@Research Paper <#LINE#>The chemical composition of the volatile oil of Pavetta owariensis P, Beauv. from Nigeria<#LINE#>Nvau @J.B.,Wufem @M.B.,Nangbes @J.G.,Gamaniel @E.S.,Faruq @U.,Gushit @J.S. <#LINE#>1-5<#LINE#>1.ISCA-RJCS-2016-214.pdf<#LINE#>Chemistry Department, Plateau State University, Bokkos. Plateau State, Nigeria@Chemistry Department, Plateau State University, Bokkos. Plateau State, Nigeria@Chemistry Department, Plateau State University, Bokkos. Plateau State, Nigeria@Department of Traditional Medicine Research and Plant Medicine, National institute for Pharmaceutical Research and Development Idu Industrial area, Abuja, Nigeria@Chemistry Department, Usmanu Danfodiyo University, Sokoto, Nigeria@Department of Science Laboratory Technology, University of Jos, Nigeria<#LINE#>14/8/2016<#LINE#>21/1/2017<#LINE#>The chemical composition of the volatile oil from the stem bark of Pavetta owariensis P. Beauv growing at the North Central of Nigeria was analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). The hydro-distillation of the P.owariensis stem back was carried out using a Clevenger apparatus in order to obtain the volatile oil (0.26%). It showed the presence of seventeen (17) compounds. The major chemical composition of the volatile oil obtained are; dodecyl ester (25.97%), undecyl ester (12.27%), dodecanoic acid (12.24%), tetradecanoic acid (10.30%), tetradecyl ester (7.28%) and tetradecanoic acid (6.51%). The study established the chemical composition of the essential oil of the stem bark of the plant.<#LINE#>Martindale W.H. (1910).@Essential oils in relation to their antisepticpowers as determined by their carbolic coefficients.@Perfumery and Essential Oil Research, 1, 266-296@Yes$Hoffmann C. and Evans A.C. (1911).@The uses of spices as preservatives.@Journal of Indian Engineering and Chemistry, 3(11), 835-838.@Yes$Lis-Balchin M. and Deans S.G. (1997).@Bioactivity of selected plant essential oils against Listeria monocytogenes.@Journal of Applied Microbiology, 82(6), 759-762.@Yes$Janssen M.A., Scheffer J.J.C. and Svendsen A.B. (1987).@Antimicrobial activities of essential oils: a 1976–86 literature review on possible applications.@Pharmaceutische Weekblad (ScientificE dition), 9(4), 193-197.@Yes$Falodun A., Siraj R. and Choudhary Muhammad Iqbal (2009).@GC-MS Analysis of Insecticidal Leaf Essential Oil of Pyrenacantha Staudtii Hutch and Dalz (Icacinaceae).@Tropical Journal of Pharmaceutical Research, 8(2), 139-143. http://www.tjpr.org@Yes$Derwich E., Benziane Z. and Taouil R. (2010).@GC/MS Analysis of Volatile Compounds of the Essential Oil of the Leaves of Mentha pulegium growing in Morocco.@Chem. Bull. \"POLITEHNICA\" Univ. (Timisoara), 55(69), 103-106@Yes$Kahriman N., Tosun G., Genc H. and Yayli N. (2010).@Comparative essential oil analysis of Geranium sylvaticum extracted by hydrodistillation and microwave distillation.@Turk J Chem., 34(6), 969-976.@Yes$Goren A. C., Bilsela G., Bilsela M., Demir H. and Kocabas E.E. (2003).@Analysis of Essential Oil of Coridothymus capitatus (L.) and Its Antibacterial and Antifungal Activity.@Zeitschrift für Naturforschung C,58(9-10), 687-690.@Yes$Prasad K., Moulekhi K. and Bisht G. (2011).@Chemical composition of the essential oil of Pavetta indica L. leaves.@Res. J. Phytochem, 5(1), 66-69.@Yes$Diomandé G.D., Koffi A.M., Tonzibo Z.F., Bedi G. and Figueredo G. (2012).@GC and GC/MS Analysis of Essential Oil of Five Aframomum Species from Côte D’ivoire.@Middle-East Journal of Scientific Research, 11(6), 808-813.@Yes$Saini S. (2016).@Analysis of the Volatile oil constituents of Landolphia owariensis P. beauv.@Int. Educ. Res. J, 2(2), 79 -80@Yes$Adinew B. (2014).@GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia.@International Journal of Herbal Medicine, 1(6), 22-31.@Yes$Kałużna–Czaplińska J. (2007).@Gc–Ms Analysis Of Biologically Active Compounds In Cosmopolitan Grasses.@Acta Chromatographica, 19, 279-282.@Yes$Wangchuk P., Keller P.A., Pyne S.G., Taweechotipatr M. and Kamchonwongpaisan S. (2013).@GC/GC-MS analysis, isolation and identification of bioactive essential oil components from the Bhutanese medicinal plant, Pleurospermum amabile.@Natural Product communications: an international journal for communications and reviews, 8(9), 1305-1308.@Yes$Balde A.M., Van Hoof L., Pieters L.A., Vanden Berghe D.A. and Vlietinck A.J. (1990).@Plant Antiviral Agents.VII. Antiviral and Antibacetrial Proanthocyanidns from the bark of Pavetta owariensis.@Phytotherapy Research, 4(5), 182-188.@Yes$Balde A.M., Van Marck E and Vanhaelen M. (1986).@In vivo activity of an extact of pavetta owariensis bark on experimental Schistosoma mansoni infection in mice.@Journal of Ethnopharmacl, 18(2), 187-192.@Yes$Balde A.M., Van Marck E., Kestens L.,Gigase P.L. and Vlietinck A.J. (1989).@Schistosomicidal effects of pavetta owariensis and harrisona abyssinica in mice infected with Schistosoma mamsoni.@Planta med., 55(1), 41-43.@Yes$Morimoto S., Nonaka G. and Nishioka I. (1988).@Tannins and related compounds. LX. Isolation and characterization of proanthocyanidins with a doubley linked unit from Vaccinium vitis-idaea L.@Chem. Pharm. Bull., 36(1), 33-38.@Yes$Vennat B., Pourrat A., Pourrae H., Gross D., Bastida P. and Bastida J. (1988).@Procyanidins from the roots of Fragaria vesca: characterization and pharmacological approach.@Chem. Pharm. Bull., 36(2), 828-833.@Yes$Fukuchi K., Sakagami H., Okud T., Hatano T., Tanuma S. Kitajima K., Inoue S., Ichikawa S., Nonoyama M. and Konno K. (1989).@Inhibition of herpes simplex virus infection by tannins and related compounds.@Antivirals Res., 11(5-6), 285-297.@Yes$Takechi M. and Tanaka Y. (1985).@Structure and antiherpetic activity among the tannins.@Phytochemistry, 24(10), 2245-2250.@Yes$Dorman H.D.J. and Deans S.G. (2000).@Antimicrobial agents from plants: antibacterial activity of plant volatile oils.@Journal of Applied Microbiology, 88(2), 308-316.@Yes$Nickavar B., Mojab F., Javidnia K. and Roodgar Amoli M.A. (2003).@Chemical composition of the Fixed and Voltile Oils of Nigella sativa L. from Iran.@Zeitschrift fur Natuforschung C, 58(9-10), 629-631@Yes$Prasad K., Moulekhi K. and Bisht G. (2011).@Chemical composition of essential oil Pavetta indaca L. Leaves.@Research Journal of Phytochemistry, 5(1), 66-69.@Yes$Prasad K., Moulekhi K. and Bisht G. (2010).@Chemical composition of the essential oil of Pavetta indica L. leaves.@Res. J. Phytochem, 1-4.@Yes$Buchbauer G., Jager W., Jirovetz L., Iimberger J. and Dietrich H. (1993).@Therapeutic properties of essential oils and fragrances.@In Bioactive volatile compounds from plants,Teranishi R., Buttery R., Sugisawa H (eds.). American Chemical Society, Washington DC, ACS Symposium Series, 525, 159-165.