@Research Paper <#LINE#>Microencapsulation and characterization of astaxanthin prepared using different agents<#LINE#>V. @Suganya,V. @Anuradha,M. Syed @Ali,P. @Sangeetha,P. @Bhuvana <#LINE#>1-10<#LINE#>1.ISCA-RJCS-2017-079.pdf<#LINE#>PG and Research Department of Biochemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, Tamilnadu, India@PG and Research Department of Biochemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, Tamilnadu, India@PG and Research Department of Biochemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, Tamilnadu, India@PG and Research Department of Biochemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, Tamilnadu, India@PG and Research Department of Biochemistry, Mohamed Sathak College of Arts & Science, Sholinganallur, Chennai, Tamilnadu, India<#LINE#>20/10/2017<#LINE#>16/12/2017<#LINE#>The present study was implemented to check the best methods for encapsulation of astaxanthin and characterized. Astaxanthin is present in microalgae, yeast, salmon, crayfish, shrimp, crustaceans etc. It has wide application as an animal feed, food colorant and dietary supplement for human to cure many diseases. Encapsulated astaxanthin was prepared using sodium alginate, chitosan, TPP and liposomes as various encapsulating agents. The encapsulated Astaxanthin prepared using different methods were analysed for Morphological changes, percentage yield, drug content, entrapment efficiency and in vitro drug release. SEM view of encapsulated astaxanthin was predicted in which all the encapsulated beads formed showed minimum size of 1.522 to 15.21 µm. FT-IR analysis showed the presence of aldehyde, ketone, amines related to both chemicals used and astaxanthin. The percentage yield of ME 1, ME 2, ME 3 and ME 4 was founded to be 87.67±0.577%, 87.00±1.000%, 90.67±0.577% and 93.67±2.08% respectively. From drug content estimation it is established that maximum drug content was achieved by ME 4 (91.33 ± 1.528%) and minimum by ME 2(74.00±1.000%). In vitro drug release was performed in both Stimulated gastric fluid and Stimulated intestinal fluid. Both showed better results. Astaxanthin encapsulated microspheres were prepared by different methods. The encapsulated astaxanthin was analyzed for size, morphology and drug release behavior was studied. Thus astaxanthin loaded microspheres can be used in novel drug delivery systems.<#LINE#>Ipemtech (2009).@The industrial partnering event in microencapsulation technologies.@Available at: http://www.gate2tech.com/article.@No$Vyas S.P. and Khar R.K. (2002).@Targeted and controlled drug delivery, New Delhi, India.@CBS Publisher and Distributer, 2002.@No$Bakan J.A. (1991).@Microencapsulation.@In: Lachman L, Lieberman HA, Kanig JL, editors. The theory and practice of industrial pharmacy, 3rd ed. Ch. 13, Part III Varghese Publishing House, Bombay, 412-428.@No$Khawla A., Abu izza, Lucila Garcia-Contreras and Robert Lu D. (1996).@Selection of better method for the preparation of microspheres by applying hierarchy process.@Journal of Pharmaceutical Sciences, 85,144- 149.@No$Mishra Deepak K., Jain Ashish K. and Jain Prateek K. (2013).@A Review on Various Techniques of Microencapsulation.@International Journal of Pharmaceutical Chemical Science, 2, 962-977.@Yes$Umer H., Nigam H., Tamboli A.M. and Nainar M.S.M. (2011).@Microencapsulation: process, techniques and applications.@International journal of research in pharmaceutical and biomedical sciences, 2(2), 474-481.@Yes$Kreitz M., Brannon-peppas L. and Mathiowitz E. (2000).@Microencapsulation encyclopedia of controlled drug delivery.@John Wiley Sons publishers. 493-553.@No$Hemalatha K., Lathaeswari R., Suganeswari M., Senthil Kumar V. and Anto S.M. (2011).@Formulation and evaluation of Metoclopramide Hydrochloride microbeads by Ionotropic gelation method.@International Journal of Pharmaceutical and Biological Archive, 2(3), 921-925.@Yes$Patil J.S., Kamalapur M.V., Marapur S.C. and Kadam D.V. (2010).@Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review.@Digest Journal of Nanomaterials and Biostructures, 5(1), 241-248.@Yes$Al-Kassas R.S., Al-Gohary O.M. and Al-Faadhel M.M. (2007).@Controlling of systemic absorption of gliclazide through incorporation into alginate beads.@International journal of pharmaceutics, 341(1), 230-237.@Yes$Patil P., Chavanke D. and Wagh M. (2012).@A review on Ionotropic gelation method: Novel approach for controlled gastro retentive gelispheres.@International Journal Pharmacy and Pharmaceutical Sciences, 4(4), 27-32.