninger N. and Schurmann G. (2001).@Acetyl-11-keto-beta-boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin attenuates experimental ileitis.@Int J Colorectal Dis, 16(2), 88-95.@Yes$Mahajan Babita, Taneja S.C., Dhar K.L. and Sethi V.K. (1995).@Two triterpenoids from Boswellia serrata gum resin.@Phytochem, 39(2), 453-455.@Yes$Pandey U.S. and Singh J. (1993).@Agro techniques for onion and garlic.@In : Advances in Horticulture-5, Vegetables crops, Chadha KL, Kalloo G (eds), Malhotra publishing House, New Delhi, 433-464.@Yes$Chopra R.N., Varma B.S. and Chopra I.C. (1986).@Supplement to glossary of Indian medicinal plants.@Publications & Information Directorate-CSIR.@Yes$P.Talaly,P.Talaly Acad.Med.Volume 76.2001 pp238-247@undefined@undefined@No$Hashemi S.R., Zulkifli Z. and Zunita M.N. (2008) somchit J. Biol.sci, 8, 1072-1076.@undefined@undefined@No <#LINE#>Production of regenerated cellulose polymeric films from plantain pseudostem<#LINE#>Sunday Esther @Aniedi,Johnson O. @Joseph <#LINE#>46-47<#LINE#>8.ISCA-RJCS-2017-001.pdf<#LINE#>Department of Chemistry, University of Uyo, Akwa Ibom State, Nigeria@Department of Chemistry, University of Uyo, Akwa Ibom State, Nigeria<#LINE#>5/1/2017<#LINE#>17/3/2017<#LINE#>Regenerated cellulose was prepared from plantain pseudo stem obtained in Uyo, Akwa Ibom State. The pulp prepared with 12% NaOH had moisture content of 8.8% and a yield of 36.9% on the average. The pulp was bleached and exposed to air to form “white crumbs”. The aged crumbs was mixed with carbon disulphide at a controlled temperature of 300C to form cellulose xanthate (C6H9O4 – S –SNa)n which was then converted to regenerated cellulose on further treatment with tetraoxosulphate (VI) acid at a yield of 36.4%. This work has revealed that plantain pseudo stem waste can be converted to regenerated cellulose for diverse applications.<#LINE#>Browning B.L. (1990).@The Chemistry of Wood.@Interscience Publishers Inc., New York, 56-63.@No$Cannon R.E. and Anderson S.M. (2002).@Lignin Structure and Biosynthesis.@Journal of Applied Polymer Science, 50, 955-968.@No$Klemm Dieter, Heublein Brigitte, Fink Hans‐Peter and Bohn Andreas (2005).@Cellulose: Fascinating biopolymers and sustainable raw materials.@Chemical Information, 44(22), 3358-3393.@Yes$Liu, X., Pang J., Zhang X., Wu Y. and Sun R. (2013).@Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc).@Cellulose, 20(3), 1391-1399. Accessed online on 15th January, 2017 at http://link.springer.com/article/10.1007/s10570-013-9925-3.@Yes$Nishiyama Y., Langan P. and Chanzy H. (2002).@Crystal structure and hydrogen bonding system in cellulose 1β from synchrotron X-ray and neutron fiber diffraction.@Journal of American Chemical Society, 124(31), 9074-9082.@Yes$Ramamoorthy S.K., Skrifvars M. and Persson A. (2015).@A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers.@Polymer Reviews, 55(1), 107-162.@Yes