@Yes <#LINE#>Physicochemical and mechanical characterization of Benin’s Kenaf fibers and its effect on the building compressed Earth Blocks (CEB) mechanical properties<#LINE#>Laibi @B.A.,Gomina @M.,Sagbo @E.,Agbahoungbata @M.,Poullain @P.,Leklou @N.,Sohounhloule @K.C.D. <#LINE#>6-12<#LINE#>2.ISCA-RJCS-2016-226.pdf<#LINE#>Laboratoire d’Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, 01 BP 2009 Cotonou, République du Bénin, Equipe Structure et Comportement Thermomécanique des Matériaux (ESTM) du Crismat, UMR 6508, Ensicaen, 6 boulevard du Maréchal Juin, 14050 Caen Cedex 4, France & Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin@Equipe Structure et Comportement Thermomécanique des Matériaux (ESTM) du Crismat, UMR 6508, Ensicaen, 6 boulevard du Maréchal Juin, 14050 Caen Cedex 4, France@Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin@Laboratoire de Chimie Inorganique et de l\'Environnement (LACIE), Département de Chimie, Faculté des Sciences et Techniques Université d’Abomey-Calavi, 01 BP 4521 Cotonou, République du Bénin@Institut de Recherche en Génie Civil et Mécanique UMR 6183 Technologie des Matériaux (GeM), France@Institut de Recherche en Génie Civil et Mécanique UMR 6183 Technologie des Matériaux (GeM), France@Laboratoire d’Etude et de Recherche en Chimie Appliquée, Ecole Polytechnique d’Abomey-Calavi, Université d’Abomey-Calavi, 01 BP 2009 Cotonou, République du Bénin<#LINE#>14/10/2016<#LINE#>10/1/2017<#LINE#>The physical, chemical and mineralogical characteristics of Kenaf fibers from the Republic of Benin were studied by using the X-ray diffraction (XRD), infrared spectroscopy (IR), thermal gravimetric analysis coupled withdifferential scanning calorimetry (TGA/DSC) and chemical analysis using the method of VAN Soest. It emerged from study that the fibers of Kenaf essentially consisted of cellulose (73wt %), hemicelluloses (18 wt%) and lignin (6 wt%). Kenaf fibers of 10, 20 and 30 mm lengthwere used at dose rate of 1.2% weight to reinforce the mechanical and thermal properties of Compressed Earth Blocks (CEB)developed from a clay soil;constituted of kaolinite (33, 46wt%); illite (14.90wt%%); microcline (2.11wt%); quartz (48.78wt%) and 0.86wt% of anatase. The incorporation of Kenaf fibers permitted to reduce the distribution of cracks in CEB. Analysis of the mechanical behavior of different formulations soil/fiber in terms of flexural strength and compression demonstrated the beneficial effect of the fibers. The best result of mechanical strength standpoint was obtained with the fibers length of 30 mm. Here we successfully proved that it is possible to improve the mechanical and thermal properties of CEBby using fibers for reinforcement; and the composite can be optimized by altering the fiber content and length.<#LINE#>Millogo Y., Aubert J.E., Hamard E. and Morel J.C. (2015).@How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks.@Materials, 8(5), 2332-2345.@Yes$Binici H., Aksogan O. and Shah T. (2005).@Investigation of fiber reinforced mud bricks as a building material.@Constr. Build. Mater. 19(4), 313-318.@Yes$Ghavami K., Toledo Filho R.D. and Barbosa N.P. (1999).@Behaviour of composite soil reinforced with natural fibres.@Cem. Concr. Compos. 21(1), 39-48.@Yes$Toledo Filho R.D., Ghavami K., England G.L. and Scrivener K. (2003).@Development of vegetable fiber-mortar composites of improved durability.@Cem. Concr. Compos. 25(2), 185-196.@Yes$Mesbah A., Morel J.C., Walker P. and Ghavami K. (2004).@Development of a direct tensile test for compacted soil blocks reinforced with natural fibers.@J. Mater. Civil Eng., 16(1), 95-98.@Yes$Bouhicha M., Aouissi F. and Kenai S. (2005).@Performance of composite soil reinforced with barley straw.@Cem. Concr. Compos., 27(5), 617-621.@Yes$Kumar A., Walia S.B., Mohan J. (2006).@Compressive strength of fiber reinforced highly compressible clay.@Constr. Build. Mater., 20(10), 1063-1068.@Yes$Yetgin S., Cavdar O. and Cavdar A. (2008).@The effects of the fiber contents on the mechanic properties of the adobes.@Constr. Build. Mater., 22(3), 222-227.@Yes$Juárez C., Guevara B. and Durán-Herrera A. (2010).@Mechanical properties of natural fibers reinforced sustainable masonry.@Constr. Build. Mater., 24(8), 1536-1541.@Yes$Ismail S. and Yaacob Z. (2011).@Properties of laterite bricks reinforced with oil palm empty fruit bunch fibres.@Pertanika J. Sci. Technol. 19(1), 33-43.@Yes$Quagliarini E. and Lenci S. (2010).@The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks.@J. Cult. Herit. 11(3), 309-314.@Yes$Shin H.K., Jeun J.P., Kim H.B. and Kang P.H. (2012).@Isolation of cellulose fibers from Kenaf using electron beam.@Radiat. Phys. Chem., 81(8), 936-940.@Yes$Jonoobi M., Harun J., Tahir P.M., Shakeri A., Saiful Azry S. and Makinejad M.D. (2011).@Physicochemical characterization of pulp and nanofibers from Kenaf stem.@Mater. Lett., 65(7), 1098-1100.@Yes$Akil H.M., Omar M.F., Mazuki A.A.M., Safiee S., Ishak Z.A.M. and Abu Bakar A. (2011).@Kenaf fiber reinforced composites: A review.@Mater. Des., 32(8), 4107-4121.@Yes$Van Soest P.D. and Wine R.H. (1967).@The use of detergents in the analysis of fibrous feed II. A rapid method for determination of fiber and lignin.@J. Assoc. Off. Agric. Chem., 50(1), 50-55.@Yes$Fulgencio S.C., Jaime C. and Juan G.R. (1983).@Determination of hemicelluloses, cellulose, and lignin contents of dietary fibre and crude fiber of several seed hulls.@Data Comp., 177, 200-202.@Yes$Toledo Filho R.D. (1997).@Natural Fiber Reinforced Mortar Composites: Experimental, Characterisation.@Ph.D. Thesis, DEC-PUC/Imperial College, London, UK, 472.@Yes$NF EN (2006).@Méthodes d’essais des ciments - Partie 1: détermination des résistances mécaniques.@Avril, 26.@Yes$Segal L., Creely J.J., Martin Jr.E.A. and Conrad C.M. (1958).@An Empirical Method for Estimating the Degree of Cristallinity of Native Cellulose using the X-Ray Diffractometer.@Textile Research Journal, 29(10), 786-794.@Yes$Aubert J.E., Maillard P., Morel J.C. and Al Rafii M. (2015).@Towards a simple compressive strength test for earth bricks.@Mater. Struct., 49(5), 1641-1654. doi: 10.1617/s11527-015-0601-y.@Yes$Aubert J.E., Fabbri A., Morel J.C. and Maillard P. (2013).@A earth block with a compressive strength higher than 45 MPa.@Constr. Build. Mater., 47, 366-369.@Yes$Olivier M. and Mesbah A. (1995).@Modèle de comportement pour sols compactés.@In Proceedings of the First International Conference on unsaturated soils, Paris, France, 68.@Yes$Mouhoubie S. (2008).@Caractérisation de l’interface d’un composite fibre végétale/polypropylene.@thése Magister ,UnviersitéFarhat Abbas, Algérie, mécanique appliqué.@Yes$Anthony T. (2011).@Approche multi-échelle de la structure et du comportement mécanique de la fibre de lin.@thèse de doctorat, Université de Caen Basse-Normandie, France, Chimie des Matériaux.@Yes$Kouakou H. and Morel J.C. (2009).@Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder.@Appl Clay Sci., 44(1), 27-34.@Yes$Ghavami K., Toledo Filho R.D. and Barbosa N.P. (1999).@Behaviour of composite soil reinforced with natural fibres.@CemConcr Compos., 21(1), 39-48.@Yes$Juárez C., Guevara B. and Durán-Herrera A. (2010).@Mechanical properties of natural fibers reinforced sustainable masonry.@Construc Build Mater., 24(8), 1536-1541.@Yes$Ismail S. and Yaacob Z. (2011).@Properties of laterite bricks reinforced with oil palm empty fruit bunch fibres.@Pertanika J SciTechnol, 19(1), 33-43.@Yes$Younoussa M., Jean-Claude M., Jean-Emmanuel A. and Khosrow G. (2014).@Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers.@Construction and Building Materials, 52, 71-78.@Yes$Godin B., Ghysel F., Agneessens R., Schmit T., Gofflot S., Lamaudière S., Sinnaeve G., Goffart J.P., Gerin P.A. and Stilmant D. (2010).@Détermination de la cellulose, des hémicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dédiées à la production de bioéthanol de deuxième génération/Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production.@Biotechnol. Agron. Soc. Environ., 14, 549-560.@Yes$Morel J.C. and Gourc J.P. (1997).@Behavior of sand reinforced with mesh elements.@Geosynth. Int., 4(5), 481-508.@Yes$Bledzki K.A. and Gassan J. (1999).@Composites reinforced with cellulose based fibers.@Progress in Polymer Science, 24(2), 221-274.@Yes$Baley C. (2002).@Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase.@Composites: Part A, 33(7), 939-948.@Yes$Khalil A., Rozman H.D., Ahmad N.N. and Ismail H. (2000).