@Yes$Lorenz R.T. and Cysewski G.R. (2000).@Commercial potential for Haematococcus microalgae as a natural source of astaxanthin.@Trends Biotechnology, 18(4), 160-167.@Yes$Johnson E.A. and An G.H. (1991).@Astaxanthin from microbial sources.@Critical Review in Biotechnology, 11(4), 297-326.@Yes$Zhao L., Chen F., Zhao G., Wang Z., Liao X. and Hu X. (2005).@Isomerization of trans astaxanthin induced by copper (II) ion in ethanol.@Journal of Agriculture and Food Chemistry, 53(24), 9620-9633.@Yes$Chen X., Chen R., Guo Z., Li C. and Li P. (2007).@The preparation and stability of the inclusion complex of astaxanthin with b-cyclodextrin.@Food Chemistry, 101(4), 1580-1584.@Yes$Yuan C., Jin Z., Xu X., Zhuang H. and Shen W. (2008).@Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl- β -cyclodextrin.@Food Chemistry, 109(2), 264-268.@Yes$George M. and Abraham T.E. (2006).@Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan a review.@Journal of Control Release, 114(1), 1-14.@Yes$Sankalia M.G., Mashru R.C., Sankalia J.M. and Sutariya V.B. (2005).@Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling.@AAPS Pharmaceutical Science and Technology, 6(2), E209-E222.@Yes$Silva C.M., Ribeiro A.J., Figueiredo I.V., Gonçalves A.R., and Veiga F. (2006).@Alginate microspheres prepared by internal gelation: development and effect on insulin stability.@International Journal of Pharmaceutical, 311, 1-10.@Yes$Trens P., Valentin R. and Quignard F. (2007).@Cation enhanced hydrophilic character of textured alginate gel beads.@Colloids and Surfaces A: Physicochemical Engineering Aspects, 296(1-3), 230-237.@Yes$Rousseau I., Le Cerf. D., Picton L., Argillier J.F. and Muller G. (2004).@Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads.@European Polymer Journal, 40(12), 2709-2715.@Yes$Murata Y., Maeda T., Miyamoto E. and Kawashima S. (1993).@Preparation of chitosan-reinforced alginate gel beads - effects of chitosan on gel matrix erosion.@International Journal of Pharmaceutical, 96(1-3), 139-145.@Yes$Takahashi T., Takayama K., Machida Y. and Nagai T. (1990).@Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate.@International Journal of Pharmaceutical, 61(1-2), 35-41.@Yes$Harish-Prashanth K.V. and Tharanathan R.N. (2007).@Chitin/Chitosan: Modifications and their unlimited application potential an overview.@Trends Food Science and Technology, 18(3), 117-131.@Yes$Rinaudo M. (2006).@Chitin and chitosan: properties and applications.@Progress Polymer Science, 31(7), 603-632.@Yes$Lin Y.H., Sonaje K., Lin K.M., Juang J.H., Mi F.K. and Yang H.W. (2008).@Multi-ion crosslinked nanoparticles with pH-responsive characteristics of oral delivery of protein drugs.@Journal of Control Release, 132(2), 141-149.@Yes$Gan Q. and Wang T. (2007).@Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release.@Colloids and Surfaces B: Bio interaction, 59, 24-34.@Yes$Mi F.L., Sung H.W., Shyu S.S., Su C.C. and Peng C.K. (2003).@Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads.@Polymer, 24(21), 6521-6530.@Yes$Lee S.T., Mi F.L., Shen Y.J. and Shyu S.S. (2001).@Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin.@Polymer, 42(5), 1879-1892.@Yes$Hu B., Pan C., Sun Y., Hou Z., Ye H. and Hu B. (2008).@Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.@Journal of Agricultural Food Chemistry, 56(16), 7451-7458.@Yes$Stulzer H.K., Tagliari M.P., Parize A.L., Silva M.A.S. and Laranjeira M.C.M. (2009).@Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying.@Materials Science and Engineering: C., 29(2), 387-392.@Yes$Suntres Zacharias E. (2011).@Liposomal antioxidants for protection against oxidant induced damage.@Journal of Toxicology, 1-16.@Yes$Lin S.F., Chen Y.C., Chen R.N., Chen L.C., Ho H.O., Tsung Y.H., Sheu M.T. and Liu D.Z. (2016).@Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads.@PloS One. 11, 1-10.@Yes$Park S.A., Ahn J.B., Choi S.H., Lee J.S. and Lee H.G. (2014).@The effects of particle size on the physiochemical properties of optimized astaxanthin-rich Xanthophyllomyces dendrorhous- loaded microparticles.@LWT-Food Science and Technology, 55(2), 638-644.@Yes$Klinkenberg G., Lystad K., Levine D. and Dyrset N. (2001).@pH controlled cell release and biomass distribution of alginate immobilized Lactococcus lactis subsp. Lactis.@Journal of Applied Meteorology, 91(4), 705-714.@Yes$Krasaekoopt W., Bhandari B. and Deeth H. (2004).@The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria.@International Dairy Journal, 14(8), 737-743.@Yes$Krasaekoopt W., Bhandari B. and Deeth H. (2006).@Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage.@Food Science and Technology, 39(2), 177-183.@Yes$Thamaket P. and Raviyan P. (2015).@Preparation and physical properties of carotenoids encapsulated in chitosan cross linked triphosphate nanoparticles.@Food and Applied Bioscience Journal, 3(1), 69-84.@Yes$Luo Y., Zhang B., Whent M., Yu L.L. and Wang Q. (2011).@Preparation and characterization of zein/chitosan complex for encapsulation of alpha tocopherol and it’s in vitro controlled release study.@Colloids and Surfaces B: Bio interfaces, 85(2), 145-152.@Yes$Chiu C.H., Chang C.C., Lin S.T., Chyau C.C. and Peng R.Y. (2016).@Improved Hepatoprotectivity effect of Liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity.@International Journal of Molecular sciences, 17(7), 1-17.@Yes$Ozcelik B., Karadag A. and Ersen S. (2009).@Bio encapsulation of Beta-carotene in three different methods.@XVII th International conference on Bioencapsulation. P91-1 – P91-4.@Yes$Shabaraya A.R. and Narayanacharyulu R. (2003).@Design and evaluation of Chitosan microspheres of metoprolol tartrate for sustained release.@Indian Journal of Pharmaceutical Sciences, 65(3), 250-252.@Yes$Ravindra Reddy K. and Sabitha Reddy P. (2010).@Effect of different co-polymers on sodium alginate microcapsules containing Isoniazid.@International Journal of Pharma Tech Research, 2, 2198-2203.@Yes$Alagusundaram M., Chetty M.S., Umashankari K., Badarinath A.V., Lavanya C. and Ramkanth S. (2009).@Microspheres as a Novel Drug Delivery System-A Review.@International Journal of ChemTech Research, 1(3), 526-534.@Yes$Cacae J., Reilly E.E. and Amann A. (2004).@Comparison of the dissolution of metaxalone tablets (skelaxin) using USP apparatus 2 and 3.@AAPS Pharmaceutical Science and Technology, 5(1), 1-3.@Yes$Lee J.S., Park S.A., Chung D. and Lee H.G. (2011).@Encapsulation of astaxanthin-rich Xanthophyllomyces dendrorhous for antioxidant delivery.@International Journal of Biological Macromolecules, 49(3), 268-273.@Yes$Bustos-Garza C., Yáńez-Fernández J. and Barragán-Huerta B.E. (2013).@Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials.@Food Research International, 54, 641-649.@Yes$Pavanveena C., Kavitha K. and Kumar S.A. (2010).@Formulation and Evaluation of Trimetazidine Hydrochloride loaded chitosan microspheres.@International Journal of Applied Pharmaceutical, 2(2), 11-14.@Yes$Liu N. and Park H.J. (2009).@Chitosan coated nanoliposome as vitamin E carrier.@Journal of Microencapsulation, 26(3), 235-242.@Yes$Luo Y., Zhang B., Whent M., Yu L. and Wang Q. (2011).@Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and it’s in vitro controlled release study.@Colloids and Surfaces B: Bio interactions, 85, 145-152.@Yes$Kittikaiwan P., Powthongsook S., Pavasant P. and Shotipruk A. (2007).@Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement.@Carbohydrates polymer, 70(4), 378-385.@Yes$Chan E.S. (2011).@Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties.@Carbohydrates Polymer, 84(4), 1267-1275.@Yes$Taksima T., Limpawattana M. and Klaypradit W. (2015).@Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile.@LWT-Food Science and Technology, 62(1), 431-437.@Yes$Choi K.O., Ryu J., Kwak H.S. and Ko S. (2010).@Spray-dried conjugated linoleic acid encapsulated with Maillard reaction products of whey proteins and maltodextrin.@Food Science and Biotechnology, 19(4), 957-965.@Yes$Stops F., Fell J.T., Collett J.H. and Martini L.G. (2008).@Floating dosage forms to prolong gastro-retention e the characterisation of calcium alginate beads.@International Journal of Pharmaceutics, 350(1), 301-311.@Yes$Siepmann J., Faisant N., Akiki J., Richard J. and Benoit J.P. (2004).@Effect of the size of biodegradable microparticles on drug release: experiment and theory.@Journal of Control Release, 96, 123-134.@Yes$Suganya V. and Asheeba S.T. (2015).@Microencapsulation of astaxanthin using ionotropic gelation method isolated from three crab varieties.@International Journal of Current Pharmaceutical Research, 7(4), 96-99.@Yes$Yuan Y.V., Bone D.E. and Carrington M.F. (2005).@Antioxidant activity of Dulse (Palmaria palmata) extract evaluated in vitro.@Food Chemistry, 91(3), 485-494.@Yes$Mahaffy P., Bucat B., Tasker R., Kotz J.C., Weaver G.C., Treichel P.M. and McMurry J.E. (2011).@Chemistry: Human Activity, Chemical Reactivity.@USA: Nelson Education Ltd.@Yes$Chen C.S., Wu S.H., Wu Y.Y., Fang J.M. and Wu T.H. (2007).@Properties of astaxanthin/Ca2+ complex formation in the deceleration of cis/trans isomerization.