@Research Paper <#LINE#>Synthesis, Characterization and Antimicrobial Screening of Azo Compounds containing 4-hydroxybenzaldehyde Moiety<#LINE#>Pagariya @S.K.,Pathade@ R.M.,Bodkhe @P.S. <#LINE#>1-5<#LINE#>1.ISCA-RJCS-2016-128.pdf<#LINE#> Department of Chemistry, Vidyabharati Mahavidyalaya, Amravati-444602, Maharashtra, India@ Department of Chemistry, Vidyabharati Mahavidyalaya, Amravati-444602, Maharashtra, India@ Department of Chemistry, Vidyabharati Mahavidyalaya, Amravati-444602, Maharashtra, India<#LINE#>22/4/2016<#LINE#>24/8/2016<#LINE#>Some azo compounds (1a-e) were synthesized by simple diazotization reaction of five different substituted aromatic amines using sodium nitrite and hydrochloric acid followed by coupling with 4-hydroxybenzaldehyde in alkaline medium. Synthesized azo compounds have been confirmed by UV, IR and 1H NMR spectral data and also screened for their antibacterial activity using disc diffusion method.<#LINE#>Maynard C.W. (1983).@Dye application, manufacture of dye intermediates and dyes.@in book Riegel’s Handbook of Industrial Chemistry, 3rd ed. Van Nostard Reinhold, New York, 809-861.@Yes$Sudhir Kumar P., Ghosh G., Rout S.K. and Paul D. (2013).@Synthesis and antimicrobial evaluation of some novel 4-hydroxy coumarin derivatives bearing azo moiety.@Rasayan J.Chem., 6(2), 147-152.@Yes$Bae J.S., Freeman H.S. and El-Shafei A. (2003).@Metallization of non-genotoxic direct dyes.@Dyes and Pigments, 57(2), 121.@Yes$Sanjay F.T., Dinesh M.P., Manish P.P. and Ranjan G.P. (2007).@Synthesis and antibacterial activity of novel pyraazolo [3, 4-b] quinoline base heterocyclic azo compounds and their dyeing performance.@Saudi Pharm. Journal, 15(1), 48.@No$Child R.G., Wilkinson R.G. and Tomcu-Fucik A. (1977).@Effect of substrate orientation of the adhesion of polymer joints.@Chem. Abstr., 87, 6031.@Yes$Garg H.G. and Prakash C.J. (1972).@Preparation of 4-arylazo-3, 5-disubstituted-(2H)-1, 2, 6-thiadizine1, 1-dioxides.@Journal Med. Chem., 15(4), 435.@Yes$Koshti S.M., Sonar J.P., Sonawane A.E., Pawar Y.A., Nagle P.S., Mahulikar P.P. and More D.H. (2008).@Synthesis of azo compounds containing thymol moiety.@Indian J. Chem., 47B, 329.@Yes$Saley S. and Tilloo S. (2012).@Synthesis of some new azo compounds and their antimicrobial screening.@Int. J. Pharm.Tech., 4(3), 4600.@No <#LINE#>Algal Oil Potential as a Bio Fuel and Food Supplement<#LINE#>Pathak@Vandna,Singh@Ravindra ,Gautam@Pankaj <#LINE#>6-10<#LINE#>2.ISCA-RJCS-2016-180.pdf<#LINE#>M.G.C.G.V., Satna, MP, India@M.G.C.G.V., Satna, MP, India@M.G.C.G.V., Satna, MP, India<#LINE#>19/6/2016<#LINE#>16/8/2016<#LINE#>A total of four naturally existing alga samples were gathered from Satna –Kothi region satna (M.P.).Samples were washed with water and identified in botany lab MGCGV Satna as Spirogyra, Hydrodictyon, Oedogonium, and Pithophora. Oil was separated from the algal powdered samples. Physical parameters of algal oils for instance viscosity, density, algal oil content, pH were estimated. Total Carbohydrate concentration, Total Protein concentration, Fatty matter, Saponification no, Iodine value of algal sample were also determined. Physical parameters of algal oil fulfil all the properties mentioned in ASTM D6751, ISO 15607and EN14214- Europe. All four algal samples, Oedogonium contains maximum percentage of algal oil while Pithophora revealed minimum oil percentage. This analysis suggested that alga Oedogonium is suitable for algal biodiesel production. Total carbohydrate content of all four alga was determined by Anthrone\\\'s method and the result shows that green alga Oedogonium has maximum amount of carbohydrate while alga spirogyra has minimum amount of carbohydrate. Total protein contents of all four alga was determined by Folins Lowry method and the result shows that green alga Oedogonium has maximum amount of protein while Hydrodictyon revealed minimum amount of protein. All four algae, Oedogonium shows lowest value of Saponification number while Hydrodictyon shows maximum saponification number. Oedogonium has maximum iodine value while Hydrodictyon has minimum iodine value. All four algal species Oedogonium shows maximum flash point reading while Hydrodictyon species shows minimum flash point of algal oil. Estimation of fatty matter shows that Oedogonium has maximum percentage of free fatty matter while Hydrodictyon has minimum percentage of free fatty matter.<#LINE#>Khan Shakeel A., Hussain Rashmi, Mir Z., Prasad S. and Banerjee U.C. (2009).@Prospects of biodiesel production from microalgae in India.@Renewable and Sustainable Energy Reviews, 13, 2361-2372.@Yes$Meher L .C., Vidya S.D. and Naik S.N. (2006).@Technical aspects of biodiesel production by transesterification - a review.@Renew Sust Energy Rev, 10, 248-268.@Yes$Sudhaker K. and Premlata M. (2012).@Micro algal technology for sustainable energy production; state of the art.@Journal of sustainable energy and environment, 3, 59-62.@Yes$Huang G., Chen F., Wei D., Zheng X-W. and Chen G. (2010).@Biodiesel production by microalgal biotechnology.@Applied energy, 87, 38-46.@Yes$Bajhaiya A.K., Mandotra S.K., Suseela M.R., Toppo Kiran and Rande S. (2010).@Algal Biodisel: the next generation biofuels for India.@National Botanical Research Institute, Lucknow, India, Sciences, Asia nj. Exp.biol.sci., 1(4),728-739.@Yes$Yun Y.S., Lee S.B., Park J.M., Lee C.I. and Yang J.W. (1997).@Carbon dioxide fixation by algal cultivation using wastewater nutrients.@J. Chem. Technol. Biotechnol., 69, 451-455.@Yes$Spolaore P., Joannis Cassan C., Duran E. and Isambert (2006).@Commercial applications of microalgae.@J. Biosci. Bioeng., 101, 87-96.@Yes$Chisti Y. (2007).@Biodisel from microalgae.@Biotechnol. Advances, 25, 294-306.@Yes$Sydney E.B., da Silva T.E., Tokarski A., Novak A.C., de Carvalho J.C. and Woiciecohwski A.L. et. al. (2011).@Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage.@Appl Energy, 88, 3291-3294.@Yes$Amaro Helena M., Macedo Ângela C. and Malcata F. Xavier (2012).@Microalgae: An alternative as sustainable source of biofuels?.@Energy, 44, 158-166.@Yes$Banerjee A., Sharma R., Chisti Y and Banerjee U.C. (2002).@Botryococcus brauni: a renewable source of hydrocarbons and other chemicals.@Crit. Rev. Biotechnol., 25, 294-306.@Yes$XU Yaoyang and Boeing Wiebke J. (2014).@Modeling maximum lipid productivity of microalgae: Review and next step.@Renewable and Sustainable Energy Reviews, 32, 29-39.@Yes$Sayre R. (2010).@Microalgae: the potential for carbon capture.@BioScience, 60, 722-727.@Yes$Zamalloa C, Vulsteke E, Albrecht J and Verstraete W. (2011).@The techno-economic potential of renewable energy through the anaerobic digestion of micro-algae.@Bioresour Technol, 102, 1149-1158.@Yes$Kumar P., Suseela M.R. and Toppo K (2011).