@Acetylated plant-fiber-reinforced polyester composite: a study of mechanical, hydrothermal, and aging characteristics.@Polymer-plastics technology and engineering, 39(4), 757-781.@Yes$Davies P., Morvan C., Sire O. and Baley C. (2007).@Structure and properties of fibers from sea-grass (Zostera marina).@Journal of Materails Science, 42(13), 4850-4857.@Yes$Dupeyre D. and Vignon M.R. (1998).@Fibers from semi-retted bundles by stream explosion treatment.@Biomass & Bioenergy, 14(3), 251-260.@Yes$Batra S.K. (1998).@Other long vegetable fibers Handbook of fiber chemistry.@Lewin (M.), Pearce (E.M.), editors. Handbook of fibre Science and TechnologyNew York. Marcel Dekker, Fiber Chemistry, 5, 505-575.@No$Sedan D. (2007).@Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite.@Thèse de doctorat de l’Université de Limoges.@Yes$Korte S. and Staiger M.P. (2008).@Effect of processing route on the composition and properties of hemp fiber.@Fibers and Polymers, 9(5), 593-603.@Yes$Ramakrishna G. and Sundararajan T. (2005).@Studies on the durability of natural fibers and the effect of corroded fibers on the strength of mortar.@Cement and Concrete Composites, 27(5), 575-582.@Yes$Toledo Filho R.D., Andrada Silva F. de, Fairbain E.M.R. and Almeida MeloFilho De J. (2009).@Durability of compression molded sisal fiber reinforced mortar laminates.@Construction and Building Materials, 23(6), 2409-2420.@Yes <#LINE#>Preparation and Characterization of novel metal complexes containing hydrazone derived from camphor and 2,4-dinitrophenyl hydrazine<#LINE#>Nuha H. @Al-Saadawy <#LINE#>16-26<#LINE#>3.ISCA-RJCS-2016-236.pdf<#LINE#>University of Thi-Qar, College of Pharmacy, Department of Pharmaceutical Chemistry, Thi-Qar, Iraq<#LINE#>25/11/2016<#LINE#>14/1/2017<#LINE#>Ligand The development of 2,4-dinitrophenyl hydrazine with camphor under demonstrated conditions yielded another hydrazone ligand. The structures of metel (II) for example, copper, nickel, cobalt, zinc and iron with hydrazone have been composed from reacting between copper bromide, nickel chloride hexahydrate, cobalt chloride hexahydrate, zinc chloride, and iron bromide with hydrazone in 1:2 molar ratio. The ligand and their metal complexes have been detached in a solid state. The spectroscopic date of the structures propose their 1:2 structures which are broke down by CHN, FT-IR and 1H NMR spectroscopy. From spectroscopic reviews I proposed the octahedral structure for the all structures and the outcomes are spoken to and talked about underneath.<#LINE#>Rollas S. and Küçükgüzel Ş.G. (2007).@Biological Activities of Hydrazone Derivatives.@Molecules, 12(8), 1910-1939. http://www.mdpi.com/1420-3049/12/8/1910@Yes$Armbruster F., Klingebiel U. and Noltemeyer M. (2006).@Von Ketazinen zu 1,2-Diaza-3-phospha-cyclopent-5-enen, -penta-3,5-dienen, 1,5-Diaza-2,6-diphospha-bicyclo[3.3.0] octa-3,7-dien und einem Cyclohexaphosphan.@Z. Naturforsch., 61(3), 225-336. http://www.znaturforsch. com/ ab/v61b/s61b0225.pdf@Yes$Senturk O.S., Sert S. and Ozdemir U. (2003).@Synthesis and Characterization of Metal Carbonyls [M(CO)6(M = Cr, Mo, W), Re(CO)5Br, Mn(CO)3Cp] with 2-Hydroxy-1-napthaldehyde Ethanesulfonylhydrazone (nafesh).@Z. Naturforsch., 58(11), 1124-1127. http://www.znaturforsch.com/ ab/v58b/s58b1124.pdf@Yes$Amr A.E.G.E., Mohamed A.M. and Ibrahim A.A. (2003).@Synthesis of Some New Chiral Tricyclic and Macrocyclic Pyridine Derivatives as Antimicrobial Agents.@Z. Naturforsch., 58(9), 861-868. http://www.znaturforsch. com/ab/ v58b/ s58b0861.pdf@Yes$Mohrle H. and Keller G. (2003).@α-Dicarbonylmonohydrazone und ihre Acylderivate als Nucleophile und Nachbargruppen.@Z. Naturforsch., 58(9), 885-902. http://www.znaturforsch.com/ab/v58b/s58b0885.pdf@Yes$Katyal M. and Dutt Y. (1975).@Analytical applications of hydrazones.@Talanta, 22(2), 151-166. https://www.ncbi.nlm.nih .gov/pubmed/18961633@Yes$Mohan M., Gupta M.P., Chandra L. and Jha N.K. (1988).@Synthesis, characterization and antitumour properties of some metal(II) complexes of 2-pyridinecarboxaldehyde 2′-pyridylhydrazone and related compounds.@Inorg. Chim. Acta, 151(1), 61-68. http://www.sciencedirect.com/science/ article/pii/S0020169300834854@Yes$Sinh R.B. and Jain P. (1982).@Hydrazones as analytical reagents: a review.@Talanta, 29(2), 77-84. http://www. sciencedirect.com/science/article/pii/0039914082800246@Yes$Molodykh Zh.V., Buzykin B.I., Bystrykn N.N. and Kitaev Y.P. (1978).@Anthelmintic activity of some hydrazones, phthalazones, and phthalazinylhydrazones in rice with nippostrongylus infestation.@Khim. Farm. Zh., 11, 37-40. http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000118&pid=S01004670200000010000600032&lng=en@Yes$Suez I., Pehkonen S.O. and Hoffmann M.R. (1994).@Stability, Stoichiometry, and Structure of Fe(II) and Fe(III) Complexes with Di-2-pyridyl Ketone Benzoylhydrazone.@Environmental Applications, Sci. Technol., 28(12), 2080-2086. http://pubs.acs.org/doi/abs/10.1021/es00061a016@Yes$Terra L.H., Areias A.M.C., Gaubeur I. and Suez-Iha M. E.V. (1999).@Solvent Extraction-Spectrophotometric Determination of Nickel(II) in Natural Waters Using DI-2-Pyridyl Ketone Benzoylhydrazone.@Spectroscopy Letters, 32(2), 257-271. http://www.tandfonline.com/doi/abs/ 10.1080/00387019909349981@Yes$Vicini P., Zani F., Cozzini P. and Doytchinova I. (2002).@Hydrazones of 1,2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations.@Eur. J. Med. Chem., 37(7), 553-564. https://www.ncbi. nlm.nih.gov/ pubmed/12126774@Yes$Mamolo M.G., Falagiani V., Zampieri D., Vio L. and Banfo E. (2001).@Synthesis and antimycobacterial activity of [5-(pyridin-2-yl)-1,3,4-thiadiazol-2-ylthio]acetic acid arylidene-hydrazide derivatives.@IIFARMACO, 56(8), 587-592. http://www.sciencedirect.com/ science/article/ pii/S0014827X01010977@Yes$Singh H, Kapoor VK and Paul D. (1979).@2 Heterosteroids and Drug Research.@Progress in Medicinal Chemistry, 16, 35-149. http://www.sciencedirect.com/science/article/ pii/ S0079646808701875@Yes$Mohammed A.E., Mamdouh S., Taha A.M. and Sharshira E.M. (1991).@Synthesis and Biological Activities of Condensed Heterocyclo [n,m-a,b, or c]Quinazolines.@Advances in Heterocyclic Chemistry, 52, 1-153. http://www.sciencedirect.com/science/article/pii/S0065272508609630@Yes$El-Ashry E.H. and Ibrahim E.I. (2003).@Fused Heterocyclo-Quinolines Containing One Nitrogen Atom at Ring Junction: Part 1. Four and Five Membered Heterocyclo-Quinolines.@Advances in Heterocyclic Chemistry, 84, 71-190. http://www.sciencedirect.com/ science/article/ pii/ S0065272503840035@Yes$Almeida P.E., Ramos D.F., Bonacorso H.G., Iglesia A.I., Oliveira M.R., Coelho T., Navarini J., Morbidoni H.R., Zanatta N., Martins M.A. (2008).@Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles.@J.of Antimicrobial Agents, 32(2), 139-144. http://www.sciencedirect.com/science/article/pii/S092485790800143X@Yes$Contelles J.M., Mayoral E.P., Ballesteros P. (2008).@Bicyclic 5-5 Systems with One Bridgehead (Ring Junction) Nitrogen Atom: Three Extra Heteroatoms 2:1.@Comprehensive Heterocyclic Chemistry III, Chapter 11.05, 199-305. http://www.sciencedirect.com/ science/article/pii/ B9780080449920010051@No$Kumar P., Narasimhan B., Sharma D., Vikramjeet Judge V. and Narang R. (2009).@Hansch analysis of substituted benzoic acid benzylidene/furan-2-yl-methylene hydrazides as antimicrobial agents.@Eur. J. of Med. Chem., 44(5), 1853-1863. http://www.sciencedirect.com/science/article/pii/S0223523408005497@Yes$Sherman A.R. (2008).@Bicyclic 5-6 Systems: Two Heteroatoms 1:1.