@Organic letters, 9(16), 2985-2988.@Yes @Short Communication <#LINE#>Preparation of soy protein concentrates by different treatment processes<#LINE#>Shumaila @Usman,Ammara @Yasmeen,Saima @Nazir,Shaista J. @Khan,Sakhawat @Ali,Imran @Kalim <#LINE#>11-15<#LINE#>2.ISCA-RJCS-2017-077.pdf<#LINE#>Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan@Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan@Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan@Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan@Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan@Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozpur Road Lahore, Pakistan<#LINE#>26/9/2017<#LINE#>2/12/2017<#LINE#>This study aimed to develop soy protein concentrate (SPC) from soybean. SPC was produced using different concentration of acetic and citric acid (40, 50 and 60%), purpose of developing the concentrate and residue was to get value add products rich in protein and fiber. The experimental work was also carried out to determine the chemical compositions of whole soybean seed, defatted soybean, SPC and soy protein residue (SPR) by proximate analysis i.e. moisture, ash, fat, fiber and protein contents. Citric acid and acetic acid being edible acids were used to get highest protein content of soy protein concentrate and to see the maximum yield as well. High protein content of 87.49% was obtained from SPC with 60% citric acid concentration and high fiber content of 13.36% was obtained from SPR with 50% citric acid concentration. While in case of acetic acid, high protein content of 69.81%, and high fiber content of 10.50% were obtained with 60% and 40% acetic acid. The protein content obtained from SPC was significantly higher than from SPR. Unlike the protein content, high fiber was found only in SPR in both the acids used.<#LINE#>Porter C.L. (1959).@Taxonomy of flowering plants, elected orders and families of dicotyledons.@W.H. Freeman and company San Francisco and London, 1, 286, 292.@No$Adam Cloe (2011).@Soy protein concentrates.@Medical center United States soybean Export Council soy protein concentrate, 1-1.@No$Mounts T.L., Wolf W.J. and Martinez W.H. (1987).@Soybeans: Improvement, Production and Uses.@In: Madison, Wis: The Amer. Soc. Agronomy, 819-860.@Yes$Keshun L. (1999).@Soybean, Chemistry, Technology and Utilization.@Apsen, 72, 76.@No$Young V.R. (1991).@Soy protein in relation to human protein and amino acid nutrition.@Journal of American Dietetics Association, 91(7), 828-835.@Yes$Circle S.J. and Smith A.K. (1978).@Processing soy flours, protein concentrates, and protein isolates.@In: Smith AK, Circle SJ, editors. Soybeans: Chemistry and technology, AVI Publishing Co., 1, 294-338.@Yes$Preeti Singh, Kumar R., Sabapathy S.N. and Bawa A.S. (2008).@Functional and edible uses of soy protein products.@Comprehensive Reviews in Food Science and food safety, 7(1), 14-28.@Yes$Wang H.J. and Murphy P.A. (1994).@Isolflavone content in commercial soybean foods.@Journal of Agricultural Food Chemistry, 42(8), 1666-1673.@Yes$Schaafsina G. (2000).@The digestibility-corrected amino acid score.@J. Nutri., 130(7), 1865-1867.@Yes$Singh P., Kumar R., Sabapathy S.N. and Baw A.S.,@Functional and edible uses of soy protein products.@Comprehensive reviews in food science and food safety, 7(1), 14-28.@Yes$Symolon H., Schmelzz E., Dillehay D. and Merrill A. (2004).@Dietary soy sphingolipids suppress tumorigenesis and gene express in 1, 2-dimethylhydrazine-treated CF-1 mice and ApcMin/+ mice.@J. Nutrition., 134(5), 1157-1161.@Yes$Dillingham B.L., McVeigh L.J.W. and Duncan A.M. (2005).@Soy protein concentrates of varying isoflavones content exert minor effects on serum reproductive hormones in healthy young men.@J. Nutr., 135(3), 584-591.@Yes$Nawfal I., Edwina M., Morteza J., William J.E. and Vernon R.Y. (2012).@The nutritional value of soy protein concentrate (STAPRO-3200) for long term protein nutritional maintenance in young Men.@J. Nutr., 113(12), 2524-2534.@Yes$Chang J.H., Kim M.S., Kim T.W. and Lee S.S. (2008).@Effects of soybean supplementation on blood glucose, plasma lipid levels, and erythrocyte antioxidant enzyme activity in type 2 diabetes mellitus patients.@Nutr Res Pract Autumn., 2(3), 152-157.@Yes$Godvin V.J. and Spensley P.C. (1967).@Oil and oil seed, soybean.@Tropical Products Institute, London, Englad. 1(32), 1-7.@No$Hocine L., Boye L.J.I. and Arcand Y. (2006).@Composition and functional properties of soyprotein concentrates prepared using alternative defatting and extraction procedures.