@Physico-Chemical Characterization Algal oil: a Potential Biofuel.@Asian J. Exp.biol. Sci., 2(3), 493-4971.@Yes$Hedge J.E. and Hofreiter B.T. (1962).@Carbohydrate chemistry.@17, Eds Whistler R.L. and B.E. Miller, J.N., Academic press New York.@Yes$Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. (1951).@Protein Measurement with the Folin Phenol Reagent.@J. Biol. Chem., 193, 265-275.@Yes$Hoekman S., Kent Broch A., Robbins C. and Ceniceros Natarajan E.M. (2012).@Review of Biodiesel composition, properties, and specifications.@Renewable and Sustainable Energy Reviews., 16, 143-169.@Yes$William Horowitz (1950).@Official methods of analysis of the Association of official analytical chemists.@Washington, 12th edition, 490.@Yes$Handler et. al. (2012).@Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts.@Algal research, 1(1), 83-92.@Yes <#LINE#>Comparison of the Gasification of Cashew Wood and Cashew Nut Shells Chars with CO2 and Steam<#LINE#>Ndiaye @L.G.,Diedhiou@ A.,Bensakhria@ A.,Sock@ O. <#LINE#>11-18<#LINE#>3.ISCA-RJCS-2016-188.pdf<#LINE#>Département de Physique, BP.523 Ziguinchor, Sénégal, Université Assane Seck de Ziguinchor, Ziguinchor, 523, Senegal@Département de Physique, BP.523 Ziguinchor, Sénégal, Université Assane Seck de Ziguinchor, Ziguinchor, 523, Senegal and Centre de recherche de Royallieu, EA 4297-TIMR, Université de Technologie de Compičgne, Compičgne, BP20529 – 60205, France @Centre de recherche de Royallieu, EA 4297-TIMR, Université de Technologie de Compičgne, Compičgne, BP20529 – 60205, France@Centre de recherche de Royallieu, EA 4297-TIMR, Université de Technologie de Compičgne, Compičgne, BP20529 – 60205, France<#LINE#>16/6/2016<#LINE#>22/8/2016<#LINE#>Cashew (biomass) is a fairly common plant in the tropics, while pyrolysis/gasification seems to be the best option for his recovery. Experimental gasification with carbon dioxide and steam in a fixe bed reactor studies are reported for a highly reactive South Senegal cashew wood, and cashew nut shells chars. Gasification tests were made in two atmospheres and at three different temperatures between 950°C, 1000°C, and 1050°C. The latter is done in order to investigate the effect of reactivity of these char samples. Gasification rate of carbon conversion at a given temperature is found to be dependent to the gasifying agent, suggesting the use of three models such as the volume reaction model (VRM) which is found to be the more suitable model compared to the shrinking core model (SCM) and the random pore model (RPM). The results show that in the presence of CO2 and water vapor, the activation energies of the cashew wood is greater than those obtained for cashew nut shells. However, by using an empirical function computing time of reaction, the experimental results show that the kinetic reaction of the cashew nut shells with steam and CO2 is faster compared to cashew wood; probably due to the nutshells liquid content (CNSL). In addition, results showed that char-steam reactivity is different to char-CO2 reactivity.<#LINE#>Wan Nor R.W.I., Mohamed W.M.H., Mohd A.Y. and Taufiq-yap Y.H. (2012).@A review on bio-oil production from biomass by using pyrolysis method.@Renew. Sust. Energ. Rev., 16, 5910-5923.@Yes$Rabany C., Rullier N. and Ricau P. (2015).@Analysis of cashew production, processing and trade in Africa. The African cashew sector in 2015: General trends and country profiles.@http://www.rongead.org/IMG/pdf/african_cashew _market_review_rongead_ica_2015.pdf. November 25, 2015.@No$Kentaro U., Tomoaki N. and Kunio Y. (2012).@Analysis of an updraft biomass gasifier with high temperature steam using a numerical model.@Appl. Energ., 90, 38-45.@Yes$Van de Steene L., Tagutchou J.P., Mermoud F., Martin E., and Salvador S. (2010).@A new experimental continuous fixed bed reactor to characterize wood char gasification.@Fuel, 89, 3320-3329.@Yes$Tingting L., Zhang L., Dong L. and Chun-Zhu L. (2014).@Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal.@Fuel, 117, 1190-1195.@Yes$Leteng L. and Michael S. (2013).@Investigation of the intrinsic CO2 gasification kinetics of biomass char at medium to high temperatures.@Appl Energ, 109, 220-228.@Yes$Susanna N., Alberto G.B. and Pedro O. (2013).@Gasification of char from dried sewage sludge in fluidized bed: Reaction rate in mixtures of CO2 and H2O.@Fuel, 105, 764-768.@Yes$Sansha C., Hein W.J.P.N., John R.B. and Raymond C.E. (2013).@Improved reactivity of large coal particles by K2CO3 addition during steam gasification.@Fuel Process. Technol., 114, 75-80.@Yes$Thilakavathi M., Nader M. and Pulikesi M. (2011).@Reaction kinetics and mass transfer studies of biomass char gasification with CO2.@Chem. Eng. Sci., 66, 36-41.@Yes$Jie Wang, Mingquan J., Yihong Y., Yanmei Z. and Jianqin C. (2009).@Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane.@Fuel, 88, 1572-1579.@Yes$Velmurugan A., Loganathan M. and James G.E. (2014).@Experimental investigations on combustion, performance and emission characteristics of thermal cracked cashew nut shell liquid (TC-CNSL)–diesel blends in a diesel engine.@Fuel, 132, 236-245.@Yes$Dong K.S., Sun Ki L., Min Woong K., Jungho H. and Tae-U.Y. (2010).@Gasification reactivity of biomass chars with CO2.@Biomass. Bioenerg., 34, 1946-1953.@Yes$Guizani C., Escudero S.F.J. and Salvador S. (2013).@The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2.@Fuel, 108, 812-823.@Yes$Qinglong X., Sifang K., Yangsheng L. and Hui Z. (2012).@Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.@Bioresource Technol., 110, 603-609.@Yes$Piyali D. and Anuradda G. (2003).@Bio-oil from pyrolysis of cashew nut shell- a near fuel.@Biomass and Bioenergy, 25, 113-117.@Yes$Tippayawong C.C., Promwangkwa A. and Rerkkriangkrai P. (2011).@Gasification of cashew nut shells for thermal application in local food processing factory.@Energy for Sustainable Development, 15, 69-72.@No$Li X.T. and Grace J.R. (2004).@Biomass gasification in a circulating fluidized bed.@Biomass. Bioenerg., 26, 171-193.@Yes$McKendry Peter (2002).@Energy production from biomass (part 1): overview of biomass.@Bioresource Technol., 83, 37-46.@Yes$Roberts D.G and Harris D.J. (2007).@Char gasification in mixtures of CO2 and H2O: competition and inhibition.@Fuel, 86(17–18), 2672-2678.@Yes$Erich F. and Lalit M.M. (1998).@Carbon Reinforcements and Carbon/Carbon Composites.@Technology & Engineering, 281-282.@Yes$Octave Levenspiel (1999).@Chemical Reaction Engineering.@Industrial & engineering chemistry research, Third Edition, John Wiley & Sons, New York, 566-582, ISBN. 0-471-25424-X.@Yes$Gaye Ö.Ç., Hayrettin Y. and Güniz G.A. (2007).@Physical and chemical properties of selected Turkish lignites and their pyrolysis and gasification rates determined by thermo-gravimetric analysis.