@Comprehensive Heterocyclic Chemistry II, 7, 167-227. http://www.sciencedirect.com/ science/ article/pii/B9780080449920009068@Yes$Saeed A. and Amara Mumtaz A. (2008).@Microwave-accelerated synthesis of some 1-aroyl-3,5-dimethylpyrazoles.@Chinese Chemical Letters, 19(11), 1305-1308. http://www.sciencedirect.com/ science/article/ pii/S1001841708003409@Yes$Trofimov B.A., Mal’kina A.G., Borisova A.P., Nosyreva V.V., Shemyakina O. A., Olga N.K., Shilov G.V. and Dyachenko O.A. (2008).@Expedient synthesis of pyrazoles substituted with amino, hydroxyl and thioamide groups.@Tetrahedron Lett., 49(19), 3104-3107. http://www.sciencedirect.com/science/article/pii/S0040403908004875@Yes$Xia Y., Fan C.D., Zhao B.X., Zhao J., Shin D.S. and Jun-Ying Miao J.Y. (2008).@Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide hydrazone derivatives as potential agents against A549 lung cancer cells.@Eur. J. of Med. Chem., 43(11), 2347-2353. https://www.ncbi.nlm.nih.gov/ pubmed/ 18313806@Yes$Zheng L.W., Wu L.L., Zhao B.X., Dong W.L. and Miao J.Y. (2009).@Synthesis of novel substituted pyrazole-5-carbohydrazide hydrazone derivatives and discovery of a potent apoptosis inducer in A549 lung cancer cells.@Bio. org. & Med. Chem., 17(2), 1957-1962. https://www.ncbi. nlm.nih.gov/pubmed/19217789@Yes$Sriram D., Yogeeswari P. and Devakaram R.V. (2006).@Synthesis, in vitro and in vivo antimycobacterial activities of diclofenac acid hydrazones and amides.@Bioorg .& Med. Chem., 14(9), 3113-3118. https://www.ncbi.nlm.nih.gov/ pubmed/?term=2006%2C+14%2C+3113-8@Yes$Abou-Melha K.S. (2008).@Transition metal complexes of isonicotinic acid (2-hydroxybenzylidene)hydrazide.@Mol. and Biomol. Spectr., 70(1), 162-170. http://www.science direct.com/science/article/pii/S1386142507004052@Yes$El-Tabl A.S., El-Saied F.A., Plass W. and Al-Hakim A.N. (2008).@Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane.@Mol. and Biomol. Spectr., 71(1), 90-99. http://www.sciencedirect.com/science/ article/pii/ S1386142507006567@Yes$Joshi S.D., Vagdevi H.M., Vaidya V.P. and Gadaginamath G.S. (2008).@Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: A novel class of potential antibacterial and antitubercular agents.@Eur. J. of Med. Chem., 43(9), 1989-1996. http://www.sciencedirect.com/ science/article/pii/S0223523407004473 B/http://chem.libretexts.org/Textbook_Maps/ Organic_Chemistry_Textbook_Maps/Map%3A_Organic_Chemistry_With_a_Biological_Emphasis_(Soderberg)/11%3A_Nucleophilic_carbonyl_addition_reactions/11.6%3A_Imine_(Schiff_base)_formation@Yes$Silerstien R.M., Webster F.X. and Kiemle D.J. (2005).@Spectrometric Identification of Organic Chemistry Compounds.@6th Ed., John Wiley & Sons , N.Y.@Yes$Shriner R.I. and Hermann C.K. (2004).@Spectroscopic Techniques for Organic Chemistry.@John Wiley & Sons, N. Y.@Yes <#LINE#>Dietary fibre, resistant starch and in-vitro starch digestibility of selected elevencommonly consumed legumes (Mung bean, Cowpea, Soybean and Horse Gram) in Sri Lanka<#LINE#>I.S. @Eashwarage,H.M.T. @Herath,K.G.T. @Gunathilake <#LINE#>27-33<#LINE#>4.ISCA-RJCS-2016-242.pdf<#LINE#>Food Technology Section, Industrial Technology Institute, No: 363, Bauddhaloka Mawatha, Colombo, Sri Lanka@Food Technology Section, Industrial Technology Institute, No: 363, Bauddhaloka Mawatha, Colombo, Sri Lanka@Food Technology Section, Industrial Technology Institute, No: 363, Bauddhaloka Mawatha, Colombo, Sri Lanka<#LINE#>12/12/2016<#LINE#>1/2/2017<#LINE#>Consumption of dietary fiber rich food has shown many health benefits against a range of disorders including obesity, type 2 diabetes mellitus and colon cancer. Dietary fiber is composed of twocomponent of; soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Legumes are reported to be rich source of dietary fiber (DF) and resistant starch (RS). In addition to that legume starch has low digestibility. This study was aim to screen the high DF and high RS containing legume varieties with intension to develop functional food against non-communicable diseases. Accordingly, eleven legume varieties, mung bean (MI5, MI6), Cowpea (Waruni, MICP1, Bombay, Dhawala, ANKCP1), soybean (MISB1, Pb1) and horse gram (ANK Black, ANK Brown) were analyzed to determine the contents of dietary fibre, resistant starch and predicted glycaemic index (pGI). Among analyzed legume seeds, horse gram and soybean varieties showed the highestdietary fibre contents. Results for RS content exhibited significantly high in ANK Black (10.68±0.55%) followed by ANK Brown (10.45±0.10%), ANKCP1 (9.62 ±0.19%) and Waruni (9.04±1.26%). The values for predicted glycaemic index (pGI) in selected legume varieties were ranged from39.64 ± 0.46 (ANK Brown) to 43.48 ± 0.44(Pb1). The resistant starchcontent of legumes showed inverse correlation with predicted glycaemic index (-0.698; P≤ 0.05).<#LINE#>Doxastakis G. and Kiosseoglou V. (2000).@Novel macromolecules in food systems.@AGRIS.@Yes$Tharanathan R. and Mahadevamma S. (2003).@Grain legumes—a boon to human nutrition.@Trends in Food Science & Technology, 14(12), 507-518.@Yes$Thorne M.J., Thompson L.U. and Jenkins D.J. (1983).@Factors affecting starch digestibility and the glycemic response with special reference to legumes.@The American Journal of Clinical Nutrition, 38(3), 481-488.@Yes$Fabbri A. and Crosby G. (2016).@A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes.@International Journal of Gastronomy and Food Science, 3, 2-11. http://dx.doi.org/ 10.1016/j.ijgfs.2015.11.001.@Yes$Gunathilake K.G.T., Herath T. and Wansapala J. (2016).@Comparisonof physicochemical properties of selected locally available legume varieties (mung bean, cowpea and soybean).@Potravinarstvo Slovak Journal of Food Sciences, 10(1), 424-430. http://dx.doi.org/10.5219/631.@Yes$Aguilera E., Moreno J. and Ferrer M. (1993).@Blood chemistry values in three Pygoscelis penguins.@Comp BiochemPhysiol, 105(3), 471-473. http://dx.doi.org/10.1016 /0300-9629(93) 90421-Y.@Yes$Misner S., Whitmer E. and Florian T. (2013).@Dietary Fiber.@The University of Arizona Cooperative Extension. [online] Available at: http://extension.arizona.edu/ sites/extension. arizona.edu/files/pubs/az1127.pdf.@No$Vatanasuchart N., Niyomwit B. and Wongkrajang K. (2009).@Resistant starch contents and the in vitro starch digestibility of thai starchy foods.@Kasetsart Journal - Natural Science, 43(1), 178-186.@Yes$Katyal D., Ghugre P.S., Udipi S.A. (2005).@Resistant starch in selected raw and processed legumes.@J Food SciTechnol, 42(6), 506-510.@Yes$Higgins J.A., Higbee D.R., Donahoo W.T., Brown I.L., Bell M.L. and Bessesen D.H. (2004).@Resistant starch consumption promotes lipid oxidation.@Nutrition & Metabolism, 1(1), 1-8. Available source: http://www. nutritionandmetabolism.com/content/pdf/1743-7075-1-8.pdf .@Yes$Chinma C.E., Abu J.O., James S. and Iheanacho M. (2012).@Chemical, Functional and Pasting Properties of Defatted Starches from Cowpea and Soybean and Application in Stiff Porridge Preparation.@Nigerian Food Journal, 30(2), 80-88. http://dx.doi.org/10.1016/ S0189-7241(15)30039-4.@Yes$Premavalli K.S., Roopa S. and Bawa A.S. (2006).@Resistant starch – A functional dietary fibre.@Indian Food Ind, 25(2), 40-45.@Yes$Sharma A., Yadav B.S. and Ritika (2008).@Resistant starch: Physiological roles and food applications.@Food Rev Int 24(2), 193-234. http://dx.doi.org/10.1080/8755912 0801926237.@Yes$Cuniff P. (2012).@Official Methods of Analysis of AOAC International.@18th ed. USA: Gaithersburg, Md.@No$Cuniff P. (2002).@Official Methods of Analysis of AOAC International.@17th ed. USA: Gaithersburg, Md.@No$A.A.C.C. (2000).@American Association of Cereal Chemists.