@Journal of food science, 71, 137-147.@Yes$AOAC (2012).@Association of official analytical chemists).@Washington D.C., 19th Ed.@No$Gardner W.H. (1972).@Acidulants in food processing.@Handbook of food additives, 225-270.@Yes$Broughton W.J., Hernandez G., Blair M., Beebe S., Gepts P. and Vanderleyden J., (2003).@Beans (Phaseolus spp.) – model food legumes.@Plant and Soil, 252, 55-128.@Yes$Messina M. and Messina V. (2000).@Soy foods, Soybean isoflavones and bone health.@J. Nutr., 10(2), 63-68.@Yes$Terrazas M. (2008).@Super soy, the baker.@available at: www.thebakers.co.za, retrieved on: 27th May (2008).@No$Reddy K. (2002).@Indian soycook bood.@Rupa and Co. New Dehli, 1, 1-4.@No$Raja J., Punoo H.A. and Masoodi F.A. (2014).@Comparative study of soy paneer prepared from soymilk, blends of soymilk and skimmed milk.@Journal of Food Processing & Technology, 5(2), 1.@Yes$Reverdatto S., Beilinson V. and Nielsen N.C. (1999).@A Multisubunit Acetyl Coenzyme A Carboxylase from Soybean.@Plant Physio., 119(3), 961-978.@Yes$Keda I. (1994).@Complete extraction of soybeans in food preparation.@(Horiuchi Kk) japan Kokai Tokkyo koho JP 06,217,726 (94,217,726) (CI. A23L1/20), 09 August, Appl@No @Review Paper <#LINE#>A comprehensive review on secondary metabolites of Nigella sativa L (Seeds)<#LINE#>Gupta @Meenal,Mehta @B.K. <#LINE#>16-29<#LINE#>3.ISCA-RJCS-2017-070.pdf<#LINE#>School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain 456010, MP, India @School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain 456010, MP, India<#LINE#>13/8/2017<#LINE#>29/11/2017<#LINE#>Nigella sativa L. synthesizes and accumulates a variety of biological active secondary metabolites. Due to various substances isolated and identified the claim made in traditional medicinal system. Seeds are generally called kalongi (Ranunculacae) is an annual flowering plant, originate from S. W. Asia. Seeds and NSO showed as a folk medicine for a prehistoric usage in all systems of medicines and are used as food also. This comprehensive account provides a botanical distribution of plant, chemical constituents and pharmacological potential are reviewed and summarized the information focusing on its wide spectrum biological and medicinal properties including anti-tumor, antipyretic, analgesic, antinematode, antihypertensive, antidiabetic, antiulcerogenic and anti- bacterial as well as dietary nutritive supplements and also focused on synthesis and properties of nanopaticles due to secondary metabolites show reducing and stabilizing activity.<#LINE#>Sezik E., Yesilad E., Honda G., Takaishi Y., Takoda Y. and Tanaka T. (2001).@Traditional medicine in turkey folk medicine in Central Anatolia.@J. Ethnopharmacol., 75(2), 95-115.@Yes$Satyavati G.V. and Gupta A.K. (1987).@Medicinal Plants of India.@2, 337-340.@No$Khan M.A. and Afzal M. (2016).@Chemical composition of Nigella sativa Linn: Part 2 Recent advances.@Inflammopharmacol, 24(2-3), 67-79.@Yes$Khan M.A., Chen H.C., Tania M. and Zhang D. (2011).@Anticancer activities of Nigella sativa (black cumin).@Afr. J. Tradit. Complement Altern. Med., 8(5 Suppl), 226-232.@Yes$Farooq T.J. and Abdulrahman M.A. (2011).@The effects of Nigella sativa oil administration on some physiological and histological values of reproductive aspects of rats.@Iraqi J. Vet. Med., 35(2), 53.@Yes$Prakash S. (1972).@Wealth of India.@CSIR New Delhi, 3 PID.@No$Adams R.P. (1995).@Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy.@Carol Stream IL, Allured Publishing Co.@Yes$Chen H.S., Han G.Y., Liu M.Z. and Liang H.Q. (1991).@A new alkaloids and its artificial derivative with an indazole ring from Nigella glandulifera.@Chinese Chemical Letters, 2, 787-88.@No$Tian Z., Liu Y.M., Chen S.B., Yang Y.S., Xiao P.G., Wang L. and Wu E. (2006).@Cytotoxicity of two triterpenenoids from Nigella glandulifera.@Molecule, 11(9), 693-99.@Yes$Lebreton P. and Cles M. (1986).@Flavonoids, Marqueurs Systematiques chez les Renonculacees.@Plantes Medicinales et Phytotherapie, 20, 275-86.@No$Merfort I., Wray V., Barakat H.H., Hussen S.A.M., Nawwar M.A.M. and Willuhn G. (1997).@Flavonol triglycosides from seeds of Nigella sativa.@Phytochemistry, 46(2), 359-363.@Yes$Fico G., Braca A., Tome F. and Morelli I. (2001).@A new phenolic compound from Nigella damascene seeds.@Fitoterapia, 72(4), 462-463.@Yes$Hao H.F., Ren L.J. and Chen Y.M. (1996).@Studies on the chemical constituents of seeds from Nigella Glandulifera.@Acta Pharmaceutica Sinica, 31(9), 689-694.@Yes$Rahman A., Malik S., Hassan S., Choudhary M.I., Ni C.Z. and Clardy J. (1995).