@J Anal Appl. Pyrol., 80, 262-268.@Yes$Hyo J.J., Sang S.P. and Jungho H. (2014).@Co-gasification of coal–biomass blended char with CO2 at temperatures of 900–1100°C.@Fuel, 116, 465-470.@Yes$Gangil S. (2014).@Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.@Bioresource Technology, 155, 15-20.@Yes <#LINE#>Phytochemical Analysis and Antioxidant Properties of Lasianthera africana Leaves, Stems and Roots Extracts<#LINE#>Atiko@ R.,Onocha @P.A.,Oyedemi@ S.O. <#LINE#>19-26<#LINE#>4.ISCA-RJCS-2016-194.pdf<#LINE#>Department of Chemistry, Faculty of Science, Gombe State University, Gombe, Nigeria@Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria@Phytomedicine Research Centre, Botany Department, University of Fort Hare, Alice, South Africa<#LINE#>28/6/2016<#LINE#>16/8/2016<#LINE#>The study evaluated the phenolic content and antioxidant capacities of Lasianthera africana leave stem and root extractswhich is utilized for the management of oxidative stress related ailments in eastern Nigeria. The plant’s antioxidant and free radical scavenging properties was evaluated in vitro against ferric reducing agent, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), hydrogen peroxide (H2O2) and 2,2-azinobis (3-ethylbenzothiazolie-6-sulphonic acid) diammonium salt (ABTS). The total phenolic content and the total flavonoids of the extracts were determined and their related effect on the antioxidant activity was evaluated. The reducing capacity of the standard drug, butylated hydroxytoluene (BHT) was found to be lower than those of the extracts. The free radical quenching effect of the extracts against DPPH, NO, H2O2 and ABTS radicals were concentration dependent with IC50 of 0.30 ,0.29, 0.32 and 0.30 mg/mL for the leaves; 0.31,0.29,0.31 and 0.31 mg/mL for the stem; and 0.30, 0.27, 0.31 & 0.30 mg/mL for the roots respectively. The total phenolic content of the extracts were 18.21±0.1, 16.67±0.5 and 19.5±0.3mg GAE/g DW while the total flavonoids were 6.39±0.2, 6.83±0.1, 5.15±0.2mg QE/g DW for the leaves, stem and root extract respectively. Our results showed that Lasianthera africana ethanol extracts are good sources of free radical scavengers and therefore could be used in the management of oxidative disorders.<#LINE#>Halliwell B. and Gutteridge J.M.C. (2007).@Free radicals in Biology and Medicine.@Oxford University Press, Oxford, 440-61.@Yes$Martin F.L., Williamson S.J.M., Paleologon K.E., Hewitt R., El – Agnaf O.M.A. and Allsop D. (2003).@Fe(II) induced DNA damage in α –synucleintransfected human dopaminergic BE(2)-MI7 neuroblastoma cells: Detection by the Comet assay.@J. Neurochem., 87, 620-636.@Yes$Raghuveer C. and Tandon R.V. (2009).@Consumption of Functional food and health concerns.@Pak J Physiol, 5(1). Pakistan J. Physiol. 5(1): 76 – 83.@Yes$Ng F., Berck M., Dean O. and Bush A.L. (2008).@Oxydative stress in psychiatric disorder: Evidence base and therapeutic implications.@Int. J. Neuropsychopharmacol., 11(6), 851-876.@Yes$Lobo V., Patil A., Phatak A. and Chandra N. (2010).@Free radicals antioxidants and Functional foods: Impact on human health.@Pharmacognosy reviews, 4(8), 118-126.@Yes$Ebrahimzadeh M.A., Pourmorad F. and Hafezi S. (2008).@Antioxidant activities of Iranian corn silk.@Turk. J. Biol., 32, 43-49.@Yes$Patel V.R., Patel P.R. and Kajals K. (2010).@Antioxidant activity of some selected medicinal plants in western region of India.@Advances in Biological Research., 4(1), 23-26.@Yes$Oyedemi S.O., Bradley G. and Afolayan A.J. (2011).@In vitro and in vivo antioxidant activities of aqueous extract of Strychnos henningsii Gilg.@Afri. J. Pharm. Pharmacol., 4(2), 70-78.@Yes$Ponou B.K., Teponno R.B., Ricciutelli M., Quassinti L., Bramucci M., Lupidi G., Barboni L. and Tapondjou L.A. (2010).@Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorensis A.chev.@Phytochemistry, 71, 2108-2115.@Yes$Burkill H.M. (1985).@The Useful Plants of West Tropical Africa.@Edition 2, 1, Families A-D. Royal Botanic Gardens, Kew., 960.@Yes$Jiofack T., Ayissi I., Fokunang C., Guedje N. and Kemcuze V. (2009).@Ethnobotany and phytomedicine of the upper Nyong Valley Forest in Cameroon.@Afri. J. Pharm. Pharmacol., 3(4), 144-150.@Yes$Isong E.U. and Idiong U.I. (1997).@Comparative studies on the nutritional and toxic composition of three varieties of Lasianthera africana.@Plant Foods Hum. Nutr., 51, 79-84.@Yes$Ajibesin K.K., Ekpo B.J., Bala D.N., Essien E.E. and Adesanya S.A. (2008).@Ethnobotanical survey of Akwa Ibom State of Nigeria.@J. Ethnopharmacol., 115(3), 387-408.@Yes$Okokon J.E., Antia B.S. and Umoh E.E. (2009).@Antiulcerogenic activity of ethanolic leaf extract of Lasianthera africana.@Afr. J. Tradit. Complement. Altern. Med., 6(2), 150-154.@Yes$Okokon J.E., Antia B.S., Essiet G.A. and Nwidu L.L. (2007).@Evaluation of in vivo antiplasmodial activity of ethanolic extract nof Lasianthera africana.@Research J. Pharmacol., 1(2), 30-33.@No$Andy I.E., Eja M.E. and Mboro C.I. (2008).@An evaluation of the antimicrobial potency of Lasianthera Africana (BEAUV) and Heinsia crinata ( G.Taylor) on Escherichia coli, Salmonella typhi Staphylococcus aureus and Candida albicans.@Malaysian J. Microbiol., 4(1), 25-29.@Yes$Ita A.Y. (1996).@Screening of plants parts for fungicidal properties.@Trans. Nig. Soc. Bio. Conserv., 4, 26-40.@Yes$Ita B.N. (2010).@Evaluation of the role of solvents on the extractable content of total phenolics and flavonoids in Nigerian fruits /vegetables.@Nig. J. Agric. Food Environ. 6(1&2), 29-32.@Yes$Odukoya O.A., Inya-Agha S.I., Segun F.I., Sofidiya M.O. and Ilori O.O. (2007).@Antioxidant activity of selected Nigerian green leafy vegetables.@Am. J. Food Technol., 2(3), 160-175.@Yes$Mbaebie B.O., Edeoga H.O. and Afolayan A.J. (2012).@Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq.@Asian Pacific Journal of Tropical Biomedicine., 1, 118-124.@Yes$Ordonez A.A.L., Gomez J.D., Vattuone M.A. and Isla M.I. (2006).@Antioxidant activities of Sechium edule (Jacq).@Food Chem., 97, 452-458.@Yes$Kumar R.S. and Hemalatha S. (2011).@In vitro antioxidant activity of alcoholic leaf extract and subfractions of Alangium lamarckii Thwaites.@J. Chem. Pharm Res., 3(1), 259-267.@Yes$Shen Q., Zhang B., Xu R., Wang Y., Ding X. and Li P. (2010).@Antioxidant activities of Selenium-contained protein from the Se-enriched Biofidobacterium animalis 01.@Anaerobe, 16(4), 380-386.@Yes$Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C. (1999).@Antioxidant activity applying an improved ABTS radical cation decolourization assay.@Free Radic. Biol. Med., 26, 1231-1237.@Yes$Ruch R.J., Cheng S.J. and Klaunig J.E. (1989).@Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea.@Carcinogenesis, 10, 1003-1008.@Yes$Oboh G. and Rocha J.B.T. (2007).@Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some Pro-oxidants induced lipid peroxidation in brain and liver.@Eur. Food Res. Technol., 225(2), 239-247.@Yes$Makkar H.P.S., Sidhuraju P. and Becker K. (2002).@Plants secondary metabolites.@Humana Press Inc., New Jersey, 248-253.@Yes$Okuda T. (2005).@Systematics and health effects of chemically distinct tannins in medicinal plants.@Phytochemistry, 66(17), 2012-2031.@Yes$Dhalwal K., Deshpande Y.S. and Purohit A.P. (2007).@Evaluation of In Vitro antioxidant activity of Sida rhombifolia (L.) ssp. retusa (L).@J. Med. Food, 10(4), 683-688.@Yes$Devi G.K., Manivanna K., Thirumaran G., Rajathi F.A.A. and Anantharama P. (2011).@In vitro antioxidant activities of selected seaweed for southeast coast of India.@Asian Pacific J. Trop. Med., 205-211.@Yes$Gates P.E. and Strain W.D. et. al. (2008).@Human endothelial function and microvascular aging.@Exp. Physiol., 94, 311-316.@Yes$Gülcin I. (2006).@Antioxidant and antiradical activities of L-carnitine.@Life Sciences, 78(8), 803-811.@Yes$Mathew S. and Abraham T.E. (2006).@In vitro antioxidant activities and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies.@J. Food Chem. Toxicol., 44, 198-206.@Yes$Wang M., Li J., Rangarajan M., Shao Y., La Voie E.J., Huang T. and Ho. C. (1998).@Antioxidative phenolic compounds from sage (Salvia officinalis).@J. Agric. Food Chem., 46, 4869-4873.@Yes <#LINE#>Comparative study on Phytoplankton Distribution and Bioaccumulation of Heavy Metals in Microspora sp. of Chromite Contaminated Damsal nala of Sukinda Valley, Odisha, India<#LINE#>Koushik@ Dutta,Ghosh@Apurba Ratan <#LINE#>27-35<#LINE#>5.ISCA-RJCS-2016-199.pdf<#LINE#>Department of Environmental Science, Sambhu Nath College, Labpur, Birbhum, W.B., India@epartment of Environmental Science, The University of Burdwan, Burdwan, W.B., India<#LINE#>12/7/2016<#LINE#>16/8/2016<#LINE#>Damsal nala of Sukinda Valley of Odisha is accumulating drainage water coming from adjacent different chromite mines. A comparative study on seasonal distribution of phytoplankton community and heavy metals’ bioaccumulation in Microspora sp. of Damsal nala was carried out during the year 2009 - \'10, \'10 - \'11 and \'11 - \'12 in the present study. A total number of 8 species of phytoplankton was recorded from Damsal nala in the upstream region including six species of green algae (Chlorophyceae), one species of Bacillariophyceae and one of blue green algae (Cyanophyceae), whereas only three species belonging to a single family of Chlorophyceae were recorded from downstream region of Damsal nala. The abundance of phytoplankton community was found in the order of Microspora sp. > Zygnema sp. > Oscillatoria sp. > Spirogyra sp. > Navicula sp. > Ulothrix sp. > Mougeotia sp. > Oedogonium sp. and Microspora sp. > Oedogonium sp. > Mougeotia sp. in the upstream and downstream regions respectively. The concentration of three heavy metals, like total chromium, lead and cadmium in Microspora sp. of upstream region of Damsal nala ranged from 0.24 to 0.79 g kg-1, 0.033 to 0.047 g kg-1 and 3.00 to 4.66 mg kg-1 respectively during the entire period of study. But the concentration of heavy metals in Microspora sp. collected from downstream region of Damsal nala ranged from 30.11 to 36.11 g kg-1, 0.047 to 0.063 g kg-1 and 6.93 to 7.66 mg kg-1 for total chromium, lead and cadmium respectively during the study. The degree of heavy metal accumulation in Microspora sp. was found in the order of Cr > Pb > Cd and Cr >> Pb > Cd in the upstream and downstream regions of Damsal nala respectively. Microspora sp. can be used as phytoremediator due to its property of accumulation of high amount of chromium and lead and could be used as a natural filter media for the removal of these metals.<#LINE#>Barreiro E., Real C. and Carballeira A. (1993).@Heavy-metal accumulation by Fucus ceranoides in a small estuary in North-West Spain.@Marine Environmental Research, 27, 789-814.@Yes$Jouany J.M., Vasseur P. and Ferard J.F. (1982).@Ecotoxicite directe et integree du chrome hexavalent sur deux niveaux trophiques associes: Chlorella vulgaris et Daphnia magna.@Environmental Pollution Series A, Ecological and Biological, 27(3), 207-221.@Yes$Mangi J., Schmidt K., Pankow J., Gaines L. and Turner P. (1978).@Effects of chromium on some aquatic plants.@Environmental Pollution, 16, 285-291.@Yes$Pande K.S. and Sharma S.D. (1999).@Distribution of organic matter and toxic metals in the sediments of Ramganga river at Moradabad, India.@Pollution research, 18(1), 43-47.@Yes$Dutta K. and Ghosh A.R. (2011).@Physicochemical analysis of waste water coming from different chromite mines in Sukinda Valley Region, Odisha and its management.@Proceedings of the 2nd International Conference on Sustainable Waste Management, ISWMAW, Kolkata, 355-358.@No$Dutta K. and Ghosh A.R. (2012).@Comparative study of physicochemical parameters and heavy metals of some groundwater sources from Sukinda Valley Region in Odisha.@The Ecoscan, 1, 155-160.@Yes$Dutta K. and Ghosh A.R. (2013).@Limnological status and bioconcentration of some heavy metals in Damsal Nala of Sukinda Valley Region in Odisha and consequent histopathological lesions observed in liver and kidney of air-breathing fish Channa sp.@The Ecoscan, 3, 191-197.@Yes$Dutta K. and Ghosh A.R. (2013).@Comparative study on limnological parameters and bioconcentrations of heavy metals in an air-breathing carnivorous teleostean fish, Gaducia ap. of the upstream and downstream regions of Damsal Nala in Sukinda Valley Region, Odisha.@International Journal of Environmental Sciences, 3(6), 1831-1840.@Yes$Dutta K. and Ghosh A.R. (2013).@Analysis of physico-chemical characteristics and metals in water sources of chromite mining in Sukinda Valley, Odisha, India.@JEB, 34(4), 783-788.@Yes$Dutta K. (2015).@Chromite Mining: Disbalancing the Aquatic Environment of Sukinda Valley.@Res. J. of Recent. Sci., International Science Congress Association, Indore, (India), 4(IYSC-2015), 80-93.@Yes$Dutta K. and Ghosh A.R. (2015).@Chromite Mining: Poisoning the Environment of Sukinda Valley – A Critical Review.@Minenvis, Centre of Mining Environment, ISM, Dhanbad, (India), No.87, 1-3.@No$Gonzalves E.A. and Joshi B.D. (1946).@Fresh water algae near Bombay I. The seasonal succession of the algae in a tank at Bandra.@Journal of the Bombay Natural History Society, 46(1), 154-176.@Yes$Tonapi G.T. (1980).@Fresh Water Animals of India-An Ecological Approach.@Oxford and I.B.M. Publishing Company, New Delhi.@Yes$Utermöhl H. (1931).@Neue Wege in der quantitativen Erfassung des Planktons.@Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 5, 567-596.@Yes$Mondal B.C., Das D. and Das A.K. (2002).