@Approved methods 32-40.01 (11th ed.) St. Paul, MN, USA.@No$Jenkins D., Wolever T., Thorne M., Rao A. and Thompson L. (1987).@Effect of Starch-Protein Interaction in Wheat on its Digestibility and Glycaemic Response.@Canadian Institute of Food Science and Technology Journal, 20(5), 320. http://dx.doi.org/10.1016/S0315-5463(87) 71286-3.@Yes$Dahlin K. and Lorenz K. (1993).@Protein digestibility of extruded cereal grains.@Food Chemistry, 48(1), 13-18. http://dx.doi.org/10.1016/0308-8146(93)90214-Z.@Yes$Coughlan M.P. and Moloney A.P. (1988).@Isolation of 1,4-b-D-Glucan 4-Glucanohydrolases of Talaromyces emersonii.@In: Wood WA, Kellogg ST, editors. Methods in enzymology, London: Academic Press, 160, 363-368.@Yes$Hughes J.S. and Swanson B.G. (1989).@Soluble and insoluble dietary fiber in cooked common beans (Phaseolus vulgaris) seeds.@Food Microstruct, 8(1), 15-21.@Yes$Glnc.org.au. (2016).@Legumes and Fibre Grains & Legumes Nutrition Council.@[online] Available at: http://www.glnc.org.au/legumes/legumes-nutrition/legumes -fibre/ [Accessed 20 Nov. 2016].@No$Sreerama N. Yadahally, Vadakkoot B. Sashikala, Vishwas M. Pratape and Singh Vasudeva (2012).@Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour : Evaluation of their flour functionality.@Food Chemistry, 131(2), 462-468.@Yes$Marimuthu M. and Krishnamoorthi K. (2013).@Nutrients and functional properties of horse gram (Macrotyloma Uniflorum), an underutilized south Indian food legume.@Journal of Chemical and Pharmaceutical Research, 5(5), 390-394.@Yes$Amalraj A. and Pius A. (2015).@Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India: An in vitro study.@Food Chem., 170, 430-436. http://dx.doi.org/ 10.1016/ j.foodchem.2014.08.031.@Yes$Perera M., Sivakanesa R., Abeysekara D. and Sarananda K. (2014).@Effect of Vegetable Mixed Curry on Glycaemic Index and Glycaemic Load of Soy Flour Incorporated Traditional Sri Lankan Breakfast Foods in Healthy Adults.@Pakistan Journal of Nutrition, 13(11), 616-621. http://dx.doi.org/10.3923/pjn.2014.616.621.@Yes$Khan A., Alam S., Ali S., Bibi S. and Khalil I. (2007).@Dietary Fiber Profile Of Food Legumes.@Sarhad J. Agric., 23(3), 763-766.@Yes$Chen Li-Yong, Liu Rui-Ping, Qin Cheng-Yong, Meng Yan, Zhang Jie, Wang Yun and Xu Gui-Fa (2010).@Sources and intake of resistant starch in the Chinese diet.@Asia Pacific journal of clinical nutrition, 19(2), 274-282.@Yes$Nilegaonkar S.S., Kasote D.M. and Agte V.V. (2014).@Effect of different processing methods on resistant starch content and in vitro starch digestibility of some common Indian pulses.@Journal of scientific and industrial research, 73, 541-546.@Yes$Qayyum M., Butt M., Anjum F. and Nawaz H. (2012).@Composition analysis of some selected legumes for protein isolates recovery.@The Journal of Animal & Plant Sciences, 22(4), 1156-1162.@Yes$Srikaeo K. and Sopade P.A. (2010)@Functional properties and starch digestibility of instant Jasmine rice porridges.@CarbohydPolym, 82(3), 952-957. http://dx.doi.org/10.1016/ j.carbpol.2010.06.024@Yes$Bjorck I., Granfeldt Y., Liljeberg H., Tovar J. and Asp N. (1994).@Food properties affecting the digestion and absorption of carbohydrates.@Am J ClinNutr., 59(3), 699-705.@Yes$García-Alonso A., Goñi I. and Saura-Calixto F. (1998).@Resistant starch formation and potential glycemic index of raw and cooked legumes (lentils, chickpeas and beans).@Z. LebensmUnterForsch, 206(4), 284-287.@Yes <#LINE#>Physico-chemical composition and antioxidant activity of three local cultivars of Hibiscus sabdariffa (Malvaceae) consumed in Congo<#LINE#>Mpika @J.,Okiemy Akeli @M.G.,Gouollaly @Tsiba,Samboula @M.,Attibayeba@. <#LINE#>34-41<#LINE#>5.ISCA-RJCS-2016-243.pdf<#LINE#>Laboratoire de Physiologie et de production Végétales, Faculté des Sciences et Techniques, Université Marien NGOUABI BP 69 République du Congo@Laboratoire de Physiologie et de production Végétales, Faculté des Sciences et Techniques, Université Marien NGOUABI BP 69 République du Congo, Laboratoire de Biochimie, Ecole Normale Supérieure, Université Marien NGOUABI BP 69 République du Congo@Laboratoire de Valorisation des Plantes aromatiques, Alicamentaires et Médicales, Faculté des Sciences et Techniques, Université Marien NGOUABI BP 69 République du Congo@Laboratoire de Physiologie et de production Végétales, Faculté des Sciences et Techniques, Université Marien NGOUABI BP 69 République du Congo@Laboratoire de Physiologie et de production Végétales, Faculté des Sciences et Techniques, Université Marien NGOUABI BP 69 République du Congo<#LINE#>12/12/2016<#LINE#>2/2/2017<#LINE#>Roselle (Hibiscus sabdariffa) is cultivated for its leaves, fibers, fruits and seeds. Its leaves are consumed fresh and cooked proved to be rich in micro-constituent exogenous antioxidants. This study was conducted to identify and to quantify the nourishing elements contents in leaves of Moussa 1, Moussa 2 and Poutou Poutou, local cultivars of Hibiscus sabdariffa. For dry powder of leaves, the aqueous content, total acidity and total sugars content was determined. Polyphenol and flavonoids were extracted from the aqueous, ethanolic and aqueous ethanolic solution and read on a spectrophotometer. The antioxidant and peroxidasic activity were measured with fresh leaves. The most significant total sugar contents is obtained at the cultivar Moussa 2 follow-up of Moussa 1 and Poutou Poutou. The local cultivars, Poutou Poutou are rich in polyphenols and flavonoids. The cultivar Poutou Poutou presented high percentages of polyphenols (10.30, 5.05 and 3.07 EAG/g.MS) and flavonoid (2.54, 1.4 and 0.84) respectively of the ethanolic, aqueous ethanolic and aqueous extracts compared to the cultivars Moussa 1 and Moussa 2. For three extraction solution, the ethanolic extract presents polyphenolic and flavonoids contents as well as antioxidant activity more significant compared with aqueous ethanolic extract. The cultivar Moussa 1 presents an antioxidant capacity very significant follow-up of Poutou Poutou and Moussa 2. The strong peroxidasic activity as well as acidity is recorded at the cultivar Moussa 1 compared to cultivars Poutou Poutou and Moussa 2.<#LINE#>McClintock N.C. and El Tahir I.M. (2004).@Hibiscus sabdariffa L.@in: Grubben G.J.H., Denton, O.A. (Ed.), PROTA 2 (Plant Resources of Tropical Africa): vegetables [CD-Rom], PROTA, Wagening. Neth.@No$Sarni-Manchado P. and Cheynier V. (2006).@Les polyphénols en agroalimentaire.@Tec et Doc., Lavoisier-Paris. 10: 31-32.@Yes$Cissé M., Dornier M., Sakho M., Ndiaye A., Reynes M. and Sock O. (2009).@Le bissap (Hibiscus sabdariffa L.): Composition et principales utilisations.@Fruits 64(3), 179-193.@Yes$Mohamed R., Fernandez J., Pineda M. and Aguilar M. (2007).@Roselle (Hibiscus sabdariffa) seed oil is a rich source of tocopherol.@J. Food Sci., 72(3), 207-211.@Yes$Yagoub A.A., Mohamed E.B., Ahmed A.H.R. and El Tinay A.E. (2004).@Study on furundu, a traditional Sudanese fermented roselle (Hibiscus sabdariffa L.) seed: effect on in vitro protein digestibility, chemical composition, and functional properties of the total Proteins.@J. Agric. Food Chem., 52(20), 6143-6150.@Yes$Djidjé C. (2009).@Le folerée ou oseille de Guinée une véritable pharmacie naturelle.@La voix du paysan, 3.@Yes$Ilkay T. and Aziz E. (2011).@Brix degree and sorbitol/xylitol level of authentic pomegranate (Punica gramatum) juice.@Food Chemistry, 127(3), 1404-1407.@Yes$Rousset M. (1986).@Guide pratique d@Tec.et Doc, 479.@Yes$Ghiafeh M., Davidia P., Vijayanands K. and Ramana (2006).@Effect of different pretreatments and deshydratation methods of quality characteristics and storage stability of tomato powder.