@Nigellidine: A new indazole alkaloid from the seeds of Nigella sativa.@Tetrahedr. Lett., 36(12), 1993-96.@Yes$Sohail M., Ahmed S., Choudhary M.I. and Ur-Rahman H. (1985).@Nigellimine-N-oxide: A new isoquinoline alkaloid from the seeds of Nigella sativa.@Heterocycles, 23(4), 953-955.@Yes$Rahman A., Malik S. and Zaman K. (1992).@Nigellimine: A new isoquinoline alkaloid from the seeds of Nigella sativa.@J. Nat. Prod., 55(5), 676-78.@Yes$Rahman A., Malik S., Cun-Heng H. and Clardy J. (1985).@Isolation and structure determination of Nigellicine, a novel alkaloid from the seeds of Nigella sativa.@Tetrahedr. Lett., 26(23), 2759-62.@Yes$Morikawa T., Xu F., Kashima Y., Matsuda H., Ninomiya K. and Yoshikawa M. (2004).@Novel dolabellane-typediterpene alkaloids with lipid metabolism promoting activities from the seeds of Nigella sativa.@Organic Lett., 6(6), 869-872.@Yes$Yessuf A.M. (2015).@Phytochemical Extraction and Screening of Bio Active Compounds from Black Cumin (Nigella Sativa) Seeds Extract.@American Journal of Life Sciences, 3(5), 358-364.@Yes$Salama R.B. (1973).@Sterols in the seeds oil of Nigella sativa.@Planta Medica, 24(4), 375-77.@Yes$Mehta B.K., Pandit V. and Gupta M. (2009).@New Principles from seeds of Nigella sativa.@Natural Product Research, 22(2), 138-48.@Yes$Mehta B.K., Gupta M. and Verma M. (2006).@Steroids and aliphatic esters from the seeds of Nigella sativa.@Ind.J. Chem., 45B(6), 1567-1571.@Yes$Mehta B.K., Verma M. and Gupta M. (2008).@Novel lipid constituents identified in seeds of Nigella sativa.@J. Braz. Chem. Soc., 19(3), 458-462.@Yes$Menounds P., Staphylakis K. and Gegiou D. (1986).@The sterols of Nigella sativa seeds oil.@Phytochemistry, 25(3), 761-763.@Yes$Mehta B.K., Mehta P. and Gupta M. (2009).@A new naturally acetylated triterpene saponin from Nigella sativa.@Carbohydr. Res., 344(1), 149-51.@Yes$Ansari A.A., Hassan L., Kene L., Rahman A. and Wehler T. (1998).@Structural studies on a saponin isolated from Nigella sativa.@Phytochemistry, 27(12), 3977-3979.@Yes$Taskin M.K., Caliskan O.A., Hassan A., Hassan A.G., Khan I.A. and Bedir E. (2005).@Triterpene saponin from Nigella sativa L.@Turk J. Chem., 29(5), 561-69.@Yes$Nickavara B., Mojab F., Javidnia K. and Amoli M.A.R. (2003).@Chemical Composition of the Fixed and Volatile Oils of Nigella sativa L. from Iran.@Z. Naturforsch., 58C, 629-31.@Yes$Singh N., Verma M., Mehta D. and Mehta B.K. (2005).@Two new lipid constituents of Nigella sativa (seeds).@Ind. J. Chem., 44B(8), 1742-1744.@Yes$Mehta B.K., Sharma U., Pandit V., Agrawal S., Joshi N. and Gupta M. (2008).@Isolation and characterization of new compounds from seeds of Nigella sativa.@Med. Chem. Res., 17, 462-473.@Yes$Joshi B.S., Singh K.L. and Roy R. (2001).@Structure of a new isobenzofuranone derivative from Nigella Sativa.@Magn. Reso. Chem., 39(12), 771-72.@Yes$Gupta M. and Mehta B.K. (2016).@A rapid and pollutionless microwave assisted efficient extraction from seeds of Nigella sativa.@Natural Products: An Indian Journal of Chemistry, 12(2), 62-67.@Yes$Scheunert A. and Theile E. (1952).@Vitamin C content in green plants with special references to the content of dihydro ascorbic acid.@Pharmazie, 7(12), 776-780.@Yes$Mahfouz M. and El-Dakhakhny M. (1960).@The isolation of a crystalline active principle from Nigella sativa L. seeds.@Journal of Pharmaceutical Sciences of the United Arab Republic, 19.@Yes$Hassib A. (1998).@Sudan, Extraction of melanin from Nigella sativa L.@Khartoum, Patent No. 451(1998).@Yes$El-Oeid A., Hassib A., Ponten F. and Westermark B. (2006).@Effect of herbal melanin on IL-8: A ossible role of Toll-like receptor4 (TLR4).@Biochem. Biophy. Res. Commun., 344, 1200-1206.@Yes$Prota G. (1988).@Progress in the chemistry of melanins and related metabolites.@Medical Research Review, 8(4), 525-556.@Yes$Pezzella A., d@An integrated approach to the structure of Sepia melanin. Evidence for a high proportion of degraded 5, 6-dihydroxyindole-2-carboxylic acid units in the pigment backbone.@Tetrahedron, 53(24), 8281-8286.@Yes$Kaskoos R.A. (2011).@Fatty acid composition of black cumin oil from Iraq.@Research Journal of Medicinal Plant, 5(1), 85-89.@Yes$Sekine S., Kubo K., Tadokoro T. and Saito M. (2007).@Effect of docosahexaenoic acid Ingestion on temporal change in urinary excretion of mercapturic acid in ODS rats.@J. Clin. Biochem. Nutr., 41, 184-190.@Yes$Song J.H., Fujimoto K. and Miyazawa T. (2000).@Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils.@J. Nutr., 130(12), 3028-3033.