@Preconcentration and separation of copper, zinc and cadmium by the use of 6-mercapto purinylazo resin and their application in microwave digested certified biological samples followed by AAS determination of the metal ions.@Journal of Trace Elements in Medicine and Biology, 16(3), 145-148.@Yes$Barman S.C., Sahu R.K., Bhargava S.K. and Chatterjee C. (2000).@Distribution of heavy metals in wheat, mustard and weed grown in fields irrigated with industrial effluents.@Bulletin of Environmental Contamination and Toxicology, 64, 489-496.@Yes$Sutherland R.A. (2000).@Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii.@Environmental Geology, 39, 611-637.@Yes$Das M. and Panda T. (2010).@Water quality and phytoplankton population in sewage fed river of Mahanadi, Orissa, India.@Journal of Life Science, 2(2), 81-85.@Yes$Senapati T., Ghosh S. and Mandal T. (2011).@Variation in phytoplankton diversity and its relation with physicochemical parameters of a semi lentic water body of Golapbag, West Bengal, India.@International Journal of Current Research, 3(7), 53-55.@Yes$Banerjee R. (2013).@Hydrobiological status, thematic zonations and ecomonitoring of the river Damodar from Barakar to Burdwan, West Bengal, India.@Ph.D. Thesis, The University of Burdwan, Burdwan, West Bengal, India.@Yes$Phelps D.K., Telek G. and Lapan R.L. Jr. (1975).@Assessment of heavy metal distribution within the food web.@Marine Pollution and Marine Waste Disposal, Pearson, E.A. and Frangipane, E.D. (Eds.), Pergamon Press, New York, 341-348.@Yes$Bernhard M. and Zattera A. (1975).@Major pollutants in the marine environment.@Marine Pollution and Marine Waste Disposal, Pearson, E.A. and Frangipane, E.D. (Eds.), Pergamon Press, New York, 195-300.@Yes$Rai U.N., Tripathi R.D. and Kumar N. (1992).@Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein content in chlorococealear green alga, glaucocystis, nostochinearum itzigsohn.@Chromosphere, 25, 721-732.@Yes$Dutta K. and Ghosh A.R. (2016).@Comparative study on bioaccumulation and translocation of heavy metals in some native plant species along the bank of chromite contaminated Damsal nala of Sukinda Valley, Odisha, India.@Int. Res. J. Biological Sci., International Science Community Association, Indore, (India), 5(7), 32-52.@No <#LINE#>Copolymer Modified Electrode with Hydroxyl and Amino Derivatives of Anthraquinones for Oxygen Reduction<#LINE#> Jothi Grace@G. Amala,Gomathi@A.,Vedhi@C. <#LINE#>36-42<#LINE#>6.ISCA-RJCS-2016-201.pdf<#LINE#>Manonmaniam Sundranar University, Tirunelveli, India and Department of Chemistry, Chandy College of Engineering, Thoothukudi, India@Department of Chemistry, Sri K.G.S Arts and Science College, Srivaikuntam, India@Department of Chemistry, V.O.Chidambaram College, Thoothukudi, India<#LINE#>21/7/2016<#LINE#>26/8/2016<#LINE#>The electrochemical characterisation of poly (3-methylthiophene-co-3,4-ethylenedioxythiophene) modified glassy carbon electrode with hydroxyl and amino derivatives of anthraquinones were determined. The consequence of pH on the electrochemical behaviour and stable behaviour towards the modified poly(3-methylthiophene-co-3,4-ethylenedioxythiophene) were investigated. Using chronoamperometric and chronocoulometric techniques, the diffusion coefficient values and the number of electrons were calculated. Excellent electrocatalytic response was given by hydroxyl and amino derivatives of anthraquinones combined with the copolymer poly(3-methylthiophene-co-3,4-ethylenedioxythiophene) for oxygen reduction. The glassy carbon electrode coated with the copolymer was described using Scanning electron microscope.<#LINE#>Gonzalez-Cruz R. and Solorza-Feria O. (2003).@Oxygen reduction in acid media by a RuxFeySez (CO)n cluster Catalyst dispersed on a glassy carbon-supported Nafion film.@J. Solid State Electrochem, 7(5), 289-295, http://dx.doi.org/10.1007%2Fs10008-003-0353-4.@Yes$Mao L., Zhang D., Sotomura T., Nakatsu K., Koshiba N. and Ohsaka T. (2003).@Mechanistic study of the Reduction of oxygen in air electrode with manganese oxides as electrocatalysts.@Electrochim. Acta, 48(8), 1015, 10.1016/S0013-4686(02)00815-0.@Yes$Vukmirovic M.B., Vasiljevic N., Dimitrov N. and Sieradzki K. (2003).@Diffusion-Limited Current Density of Oxygen Reduction on Copper.@J. Electrochem. Soc, 150(1), B10-B-15,10.1149/1.1526554.@Yes$Chithra R. and Renuka R. (2003).@Electroreduction of Oxygen on mercury in the presence of titanium silicalite, TS-1.@J. Appl. Electrochem, 33(5), 443-446, 10.1023/A:1024497227388.@Yes$Peressini S., Tavagnacco C., Costa G. and Amatore C. (2002).@Electrochemical reduction of dioxygen in the presence of 4,6-dimethyl-2-thiopyrimidine in DMF.@J. Electroanal. Chem, 532(1-2), 295-302, http://dx.doi.org/10.1016/S0022-0728(02)00838-0.@Yes$Ramirez G., Trollund E., Issacs M., Armijo F., Zagal J., Costamagna J. and Aguirre M.J. (2002).@Electroreduction of Molecular Oxygen on Poly-Iron-Tetraaminophthalocyanine Modified Electrodes.@Electroanalysis, 14 (7-8), 540-545, 10.1002/1521-4109(200204)14:7/8<540::AID-ELAN540>3.0.CO;2-3.@Yes$Lin A.S. and Huang J.C. (2003).@Oxygen reduction on Nafion-bound unpyrolyzed metal macrocyclic complexes.@J. Electroanal. Chem, 541, 147-151, http://dx.doi.org/10.1016/S0022-0728(02)01426-2.@Yes$Zhang Y., Asahina S., Yoshihara S. and Shirakashi T. (2003).@Oxygen reduction on Au nanoparticle deposited boron-doped diamond films.@Electrochim. Acta, 48(6), 741-747, http://dx.doi.org/10.1016/S0013-4686(02)00743-0.@Yes$Manisankar P., Pushpalatha A.M., Vasanthkumar S., Gomathi A. and Viswanathan S. (2004).@Riboflavin as an electron mediator catalyzing the electrochemical reduction of dioxygen with 1,4-naphthoquinones.@J. Electroanal. Chem, 571(1), 43-50, http://dx.doi.org/10.1016/j.jelechem .2004.04.011.@Yes$Golabi S.M. and Raoof J.B. (1996).@Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of it derivatives.@J. Electroanal. Chem, 416(1-2), 75-82, http://dx.doi.org/10.1016/S0022-0728(96)04728-6.@Yes$Sarapuu A., Vaik K., Schiffrin D.J. and Tammeveski K. (2003).@Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solutions.@J. Electroanal. Chem, 541, 23-29, 10.1016/S0022-0728(02)01311-6.@Yes$Tammeveski K., Kontturi K., Nichols R.J., Potter R.J. and Schiffrin D.J. (2001).@Surface redox catalysis for O2 reduction on quinine-modified glassy carbon electrodes.@J. Electroanal. Chem, 515 (1-2), 101-112, http://dx.doi.org/ 10.1016/S0022-0728(01)00633-7.@Yes$Salimi A., Mousavi M.F., Sharghi H. and Shamsipur M. (1999).@Electrocatalysis of O2 Reduction at Glassy Carbon Electrodes Modified with Adsorbed 1,4-Dihydroxy-9,10-anthraquinone Derivatives.@Bull. Chem. Soc. Jpn, 72(9), 2121-2127, http://doi.org/10.1246/bcsj.72.2121.@Yes$Salimi A., Eshghi H., Sharghi H., Golabi S.M. and Shamsipur M. (1999).