@LWT.40: 1832-1840@No$Singleton V.L., Orthofer R. and Lamuela-Raventos (1999).@Analysis of total phenols and other oxidants substrates and antioxidants by means of Folin-Ciocalteu reagent.@Methods Enzymol, 299, 152-178.@Yes$Mompon B., Lemaire B., Mengal P. and Surbel M. (1998).@Extraction des polyphenols: du laboratoire à la production industrielle.@COLLOQUES-INRA, 31-44.@Yes$Chun S.S., Vattem D.A., Lin Y.T. and Shetty K. (2005).@Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori.@Process Biochemistry, 40(2), 809-816.@Yes$Attibayeba and Paulet P. (2004).@Activités enzymatiques et floraison in vitro de fragments de racines de Cichorium intybus L.: Effet d’un apport exogène de molécules organiques.@Annales de l’Université Marien Ngouabi. Série A.215-224.@No$Cissé M. (2010).@Couplage de procédés membranaires pour la production d’extraits anthocyaniques : application à l’Hibiscus saddariffa.@Thèse de doctorat de l’université Paris. Centre international d’étude supérieure en sciences agronomiques, Montpellier SupAgro, 201.@Yes$Talbi H., Boumaza A., El-Mostafa Talbi J. and Hilali (2005).@Evaluation de l’activité antioxydante et la composition physico-chimique des extraits méthanoliques et aqueux de la Nigella sativa L.@Mater. Environ. Sci.,6 (4), 1111-1117.@No$Jokic S., Darko V., Mate B., Bucis-Kojic A., Mirela P.I. and Srecko T. (2010).@Modelling of the process of solid liquid extraction of total polyphenols from soybeans.@Czech J. Food Sci., 28(3), 206-212.@Yes$Mahmoudi S., Khali M. and Mahmoudi N. (2014).@Etude de l’extraction des composés phénoliques de différentes parties de la fleur d’artichaut (Cynara scolymus L.).@Nature & Technologie, 9, 35-40.@Yes$Nsemi M.F. (2010).@Identification de polyphénols, évaluation de leur activité antioxydante et étude de leurs propriétés biologiques.@Thèse de Doctorat. Université Paul Verlaine Metz. 238.@Yes$Harrar A.E.N. (2012).@Activités antioxydante et antimicrobienne d’extraits de Rhamnus alaternus L.@Mémoire de Master de l’Université Ferhat Abbas-Sétif. Faculté des sciences de la Nature et de la vie, département de biochimie, 95.@Yes <#LINE#>Assessment of trace elements in some commonly consumed fish species marketed in Kathmandu, Nepal<#LINE#>Shakya Ramesh @Kaji,Sharma Krishna @Prasad,Siddique Mohd Nur E @Alam,Shakya Pawan @Raj <#LINE#>42-48<#LINE#>6.ISCA-RJCS-2016-244.pdf<#LINE#>Department of Zoology, Padma Kanya Multiple Campus, Tribhuvan University, Nepal@Department of Chemistry, Butwal Multiple Campus, Tribhuvan University, Nepal@Global Environment Consutant Limited, Dhaka, Bangladesh@Department of Chemistry, Padma Kanya Multiple Campus, Tribhuvan University, Nepal<#LINE#>12/12/2016<#LINE#>7/2/2017<#LINE#>In recent years, the consumption of fish in Nepal has been increasing largely due to its high nutritional value. However, it could bring serious health impacts due to heavy metals in elevated quantity since bioaccumulation of metals in aquatic inhabitants enter into human body through food chain. In this study, levels of Pb and Cd were determined by Atomic Absorption Spectrophotometer (AAS) in a total of 20 fish samples of four fish species viz., Buhari (Wallago attu), Mugree (Clarias batrachus), Catla (Catla catla) and Rohu (Labeo rohita) marketed in Kathmandu. Four various organs (liver, flesh, intestine and gills) of each fish species were analyzed as potential sites for accumulation of these toxic metals. The overall concentration ranges considering all the organs for the metals analyzed in mg kg-1 (dry basis) were Pb (0.02 – 0.47) and Cd (0.01 – 0.29) for Buhari (Wallago attu), Pb (0.02 – 1.29) and Cd (0.04 – 0.24) for Mugree (Clarias batrachus), Pb (0.02 – 0.11) and Cd (0.01 – 0.22) for Catla (Catla catla) and Pb (0.02 – 1.10) and Cd (0.01 – 0.39) for Rohu (Labeo rohita). The results also revealed variation in metal concentration in various organs of the fish species. All the fish samples except Buhari (Wallago attu) recorded higher accumulation of Pb and Cd in gills. An estimation of Pb and Cd weekly intake through the fish consumption was also investigated. The results showed that the concentrations of Pb and Cd in these fish species did not exceed the maximum permitted limits set forth by FAO/WHO indicating that they are safe for human consumption. However, a regular monitoring and assessment of toxic contaminants in fish marketed in Kathmandu is needed to help safeguard the health of humans and environment as well.<#LINE#>Fallah A.A., Saei-Dehkordi S.S., Nematollahi A. and Jafari T. (2011).@Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique.@Microchem. J., 98(2), 275-279.@Yes$Castro-gongalez M.I. and Mendez-Armenta M. (2008).@Heavy Metals implication associated to fish consumption,. Environ.@Texicol.Pharmacol, 26(3), 263-271.@Yes$King R.P. and Jonathan G.E. (2003).@Aquatic environmental perturbations and monitoring.@African experience, USA, 166.@Yes$Ibok U.J., Udosen E.D. and Udoidiong O.M. (1989).@Heavy Metals in Fishes from Streams in Ikot Ekpene Area of Nigeria.@Nigeria J. Tech. Res, 1, 61-68.@Yes$Papagiannis I., Kagalou L., Leonardos J., Petridis D. and Kalfakakou V. (2004).@Copper and zinc in four fresh water fish species from Lake Pamvotis (Greece).@Enviro. Int, 30(3), 357-362.@Yes$Marcotrigiano G.O. and Storelli M.M. (2003).@Heavy metal, polychlorinated biphenyl and organochlorine pesticide residues in marine organisms: Risk evaluation for consumers.@Vet. Res. Commun., 27(1), 183-195.@Yes$Sultana R. and Rao D.P. (1998).@Bioaccumulation patterns of zinc, copper, lead, and cadmium in grey mullet, Mugil cephalus (L.), from harbour waters of Visakhapatnam, India.@Bull. Eviron. Contam. Toxicol, 60(6), 949-955.@Yes$Cot-committee on Toxicity (2004).@Advise on fish consumption: Benefits and risks. Food Standards Agency and Department of Health.@Norwich, UK: Her Royal Majesty’s Stationary.@No$Joint FAO/WHO (2004).@Expert Committee on Food Additives, Summary of evaluation performed by the joint FAO/WHO Expert Committee on food additives (JECFA 1956-2003).@Washington DC: Food and Agriculture Organization of the United Nations and the World Health Organization, ILSI Press Internal Life Sciences Institute.@Yes$Codex Alimentarius Commission (2001).@Food additives and contaminants, Joint, FAO.@WHO Food standards Programme, ALINORM, 1, 289.@Yes$Tepe Y., Turkmen M. and Turkmen A. (2008).@Assessment of heavy metals in two commercial fish species of four Turkish Seas.@Environ. Monit. Assess., 146(1), 277-284.@Yes$Storelli M.M. and Marcotrigiano G.O. (2005).@Bioindicator organisms: Heavy metal pollution evaluation in the Ionian sea (Mediterranean sea–Italy).@Environ. Monit. Assess., 102(1), 159-166.@Yes$Khalil M. and Faragallah H. (2008).@The distribution of some leachable and total heavy metals in core sediments of Manzala lagoon, Egypt.@Egypt J. Aquat. Res, 34(1), 1-11.@Yes$Marzouk M. (1994).@Fish and environmental pollution.@Vet. Med. J, 42, 51-52.@Yes$Deb S.C. and Fukushima T. (1999).@Metals in aquatic ecosystems: Mechanism of uptake, accumulation and release.@Int. J. Environ. Stud., 56(3), 385-417.@Yes$Ishaq S.E., Rufus S.A. and Annune P.A. (2011).@Bioaccumulation of Heavy Metals in Fish (Tilapia Zilli and Clarias Gariepinus) Organs from River Benue, North Central Nigeria.@Pak. J. Anal. Environ. Chem, 12(1-2), 25-31.@Yes$US EPA (2004).@What you need to know about mercury in fish and shellfish.@United States Environmental Protection Agency. EPA-823-F-04-009, Retrieved May 5, 2010 from http://www.epa.gov/waterscience/fish/MethylmercuryBrochure.pdf@Yes$Falco G., Llobet J.M., Bocio A. and Domingo J.L. (2006).@Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species.@J. Agric. Food Chem., 54(16), 6106-6112.@Yes$Morgano M.A., Rabonato L.C., Milani R.F., Miyagusku L. and Balian S.C. (2011).@Assessment of trace elements in fishes of Japanese foods marketed in Sao Paulo (Brazil).@Food Control, 22(5), 778-785.@Yes$Marti-Cid R., Llobet J.M., Castell V. and Domingo J.L. (2008).@Dietary intake of arsenic, cadmium, mercury and lead by the population of Catalonia, Spain.@Biol. Trace Elem. Res, 125(2), 120-132.@Yes <#LINE#>Synthesis and Biological activity of 4-(3-bromophenyl)-N-(1-(4-(4-bromophenyl) thiazol-2-yl)-3-methyl-4-(2-phenylhydrazono)-4,5-dihydro-1H-pyrazol-5-ylidene)-6-(4-nitrophenyl)pyrimidin-2-amine derivatives<#LINE#>Satish M. @Bhalekar,Peter R. @Rodrigues,Seema R. @Sapale <#LINE#>49-53<#LINE#>7.ISCA-RJCS-2016-248.pdf<#LINE#>Department of Chemistry, S.I.W.S. College, Wadala, Mumbai- 400 031, Maharashtra, India@Department of Chemistry, Sant Rawool Maharaj Mahavidyalay, Kudal, Sindhudurg - 416 520, Maharashtra, India@Department of Chemistry, Kirti College, Dadar, Mumbai-400028, Maharashtra, India<#LINE#>28/12/2016<#LINE#>7/2/2017<#LINE#>4-(3-bromophenyl) - N- (1- (4- (4-bromophenyl) thiazol-2-yl)-3-methyl-4-(2-phenylhydrazono)-4,5-dihydro-1H-pyrazol-5-ylidene) -6-(4-nitrophenyl)pyrimidin-2-amine derivatives (3a-h) have been synthesized using conventional method and microwave irradiation. The structure of the synthesized compounds have been confirmed by IR and NMR Spectroscopy. These compounds were evaluated for their biological efficacy.<#LINE#>Holla B.S., Kalluraya B and .Ambekar S.Y, (1988).@Studies on Nitrofuran heterocycles Part-2: Synthesis and Antibacterial Activity of 2-Aryl-4-(5- Nitro-2-furyl) thiazoles.@ChemInform., 19(11).@Yes$Kalluraya B., Rahiman A. and David B. (2001).@Sydnone Derivatives Part VII: Synthesis of novel thiazoles and their pharmacological properties.@Archiv der Pharmazie., 334(8-9), 263-268.@Yes$Jiang B. and Gu X.H. (2000).@Synthesis and cytotoxicity evaluation of bis (indolyl) thiazole, bis (indolyl) pyrazinone, bis (indolyl) pyrazine: analogues of cytotoxic marine bis (indole) alkaloid.@Bioorg. Med. Chem., 8(2), 363-371.@Yes$Chowki A.A., Magdum C.S., Ladda P.L. and Mohite S.K. (2008).@Synthesis and Antitubercular Activity of 6-Nitro-2-[4-Formyl-3-(suustituted phenyl) pyrazol-1-yl] Benzothiazoles.@Int. J. Chem. Sci., 6(3), 1600-1605.@Yes$Brana M.F., Gradillas A., Ovalles A.G., Lopez B., Acero N., Llienares F. and Mingarro D.M. (2006).@Synthesis and biological activity of N,N-dialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives.@Bioorg. Med. Chem., 14(1), 9-16.@Yes$Ismail M.M.F., Ammar Y.A., El-Zahaby H.S.A., Eisa S.I. and Barakat S.E. (2007).@Synthesis of novel-1-pyrazolylpyridin-2-ones as potential anti-inflammatory and analgesic agents.@Archiv der Pharmazie., 340(9), 476-482.@Yes$Rai N.S., Kalluraya B., Lingappa B., Shenoy S. and Puranic V.G. (2008).@Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation.@Eur. J. Med. Chem., 43(8), 1715-1720.@Yes$Agarwal N., Raghuwanshi S.K., Upadhyay D.N., Shukla P.K. and Ram V.J. (2000).@Suitably functionalised pyrimidines as potential antimycotic agents.@Bioorganic and Medicinal Chemistry Letters, 10(8), 703-706.@Yes$Sondhi S.M., Jain S., Dwivedi A.D., Shukla R. and Raghubir R. (2008).@Synthesis of condensed pyrimidines and their evaluation for anti-inflammatory and analgesic activities.@Indian Journal of Chemistry B, 47(1), 136-143.@Yes$Vega S., Alonso J., Diaz J.A. and Junquera F. (1990).@Synthesis of 3-substituted-4-phenyl-2-thioxo-1,2,3,4,5,6,7,8-octahydrobenzo [4,5] thieno [2,3-d] pyrimidines.@Journal of Heterocyclic Chemistry, 27(2), 269-273.@Yes$Balzarini J. and McGuigan C. (2002).@Bicyclic pyrimidine nucleosideanalogues (BCNAs) as highly selective and potent inhibitorsof varicella-zoster virus replication.@Journal of Antimicrobial Chemotherapy, 50(1), 5-9.@Yes$Gupta A.K., Sanjay Kayath H.P., Singh A., Sharma G. and Mishra K.C. (1994).@Anticonvulsant activity of pyrimidine thiols.@Indian Journal of Pharmacology, 26(3), 227-228.@Yes$Kaldrikyan M.A., Grigoryan L.A., Geboyan V.A., Arsenyan F.G., Stepanyan G.M. and Garibdzhanyan B.T. (2000).@Synthesis and antitumor activity of some disubstituted 5-(3-methyl-4-alkoxybenzyl) pyrimidines.@Pharmaceutical Chemistry Journal, 34(10), 521-524.@Yes$Rodrigues A.L.S., Rosa J.M., Gadotti V.M., Goulart E.C., M.M. Santos, Silva A.V., Sehnem B., Rosa L.S., Gonçalves R.M., Corrêa R. and A.R.S. Santos (2005).@Antidepressant-like and antinociceptive-like actions of 4-(4՚-chlorophenyl)-6-(4՚՚-methylphenyl)-2-hydrazinepyrimidine Mannich base in mice.@Pharmacology Biochemistry and Behavior, 82(1), 156-162.@Yes$Kumar B., Kaur B., Kaur J., Parmar A., Anand R.D. and Kumar H. (2002).@Thermal/microwave assisted synthesis of substituted tetrahydropyrimidines as potent calcium channel blockers.@Indian Journal of Chemistry B, 41(7), 1526-1530.@Yes$Rodrigues Peter R. and Bhalekar Satish M. (2015).@Synthesis and Biological Activity of 4-(4-bromophenyl)-2-[4- (arylhydrazono-3-methyl-5-(5-bromopyridin-2-yl) imino- 5-dihydro pyrazol-1-yl] -1,3-thiazole erivatives.@International J. of Chemical Sciences, 13(4), 1844-1848.@Yes$Shetty S., Kalluraya B., Nithinchandra, Babu M, Joshi C.G., Joshi H. and Nidavani R.B. (2013).@Synthesis of Novel Triheterocyclic Thiazoles as Antimicrobial and Analgesic agents.@Indian Journal of Heterocyclic Chemistry, 23(1), 33-38.@Yes$Rao Sreenivasa Venkata Chunduru and Rao Rajeswar Vedula (2012).@Facile One-Pot Synthesis of Aryl, Heteryl Substituted Hydrazono Thiazolyl-Pyrazolone Derivatives Via Three-Component Reaction.@Synthetic Communications, 42(8), 1154-1161.@Yes <#LINE#>Inferring the chemical parameters for the dissolution of fluoride in groundwater of Bastar zone, Chhattisgarh, India<#LINE#>Rubina @Sahin <#LINE#>54-59<#LINE#>8.ISCA-RJCS-2017-003.pdf<#LINE#>Department of Chemistry, NMDC DAV Polytechnic, Dantewada, Chhattisgarh, India-494441<#LINE#>31/10/2016<#LINE#>5/1/2017<#LINE#>Physico-chemical data highlight that high content of F- in groundwater of study area due to dissociation, decomposition and dissolution of fluoride-bearing minerals. Few physico-chemicals parameters also give positive correlation with F- ion dissolution. These groundwater are alkaline in pH (7.54-8.55), HCO3- concentration varies from 266-370 mg/l and F- concentration from 1.6-7.68 mg/l. Presence of F- bearing mineral in bedrock is not only factor but physico-chemical environment like aqueous ionic species, residence time of interaction, chemical behavior of free F- ion with other cations and anions in groundwater, play key role of its dissolution. This study indicates that 82% groundwater samples have EC- 940-1750 µS/cm and pH >7.8 Ionic concentration Ca2+, HCO3-, Cl- and Na+ in groundwater show strong positive relation with F- ion concentration.<#LINE#>WHO (1984).@Guidelines for drinking water quality, Drinking water quality control in small community supplies.@WHO, Geneva, 3, 212.@No$USPHS (United State Public Health Services) (1962).@Drinking water standards.@Public Health Services Publ. Washington, DC., 956.@Yes$Annual Report of Corporate Water Disclosure (2016).@Thirsty business: Why water is vital to climate action.@Global water report: 1-88.@No$Saxena V. and Ahmed S. (2001).@Dissolution of fluoride in groundwater: a water-rock interaction study.@Environ. Geol., 40(9), 1084-1087.@Yes$Ahmed S., Sreedevi P.D., Sujatha D., Hashimi S.A.R., Subrahmanyam K., Saxena V.K. and Touchard F. (2002).