@Yes$El-Dakhakhny M., Madi N.J., Lembert L. and Ammon H. P.T. (2002).@Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats.@J. Ethnopharmacol, 81(2), 161-164.@Yes$Houghton P.J., Zarka R., Heras B. and Hoult J.R.S. (1995).@Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation.@Planta Medica, 61(1), 33-36.@Yes$Ahmed O.G. and El-Mottaleb N.A. (2013).@Renal function and arterial blood pressure Alterations after exposure to acetaminophen with a potential role of Nigella sativa oil in adult male rats.@J. Physiol. Biochem., 69(1), 1-13.@Yes$Al-Ghamdi M.S. (2001).@The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa.@J. Ethnopharmacol., 76, 45-48.@Yes$Dwarampudi L.P., Palaniswamy D., Nithyanantham M. and Raghu P.S. (2012).@Antipsoriatic activity And cytotoxicity of ethanolic extract of Nigella sativa seeds.@Pharmacogn. Mag., 8(32), 268-272.@Yes$El-Mezayen R., El-Gazzar M., Nicolls M.R., Marecki J.C., Dreskin S.C. and Nomiyama H. (2006).@Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation.@Immunol. Lett., 106(1), 72-81.@Yes$Muralidharan C.V., Kim J.J., Abuawad A., Naeem M., Cui H. and Mousa S. (2016).@Thymoquinone Modulates Blood Coagulation in Vitro via Its Effects on Inflammatory and Coagulation Pathways.@Int. J. Mol. Sci., 17, 474.@Yes$EI-Dakhakhny M., Barakat M., AbdEl-Halim M. and Aly S.M. (2000).@Effects of Nigella sativa oil on gastric secretion and ethanol induced ulcer in rats.@J. Ethnopharmacol., 72(1), 299-304.@Yes$Rajkapoor B., Anandan R. and Jayakar B. (2002).@Antiulcer effect of Niigella sativa Linn against gastric ulcers in rats.@Current Science., 82(2), 177-179.@Yes$Daba M.H. and Abdel-Rahman M.S. (1998).@Hepatoprotective activity of thymoquinone in isolated rat Hepatocytes.@Toxicology Letters, 95(1), 23-29.@Yes$Lei X., Lv X., Liu M., Yang Z., Ji M. and Guo X. (2012).@Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo.@Biochem. Biophys. Res. Commun., 417(2), 864-868.@Yes$Parvardeh S., Fatehi M. and Hosseinzadeh H. (2003).@Antimicrobial effect of thymoquinone: The major component of Nigella sativa seeds in mice.@Faslnamah-I Giyahan-I Daruyi (Parsian), 742(5), 43-50.@Yes$Hosseinzadeh H. and Parvardeh S. (2004).@Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds in mice.@Phytomedicine, 11(1), 56-64.@Yes$Parverdeh S. and Fatehi M. (2003).@Effect of thymoqunone and Nigella sativa seeds oil on Lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus.@Pharmaceutical Biology (Taylor and Francies, Netherland), 41(8), 616-621.@No$Islam S.K., Nazrul B.P., Ahsan T., Huque S. and Ahsan S. (2004).@Immunosupressive and Cytotoxic properties of Nigella sativa.@Phytother. Res., 18(5), 395-398.@Yes$Majdalawieh A.F. and Fayyad M.W. (2016).@Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive.@J. Ayurveda. Integr. Med., 7(3), 173-180.@Yes$Salomi M.J., Nair S.C. and Panikkar K.R. (1991).@Inhibitory effects of Nigella sativa and saffron on chemical carcinogenesis in mice.@Nutrition Cancer., 16, 67-72.@Yes$Samarakoon S.R., Thabrew I., Galhena P.B., De Silva D. and Tennekoon K.H. (2010).@A comparison of the cytotoxic potential of standardized aqueous and ethanolic extracts of a polyherbal mixture comprised of Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizome).@Pharmacognosy Res., 2(6), 335-342.@Yes$Chakravarti N. (1993).@Inhibition of histamine release from mast cells by nigellone.@Annual Allergy, 70(3), 237-242.@Yes$Shoieb A.M., Elgayyar M., Dudrick P.S., Bell J.L. and Patrica K. (2003).@In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone.@Int. J. Oncol., 22(1), 107-113.@Yes$Asfour W., Almadi S. and Haffar L. (2013).@Ethanolic extract of Nigella sativa seeds lacks the hemopreventive efficacy in the post initiation phase of DMH-induced colon cancer in a rat model.@Pharmacology & Pharmacy, 4, 222-230.@Yes$Majdalawieh A.F., Hmaidan R. and Carr R.I. (2010).@Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity.@J. Ethnopharmacol., 131(2), 268-275.@Yes$Taha R.A.M. (2004).@Egyptian, Spasmolytic and calcium antagonist activities of thymoquinone.@J. Biomed. Sci., 16, 152-167.@Yes$El Tahir K.E.H., Al-Ajmi M.F. and Al Bakairi A.M. (2003).@Some cardiovascular effects of the Dethymoquinonated Nigella sativa volatile oil and its major components α-pinene and p- cymene in rats.@Saudi Pharmaceutical J., 11(3), 104-110.@Yes$Morikawa T., Xu F., Kashima Y., Matsuda H. and Yoshikawa M. (2004).@Nigellamines A3, A4, A5 and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin.@Chemical Pharmaceutical Bullatin, 52(4), 494-97.