@Electrocatalytic Reduction of Dioxygen at the Surface of Glassy Carbon Electrodes Modified by Some Anthraquinone Substituted Podands.@Electroanalysis, 11(2), 114-119, 10.1002/(SICI)1521-4109(199902)11:2<114::AID-ELAN114>3.0.CO;2-F.@Yes$Manisankar P., Gomathi A. and Velayutham D. (2005).@Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes.@J. Solid State Electrochem, 9(9), 601-608, 10.1007/s10008-004-0610-1.@Yes$Manisankar P. and Gomathi A. (2005).@Electrocatalytic Reduction of Dioxygen on 9,10-Anthraquinones Incorporated Clay-Modified Glassy Carbon Electrodes.@Bull. Chem. Soc. Jpn, 78(10), 1783-1790, 10.1246/bcsj.78.1783.@Yes$Manisankar P. and Gomathi A. (2005).@Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions.@Journal of Molecular Catalysis, 232(1), 45-52, 10.1016/j.molcata.2005.01.001.@Yes$Manisankar P. and Gomathi A. (2005).@Electrocatalytic Reduction of Dioxygen at the Surface of Carbon Paste Electroes Modified with 9,10-Anthraquinone Derivatives and Dyes.@Electroanalysis, 17(12), 1051-1057, 10.1002/elan.200403213.@Yes$Shi C. and Anson F.C. (1990).@Catalytic Pathways for the Electroreduction of O2 by Iron Tetrakis(4-N-methylpyridyl)Porphyrin or Iron Tetraphenylporphyrin Adsorbed on Edge Plane Pyrolytic Graphite Electrodes.@Inorg. Chem., 29, 4298-4305, 10.1021/ic00346a027.@Yes$Collman J.P., Denisevich P., Konai Y., Marrocco M., Koval C. and Anson F.C. (1980).@Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins.@J. Am. Chem. Soc., 102(19), 6027-6036, 10.1021/ja00539a009.@Yes$Zecevic S., Simic-Glavaski P., Yeagar E., Lever A.B.P. and Minor P.C. (1985).@Spectroscopic and electrochemical studies of transition metal tetrasulfonated phthalocyanines: Part V Voltammetric studies of adsorbed tetrasulfonated phthalocyanines (MTsPc) in aqueous solutions.@J. Electroanal. Chem, 196, 339-358, http://dx.doi.org/10.1016 /0022-0728(85)80032-2.@Yes$Zhang J.J. and Anson F.C. (1993).@Electrocatalysis for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand.@Electrochim. Acta., 38(16), 2423-2429, http://dx.doi.org/10.1016/0013-4686(93)85111-B.@Yes$Zhang J.J. and Anson F.C. (1993).@Coordination of Fe(III)-Electrodes to produce electrocatalysts for the reduction of O2 and H2O2 (By Alizarin complexone Adsorbed on Graphite).@J. Electroanal. Chem, 353(1-2), 265-280,10.1016/0022-0728(93)8030-y.@Yes <#LINE#>Electrochemical Synthesis, Characterization and Evaluation of Antioxidant Activity of Copper Oxide Nanoparticles<#LINE#>Shelke @P.D.,Rajbhoj @A.S.,Nimase @M.S.,Takate @S.J.,Zaware B@.H.,Jadhav @S.S <#LINE#>43-48<#LINE#>7.ISCA-RJCS-2016-202.pdf<#LINE#>P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India and Department of Chemistry, Dr. Babasaheb Ambedakar Marathwada University, Aurangabad, India@Department of Chemistry, Dr. Babasaheb Ambedakar Marathwada University, Aurangabad, India@P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India@P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India@P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India@P.G. Department of chemistry, New Arts, Commerce and Science College Ahmednagar, Affiliated to S. P. Pune University, India<#LINE#>22/7/2016<#LINE#>13/8/2016<#LINE#>In the present work, straw like copper oxide nanostructure were successfully prepared by electrochemical reduction method by applying constant current density. The tetraethylammonium bromide used as surfactant in an aqueous medium. The various parameter such as concentration of surfactant, current density, electrolysis time and separation distance between the electrodes were used for monitoring nanoparticles size and to prevent agglomeration. The characterization of synthesized nanoparticles was done by using analytical techniques like XRD, SEM, EDX, HRTEM and XPS. The synthesized CuO NPs were studied spectrophotometrically for their antioxidant potential using modified DPPH assay. These nanoparticles exhibited pronounced antioxidant activity.<#LINE#>Saikia J.P., Paul S., Konwar B.K. and Samdarshi S.K. (2010).@Ultrasonication: Enhances the antioxidant activity of metal oxide nanoparticles.@Colloids Surf. B: Biointerfaces, 79(2), 521-523. doi: 10.1016/j.colsurfb. 2010.04.022.@Yes$Das D., Nath B.C., Phukon P. and Dolui S.K. (2013).@Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles.@Colloids Surf B: Biointerfaces, 101, 430-433. doi: 10.1016/j.colsurfb. 2012.07.002@Yes$Purkayastha D.D., Das N. and Bhattacharjee C.R. (2014).@Synthesis and antioxidant activity of cupric oxide nanoparticles accessed via low-temperature solid state thermal decomposition of bis(dimetylglyoximato)copper(II) complex.@Mater. Lett., 123, 206-209. doi: 10.1016/j.matlet.2014.02.097@Yes$Chen S.J., Chen X.T., Xue Z.L., Li L.H. and You X.Z. (2002).@Solvothermal preparation of Cu2O crystalline particles.@J. Crys. Growth, 246(1-2), 169-175, doi: 10.1016/S0022-0248(02)01902-4.@Yes$Tang X.L., Ren L., Sun L. N., Tian W.G., Cao M.H. and Hu C.W. (2006).@A Solvothermal Route to Cu2O Nanocubes and Cu Nanoparticles.@Chem. Res. Chinese U., 22(5), 547-551, doi: 10.1016/S1005-9040(06)60159-1.@Yes$Wang H., Xu J.Z., Zhu J.J. and Chen H.Y. (2002).@Preparation of CuO nanoparticles by microwave irradiation.@J. Crys. Growth, 244(1), 88-94, doi: 10.1016/S0022-0248(02)01571-3.@Yes$Wang Z.M. and Lin Y.S. (1998).@Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles.@J. Catal., 174(1), 43-51, doi: 10.1006/jcat.1997.1913.@Yes$Manmeet K., Muthea K.P., Despandeb S.K., Choudhury S., Singhd J.B., Verma N., Gupta S.K. and Yakhmi J.V. (2006).@Growth and branching of CuO nanowires by thermal oxidation of copper.@J. Cry. Growth, 289(2), 670-675, doi: 10.1016/j.jcrysgro.2005.11.111.@Yes$Chen Z.Z., Shi E.W., Zheng Y.Q., Li W.J., Xiao B. and Zhuang J.Y. (2003).@Growth of hex-pod-like Cu2O whisker under hydrothermal conditions.@J. Crys. Growth, 249(1-2), 294-300, doi: 10.1016/S0022-0248(02)02154-1@Yes$Yamukyan M.H., Manukyan K.V. and Kharatyan S.L. (2008).@Copper oxide reduction by combined reducers under the combustion mode.@Chemical Engineering Journal, 137(3), 636-642, doi: 10.1016/j.cej.2007.05.033.@Yes$Yu L., Zhang G., Wu X., Bai X. and Guo D. (2008).@Cupric oxide nanoflowers synthesized with a simple solution route and their field emission.@J. Crys. Growth, 310(12), 3125-3130, doi: 10.1016/j.jcrysgro.2008.03.026.@Yes$Zheng S.F., Hu J.S., Zhong L.S., Song W.G., Wan L.J. and Guo Y.G. (2008).@Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries.@Chem. Mater., 20(11), 3617-3622, doi: 10.1021/cm7033855.@Yes$Zhu J., Li D., Chen H., Yang X., Lu L. and Wang X. (2004).@Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method.@Mater. Lett., 58(26), 3324-3327, doi: 10.1016/j.matlet.2004.06.0310.@Yes$Rujun W., Zhenye M., Zhenggui G. and Yan Y. (2010).@Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC-water mixed solvent.