@Time-variant behavior of fluoride contents in granitic aquifers.@Presented during the International Groundwater Conference, 20-22, Dindigul. Tamilnadu, India.@Yes$Veeraputhiran V. and Alagumuthu G. (2010).@A report on fluoride distribution in drinking water.@Int. J. Environ. Sci., 1(4), 558-566.@Yes$Amini M., Mueller K., Abbaspou K.C., Rosenberg L., Afyuni M., Moller K.N., Sarr M. and Johnson C.A. (2008).@Statistical modeling of global geogenic fluoride contamination in groundwater.@Envir. Sci. and Technol., 42(10), 3662-3668.@Yes$Banerjee A. (2015).@Groundwater fluoride contamination: A reappraisal.@Geosci. Frontiers, 6(2), 277-284.@Yes$Handa B.K. (1975).@Geochemistry and genesis of fluoride contains groundwater in India.@Ground water, 13(3), 275-281.@Yes$Mamatha P. and Rao S.M. (2010).@Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka.@Environ. Earth Sci, 61(1), 131-142.@Yes$Annadurai S.T., Rengamy J.K., Sundaram R. and Munusamy A.P. (2014).@Incidence and effects of fluoride in Indian natural ecosystem: A review.@Advances in appl. Sci. Res., 5(2), 173-185.@Yes$Ahmed S., Bertrand F., Saxena V.K., Subrahmanyam K. and Touchard F. (2002).@A geostatistical method of determining priority of measurement wells in a fluoride monitoring network in an aquifer.@J. Appl. Geochem., 4 (2B), 576-585.@Yes$Jain S.k., Ray A., S. Shekhar, R. Chandra, K. Shrivasatava and Sharma V. (2010).@Groundwater quality in shallow aquifer of India. Central Groundwater Board, Ministry of water resources.@Government of India, 1-117.@Yes$C.G.W.B. (2012).@Hydrogeology of Chhattisgarh Central Groundwater Board, Raipur.@@No$Rao S. (1997).@The occurrences and behavior of fluoride in groundwater of the lower Vamsadhara River basin, India.@J. Hydrol. Sic., 42(6), 877-892.@Yes$Wenzel W.W. and Blum W.E.H. (1992).@Fluoride specification and mobility in fluoride contaminated soil.@Soil Sci., 153(5), 357-364.@Yes$Cama J., Zhang L., Soler J.M., DeGiudici G., Ardvison R.S. and Luttge A. (2010).@Fluorite dissolution in acidic pH: insitu AFM and ex situ VSI experiments and Monte Carlo simulations.@Geochimica et Cosmochimica Acta, 74(15), 4298-4311.@Yes$Rama Rao N.V. (1982).@Geochemical factors influencing the distribution of fluoride in rocks, soils, and water sources of Nalgonda district.@AP Unpublished Thesis, Osmania University, India., 320.@Yes$Sreedevi P.D., Ahmed S., Made B., Ledoux E. and Gondolfi J.M. (2006).@Association of hydro geological factors in temporal variations of fluoride concentration in a crystalline aquifer in India.@Environ. Geol., 50(1), 1-11.@Yes @Short Communication <#LINE#>Rapid iodination kinetics of alkyl derivatives of aniline by iodine monochloride using competition technique: a quantitative assessment of substrate nucleophilicity<#LINE#>R.P. @Yadav,B.B. @Bahule,V.T. @Borkar,V.T. @Dangat <#LINE#>60-62<#LINE#>9.ISCA-RJCS-2016-247.pdf<#LINE#>Nowrosjee Wadia College, affiliated to Savitribai Phule Pune University, Pune, India@Nowrosjee Wadia College, affiliated to Savitribai Phule Pune University, Pune, India@Nowrosjee Wadia College, affiliated to Savitribai Phule Pune University, Pune, India@Nowrosjee Wadia College, affiliated to Savitribai Phule Pune University, Pune, India<#LINE#>27/12/2016<#LINE#>7/2/2017<#LINE#>Rapid iodination kinetics of aniline and its alkyl derivatives in aqueous medium by iodine monochloride have been studied by the competition technique. The specific reaction rates of iodination of these substrates are evaluated as 300, 920, 1777 and 2200 M-1s-1, at 26.0oC, for aniline, N-ethyl aniline, N-methyl aniline and N,N-dimethyl aniline, respectively. These values quantitatively assess the relative nucleophilicity of these alkyl derivatives in aqueous medium. The competition technique has been used to evaluate the specific rates of the fast reactions studied herein.<#LINE#>Berliner E. (1966).@The Current State of Positive Halogenating Agents.@J.Chem.Edu., 43(3), 124-133.@Yes$Dangat V.T., Bonde S.L. and Rohokale G.Y. (1984).@Bromination of p-Acetotoluidide in Aqueous Medium: Substituent Effect.@Indian Journal of Chemistry, 23(3), 237-238.@Yes$Dangat V.T. and Borkar V.T. (2011).@Kinetics of the Rapid Reaction of Iodine Monochloride with Potassium Iodide in Aqueous Solution using the Competition Technique.@Research Link, 88A, X(5) 8-10.@No$Rao T.S., Mali S.I. and Dangat V.T. (1979).@Kinetics of the Rapid Reaction Br2 + 2 I - → I2 + 2Br - in Aqueous Solution.@Z.phys. Chemie, Leipzig, 260(1), 38-42.@Yes$Clayden J., Greeves N., Warren S. and Wothers P. (2001).@Organic Chemistry.@Oxford University Press, 239.@Yes <#LINE#>Preparation of ionic liquids and synthesis of DHPM using ILS<#LINE#>Viral H. @Kariya,Vishal @Mulani,Mahesh M. @Savant <#LINE#>63-65<#LINE#>10.ISCA-RJCS-2017-005.pdf<#LINE#>Department of Industrial Chemistry, Shree M. & N. Virani Science College, Kalawad Road, Rajkot, Gujarat, India@Department of Chemistry, M.K. Bhavnagar University, Bhavnagar, Gujarat, India@Department of Industrial Chemistry, Shree M. & N. Virani Science College, Kalawad Road, Rajkot, Gujarat, India<#LINE#>29/11/2016<#LINE#>15/1/2017<#LINE#>Alkylimidazolium and N-alkylbenzimidazolium based ionic liquids having halide and tetrafluoroborate were synthesized and used to study catalytic efficiency for the Biginelli reaction under solvent-free conditions. Among all the ionic liquids, the1-Butyl-3-Metylimidazolium chloride found as most promising and efficient green solvent for the synthesis of Dihydropyrimidine 4. The process was simple and proceeded in excellent yields.<#LINE#>Wasserscheid P. and Keim W. (2000).@Ionic Liquids—New “Solutions” for Transition Metal Catalysis.@Angew. Chem. Int. Ed., 39(21), 3772-3789.@Yes$Plechkova N.V. and Seddon K.R. (2008).@Applications of ionic liquids in the chemical industry.@Chem. Soc. Rev., 37(1), 123-150.@Yes$Krossing I., Slattery J.M., Daguenet C., Dyson P.J., Oleinikova A. and Weingärtner H. (2006).@Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies.@J.Am. Chem. Soc., 128(41), 13427-13434.@Yes$Xue H., Verma R. and Shreeve J.M. (2006).@Review of ionic liquids with fluorine-containing anions.@J. Fluorine Chem., 127(2), 159-176.@Yes$Turner E.A., Pye C.C. and Singer R.D. (2003).@Use of ab Initio Calculations toward the Rational Design of Room Temperature Ionic Liquids.@J. Phy. Chem. A., 107(13), 2277-2288.@Yes$Rantwiijk F. and Vanand Sheldon R.A. (2007).@Biocatalysis in Ionic Liquids.@Chem. Rev.,107(6), 2757-2785.@Yes$Pârvulescu V.I. and Hardacre C. (2007).@Catalysis in Ionic Liquids.@Chem. Rev., 107(6), 2615-2665.@Yes$Haumann M. and Riisager A. (2008).@Hydroformylation in Room Temperature Ionic Liquids (RTILs):  Catalyst and Process Developments.@Chem. Rev., 108(4), 1474-1497.@Yes$Martins M.A.P., Frizzo C.P., Moreira D.N., Zanatta, N. and Bonacorso H.G. (2008).@Ionic Liquids in Heterocyclic Synthesis.@Chem.Rev., 108(6), 2015-2050.@Yes$Blanchard L.A., Hancu D., Beckman E.J. and Brenecke J.F. (1999).@Green processing using ionic liquids and CO2.@Nature, 399(6731), 28-29.@Yes$Byrne N., Howlett P.C., MacFarlane D.R. and Forsyth M. (2005).@The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries.@Adv. Mater., 17(20), 2497-2501.@Yes$Rogers R.D. and Seddon K.R. (2002).@Ionic Liquids: Industrial Applications for Green Chemistry.@ACS Symp. Ser, 818.@Yes$Earle M.J. and Seddon K.R. (2000).@Ionic liquids: Green solvents for the future.@Pure Appl. Chem., 72(7), 1391-1398.@Yes$Freemantle M. (1998).@Ionic liquids may boost clean technology development.@Chem. Eng. News, 76(13), 32-37.@Yes