@Yes$Zaher K.S., Ahmed W.M. and Zerizer S.N. (2008).@Observations on the biological effects of black cumin seed (Nigella sativa) and green tea (Camellia sinensis).@Global Veterinaria, 2(4), 198-204.@Yes$Toma C.C., Olah N.K., Vlase L., Mogoșan C. and Mocan A. (2015).@Comparative Studies on Polyphenolic Composition, Antioxidant and Diuretic Effects of Nigella sativa L. (Black Cumin) and Nigella damascena L. (Lady-in-a-Mist) Seeds.@Molecules, 20, 9560-9574.@Yes$Salem M.L. and Hossain M.S. (2000).@Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection.@Int. J. Immunopharmacol., 22 (9), 729-740.@Yes$Goga A., Hasić S., Bećirović S. and Ćavar S. (2012).@Phenolic Compounds and Antioxidant Activity of Extracts of Nigella sativa L.@Bulletin of the Chemists and Technologists of osnia and Herzegovina., 39, 15-19.@Yes$Salman M.T., Khan R.A. and Shukla I. (2005).@Antimicrobial activity of Nigella sativa oil Against Staphylococcus aureus obtained from clinical specimens.@In: 38th Annual Conference of Indian Pharmacological Society, Chennai, India, 28-30 Dec.@Yes$Ahmed S., Rahman S.R. and Gomes D.J. (2004).@Prevalence of multi drug resistant bacteria in diabetic wound infection population, Bangladesh.@J. Med. Sci., 10, 49-52.@Yes$Bakht H.B.M., Gomes D.J. and Huq F. (2000).@Emergence of multi-drug resistant group B streptococci infections of hospitalized neonates B.@J. Med. Sci., 6, 9-12.@Yes$Rafati S., Niakan M. and Naseri M. (2014).@Anti-microbial effect of Nigella sativa seed against staphylococcal Skin infection.@Med. J. Islam. Repub. Iran., 28, 42.@Yes$Khan M.A., Ashfaq M.K., Zuberi H.S. and Zuberi A.H. (2003).@The in vivo antifungal activity of the aqueous extract from Nigella sativa seed.@Phytother. Res., 17, 183-186.@Yes$Alqorashi A., Akhtar N. and Aljabre S. (2007).@The effect of thymoquinone and B on the growth of Aspergillus Niger.@Sci. J. King Faisal Univ., 8(1), 137-145.@No$Aljabre S.H.M., Randhawa M.A., Akhtar A., Alakloby O. M., Alqurashi A.M. and Aldossary A. (2005).@Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone.@J. Ethnopharmacol., 101, 116-119.@Yes$Aljabre S.H.M. (2005).@In vitro antifungal activity of thymoqyuinone against Scopulariopsis brevicaulis.@Arab J. Pharm. Sci., 3, 27-33.@Yes$Al-Shebani W.H. and Al-Tahan F.J. (2009).@Anti-inflammatory effect of watery suspension of Nigella sativa Linn(seeds) in mice.@Iraqi Journal of Vaterinary Science. 23, suppl. II, 245-248. Proceeding of the 5th Scientific conference, College of Veterinary medicine, University of Mosul@Yes$Al-Naqeep G., Al-Zubairi A.S., Ismail M., Amom Z.H. and Esa N. (2011).@Antiatherogenic potential of Nigella sativa seeds and oil in diet-induced hypercholesterolemia in rabbits.@Evid. Based Complement Alternat. Med., ID 213628.@Yes$Crede H.H.R. (2004).@Pharmaceutical composition containing black cumin oil, flax oil and borago oil, (S. Africa). PCI.@Int. Appl., WO2004012753 A1.@No$Aljabre S.H.M., Alakloby O.M. and Randhawa M.A. (2015).@Dermatological effects of Nigella sativa.@Journal of dermatology & dermatologic surgery, 19(2), 92-98.@Yes$Kumar P.M., Vinmathi V., Gautam P., Wilson A.H. and Jacob S.J.P. (2015).@Green Synthesis of Silver Nanorods Using Aqueous Seed Extract of Nigella Sativa and Study of its Antidiabetic Activity.@Australian Journal of Basic and Applied Sciences, 9(10), 295-298.@Yes$Amooaghaie R., Saeri M.R. and Azizi M. (2015).@Synthesis, Characterization and Biocompatibility of silver nano-particles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.@Ecotoxicology and Environmental Safety, 120, 400-408.@Yes$Fragoon A.L., Zhu J. and Zhao J. (2012).@Biosynthesis of Controllable Size and Shape Gold Nanoparticles by Black Seed (Nigella Sativa) Extract.@J. Nanosci. Nanotech., 12(3), 2337-2345.@Yes$Sangeetha J., Sandhya J. and Philip J. (2014).@Biosynthesis and Functionalization of Silver Nanoparticles Using Nigella sativa, Dioscorea alata and Ferula asafetida.@Science of Advanced Materials, 6(8), 1681-1690.@Yes$Ravindran J., Nair H.B., Sung B., Prasad S., Tekmal R.R. and Aggarwal B.B. (2010).@Thymoquinone Poly (lactide-co-glycolide) Nanoparticles Exhibit Enhanced Anti-proliferative, Anti-inflammatory and Chemosensitization Potential. Biochem.@Pharmacol., 79(11), 1640-1647.@Yes$Manju S., Malaikozhundan B., Chen J.C. and Vaseeharan B. (2014).@Essential Oil of Nigella Sativa Based Synthesis of Silver Nanoparticles and Its Effect on Pathogenic Vibrio Harveyi and Vibrio Parahaemolyticus isolated from Aquatic Environments.@J. Fish. Soc. Taiwan, 41(2), 123-134.@Yes