@J. Alloys and Compounds, 504(1), 45-49, doi: 10.1016/j.jallcom.2010.05.062.@Yes$Xu X., Zhang M., Feng J. and Zhang M. (2008).@Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid.@Mater. Lett., 62(17-18), 2787-2790, doi: 10.1016/j.matlet.2008.01.046.@Yes$Liu Y., Chu Y., Li M., Li L. and Dong L. (2006).@In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process.@J. Mater. Chem., 16,192-198. doi: 10.1039/B512481F.@Yes$Vaseem M., Umar A., Hahn Y.B., Kim D.H., Lee K.S., Jang J.S. and Lee J.S. (2008).@Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies.@Catalysis Commun., 10(1), 11-16, doi: 10.1016/j.catcom.2008.07.022.@Yes$Volanti D.P., Keyson D., Cavalcante L.S., Simőes A.Z., Joya M.R., Longo E., Varela J.A., Pizani P.S. and Souza A. G. (2008).@Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave.@J. Alloys Compd., 459(1-2), 537-542, doi: 10.1016/j.jallcom.2007.05.023.@Yes$Vaseem M., Umar A., Kim S.H., Al-Hajry A. and Hahn Y. B. (2008).@Growth and structural properties of CuO urchin-like and sheet-like structures prepared by simple solution process.@Mater. Lett., 62(10-11), 1659-1662, doi: 10.1016/j.matlet.2007.09.054.@Yes$Keyson D., Volanti D.P., Cavalcante L.S., Simőes A.Z., Varela J.A. and Longo E. (2008).@CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method.@Mater. Res. Bull., 43(3), 771-775, doi: 10.1016/j.materresbull.2007.03.019.@Yes$Zhang H. and Zhang M. (2008).@Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors.@Mater. Chem. Phys., 108(2-3), 184-187. doi: 10.1016/j.matchemphys.2007.10.005.@Yes$Qu Y., Li X., Chen G., Zhang H. and Chen Y. (2008).@Synthesis of Cu2O nano-whiskers by a novel wet-chemical route.@Mater. Lett., 62(6-7), 886-888, doi: 10.1016/j.matlet.2007.07.004.@Yes$Yao W.T., Yu S.H., Zhou Y., Jiang J., Wu Q. S., Zhang L. and Jiang J. (2005).@Formation of Uniform CuO Nanorods by Spontaneous Aggregation:  Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process.@J. Phys. Chem. B., 109(29), 14011-14016, doi: 10.1021/jp0517605.@Yes$Su Y.K., Shen C.M., Yang H.T., Li H.L. and Gao H. (2007).@Controlled synthesis of highly ordered CuO nanowire arrays by template based sol-gel route.@J. Trans. Nonferrous Met. Soc. China., 17(4), 783-786, doi: 10.1016/S1003-6326(07)60174-5.@Yes$Chen J.T., Zhang F., Wang J., Zhang G.A., Miao B.B., Fan X.Y., Yan D. and Yan P.X. (2008).@CuO nanowires synthesized by thermal oxidation route.@J. Alloys and Compds., 454(1-2), 268-273, doi: 10.1016/j.jallcom.2006.12.032.@Yes$Zhu C.L., Chen C.N., Hao L.Y., Hu Y. and Chen Z.Y. (2004).@Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon.@J. Cry. Growth, 263(1-4), 473-479.@Yes$Gou X., Wang G., Yang J., Park J. and Wexler D. (2008).@Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons.@J. Mater. Chem., 18,965-969, doi: 10.1039/B716745H.@Yes$Azam A., Ahmed A.S., Oves M., Khan M.S. and Memic A. (2012).@Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and gram negative bacterial strains.@Int J. Nanomedicine, 7, 3527-3535, doi: 10/2147/IJNs29020.@Yes$Kim Y.S., Hwang I.S., Kim S.J., Lee C.Y. and Lee J.H. (2008).@CuO nanowire gas sensors for air quality control in automotive cabin.@Sensors Actuators B., 135(1), 298-303, doi: 10.1016/j.snb.2008.08.026.@Yes$Umar A., Rahman M.M., Al-Hajry A. and Hahn Y.B. (2009).@Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets.@Electrochem. Commun., 11(2), 278-281, doi: 10.1016/j.elecom.2008.11.027.@Yes$Jianliang C.Y., Tianyi W., Liu M.Y. and Zhongyong Y. (2011).@Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation.@J. Nat. Gas Chem., 20(6), 669-676, doi: 10.1016/S1003-9953(10)60238-1.@Yes$Yang S., Wang C., Chen L. and Chen S. (2010).@Facile dicyandiamide-mediated fabrication of well-defined CuO hollow microspheres and their catalytic application.@Mater. Chem. Phys., 120(2-3), 296-301, doi: 10.1016/j.matchemphys.2009.11.005.@Yes$Yip S.K. and Sauls J.A. (1992).@Nonlinear Meissner effect in CuO superconductors.@Phys. Rev. Lett., 69, 2264-2267. doi: 10.1103/PhysRevLett.69.2264.@Yes$Bohr R.H., Chun S.Y., Dau C.W., Tan J.T. and Sung J. (2009).@Field emission studies of amorphous carbon deposited on copper nanowires grown by cathodic arc plasma deposition.@New Carbon Mater., 24(2), 97-101, doi: 10.1016/S1872- 5805(08)60040-2.@Yes$Reetz M.T. and Helbig W. (1994).@Size-Selective Synthesis of Nanostructured Transition Metal Clusters.@J. Am. Chem. Soc., 116, 7401-7402, doi:10.1021 /ja00095a051.@Yes$Serpen A., Capuano E., Fogliano V. and Gokmen V. (2007).@A New Procedure To Measure the Antioxidant Activity of Insoluble Food Component.@J. Agric Food Chem., 55, 7676-7681, doi: 10.1021/jf071291z.@Yes$Cullity B.D. (1978).@Elements of X-ray Powder Diffraction.@Addison-Wesley, Publishing company New York, 350-368. ISBN: 0-201-01174-3.@Yes <#LINE#>Sorption Mechanism of Metal Ions Uptake from Aqueous Medium by Chemically Modified Red Onion (Allium Cepa) Skin Extract<#LINE#>Ibezim-Ezeani @M.U.,Okon @A.F. <#LINE#>49-54<#LINE#>8.ISCA-RJCS-2016-204.pdf<#LINE#>Department of Pure and Industrial Chemistry, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt, Nigeria@Department of Pure and Industrial Chemistry, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt, Nigeria<#LINE#>26/7/2016<#LINE#>16/8/2016<#LINE#>The chemical modification of the polyhydroxylic extract of red onion skin to yield carboxylated-epichlorohydrin red onion skin extract resin (CERR) and its sorption behavior in the uptake of Mn2+, Fe2+ and Pb2+ ions from aqueous medium was investigated. Metal ion uptake was evaluated at different particle sizes (≈ 63 to 500 µm), periods of agitation (2 to 60 mins) and temperatures (29 to 70°C) with 50 mg/L metal ion solution. The optimal particle size was found to be ≈150 µm, while the percentage exchange for the metal ions was in sequence (Mn2+ > Fe2+ > Pb2+) which is consistent with their ionic radii. The percentage metal ion uptake increased with time, and reached equilibrium at 86.69 % (Mn2+) from 35mins; 77.01 % (Fe2+) and 66.34 % (Pb2+) from 40mins. The percentage metal ion exchange reduced with temperature increase in the range of 29 to 70°C, suggesting better performance with CERR at 29°C. Examination of the mechanism of uptake of metal ions using CERR was conducted with Dubinin-Radushkevich isotherm model. Computed values of mean free energy are 8.500, 8.181 and 8.248 kJ/mol for Mn2+, Fe2+ and Pb2+ ions respectively, which corresponds to ion exchange as the dominant mechanism.<#LINE#>National Onion Association (2016).@Onions – Phytochemical and Health Properties.@file:///C:/Users/Dr /Documents/phytochemical_brochure.pdf assessed 4th July, 2016.@No$Gümrükçü G. and Özgür M.U. (2011).@Effect of Tannic Acid and Metal Salts on Dyeing of Woolen Fabrics with Red Onion (Allium cepa L.).@Asian J. Chem., 23(4), 1459-1466.@Yes$Hussein I. and Elhassaneen Y. (2013).@Protection of Humans from Ultraviolet Radiation (UVR) Through the Use of Cotton Clothes Dyed with Aqueous Extracts of Onion Skin as the Natural Colorant.@J. American Sci., 9(8), 16-24.@No$Nnaji N.J.N., Okoye C.O.B., Obi-Egbedi N.O., Ezeokonkwo M.A. and Ani J.U. (2013).@Spectroscopic Characterization of Red Onion Skin Tannin and its Use as Alternative Aluminium Corrosion Inhibitor in Hydrochloric Acid Solutions.@Int. J. Electrochem. Sci., 8, 1735-1758.@Yes$Sun R. (2010).@Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose.@1st ed., Elsevier Publication, UK, 233, ISBN: 978-0-444-53234-3.@Yes$Lou Z., Zhao Z., Li Y., Shan W., Xiong Y., Fang D., Yue S. and Zang S. (2013).@Contribution of Tertiary Amino Groups to Re (VII) Biosorption on Modified Corn Stalk: Competitiveness and Regularity.@Bioresource Technol., 133, 546-554.@Yes$Ding Z., Hu X., Zimmerman A. R. and Gao B. (2014).@Sorption and Cosorption of Lead (II) and Methylene Blue on Chemically Modified Biomass.@Bioresource Technol., 167, 569-573.@Yes$Singha A.S. and Guleria A. (2014).@Chemical Modification of Cellulosic Biopolymer and its Use in Removal of Heavy Metal from Wastewater.@Int. J. Biological Macromolecules, 67, 409-417.@Yes$Bhatnagar A. and Minocha A.K. (2006).@Conventional and Non-Conventional Adsorbents for Removal of Pollutants from Water – A Review.@Indian J. Chemical Technol., 13, 203-217.@Yes$Neher D.A., Asmussen D. and Lovell S.T. (2013).@Roads in Northern Hardwood Forests Affect Adjacent Plant Communities and Soil Chemistry in Proportion to the Maintained Roadside Area.@Sci. Total Environment, 449, 320-327.@Yes$Madarász D., Szenti I., Sápi A., Halász J., Kukovecz Á. and Kónya K. (2014).@Exploiting the Ion-Exchange of Titanate Nanotubes in a Model Water Softening Process.@Chemical Phys. Letters, 591, 161-165.@Yes$Demim S., Drouiche N., Aouabed A., Benayad T., Couderchet M. and Semsari S. (2014).@Study of Heavy Metal Removal from Heavy Metal Mixture using the CCD Method.@J. Ind. Eng. Chem., 20, 512-520.@Yes$Inyang M., Gao B., Zimmerman A., Zhang M. and Chen H. (2014).@Synthesis, Characterization, and Dye Sorption Ability of Carbon Nanotube-Biochar Nanocomposites.@Chemical Eng. J., 236, 39-46.@Yes$Ibezim-Ezeani M.U., Okoye F.A. and Akaranta O. (2012).@Equilibrium Studies of Some Metal Ions onto Modified Orange Mesocarp Extract in Aqueous Solution.@American Chemical Sci. J., 2(1), 25-37.@Yes$Ibezim-Ezeani M.U. and Anusie A.C.I. (2010).@Effect of Ionic Charge on the Adsorption of Sodium-Palmitate and Sodium-Laurate onto Galena, Hematite and Cassiterite in Aqueous Solution.@E-J. Chem., 7(4), 1491-1497.@Yes$Le J.D. (1996).@Concise Inorganic Chemistry.@5th ed., Blackwell Science Ltd, New York, 426-763, ISBN: 978-0-632-05459-6.@Yes$Kong W., Ren J., Wang S. and Chen Q. (2014).@Removal of Heavy Metals from Aqueous Solutions using Acrylic-Modified Sugarcane Bagasse-Based Adsorbents: Equilibrium and Kinetic Studies.@BioResources, 9, 3184-3196.@Yes$Alexandratos S.D. (2009).@Ion exchange Resin: A Retrospective from Industrial and Engineering Chemistry Research.@Ind. Eng. Chem. Res., 48, 388-398.@Yes$Fu F. and Wang Q. (2011).@Removal of Heavy Metal ions from Wastewaters: A Review.@J. Environ. Manag., 92, 407-418.@Yes$OuYang X., Yang L. and Wen Z. (2014).@Adsorption of Pb (II) from Solution using Peanut Shell as Biosorbent in the Presence of Amino Acid and Sodium Chloride.@BioResources, 9(2), 2446-2458.@Yes$Achadu O.J., Ayejuyo O.O., Ako F.E., Dalla C.L. and Olaoye O.O. (2014).@Synchronous Adsorption of Cadmium and Lead Ions from Aqueous Media by Rice Husk Ash and Sodium Dodecyl Sulfate Combination.@Int. J. Modern Analytical Separation Sci., 3(1), 20-39.@No$Ho Y.S., Porter J.F. and Mckay G. (2002).@Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems.@Water, Air and Soil Pollution, 141, 1-33.@Yes$Argun M.E., Dursun S., Ozdemir C. and Karatas M. (2007).@Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics.@J. Hazardous Materials, 144, 77-85.@Yes$Ibezim-Ezeani M.U., Okoye F.A. and Akaranta O. (2010).@Studies on the Ion Exchange Properties of Modified and Unmodified Orange Mesocarp Extract in Aqueous Solution.@Int. Archive Appl. Sci. Technol., 1(1), 33-40.@Yes @Short Communication <#LINE#>Evaluation of New 2-N-tert-butyl-5-aryl-1, 3, 4-Oxadiazol-2-Amines for Antimicrobial Activity<#LINE#>Rashidi@N.A.,Berad@B.N.<#LINE#>55-57<#LINE#>9.ISCA-RJCS-2016-085.pdf<#LINE#>Department of Chemistry, Mungsaji Maharaj Mahavidyalaya, Darwha, Dist: Yavatmal, MS, India@Department of Chemistry, RTM Nagpur University, Nagpur, MS, India<#LINE#>22/4/2016<#LINE#>8/8/2016<#LINE#>A series of five membered heterocyclic oxadiazole derivatives synthesized by intramolecular cyclisation of N-tert-butyl-2-aroyl hydrazine carbothioamides (IIa-g) with iodine-pot.iodide in basic medium were tested for their biological activities against selected microorganisms. The newly synthesized compounds were investigated for their antimicrobial activities by Agar diffusion method. For antibacterial study, the bacterial strain used included both gram-positive strains like Ecoli and gram negative strain S.aureus. Antifungal activity was performed against the fungus A. niger. Among the synthesized compounds (IIIa-g), few compounds showed weak antimicrobial activities in comparison with standard drugs.<#LINE#>Padmaja A., Muralikrishna A., Rajashekhar C. and Padmmavthi V. (2011).@Synthesis and Antimicrobial Activity of Pyrrolyl/Pyrazolyl Arylaminosulfonylmethyl 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles and 1,2,4-Triazoles.@Chem. Pharm. Bull., 59(12), 1509-1517.@Yes$Laddi U.V., Desai S.R., Bennur R.S. and Bennur S.C. (2002).@Some new 1,3,4-oxadiazole as antimicrobial agent.@Indian J Heterocycl Chem., 11, 319-322.@No$Gale E.F., Cundliffe E. and Reynolds P.E., Richmond M. H. and Waring M.J. (1981).@The Molecular Basis of Antibiotic Action.@2nd Ed. John Wiley & Sons, New York, 473.@Yes$Bhardwaj N., Saraf S.K., Sharma P., Kumar P. (2009).@Syntheses, Evaluation and Characterization of Some1, 3, 4-Oxadiazoles as Antimicrobial Agents.@E-Journal of Chemistry, 6(4), 1133-1138.@Yes$Gilani S.J., Alam O., Khan S.A., Siddiqui N. and Kumar H. (2009).@Synthesis of some derived thiadiazolidin-4-one azethidine-2-one and 1,3,4-oxadiazole ring system from isoninicotinicacid Hydrazide: A novel class of potential anti-convulsant agents.@Der Pharmacia Lettre, 1, 1-8.@No$Almasirad A., Vousooghi N., Tabatabai S.A., Kebriaeezadeh A. and Shafiee A. (2007).@Synthesis, anticonvulsant and muscle relaxant activities of substituted 1,3,4-oxadiazole,1,3,4-thiadiazole and 1,2,4-triazole.@Acta Chim. Slov., 54, 317-324.@Yes$Bhat M.A., MAl-Omar A. and Siddiqui N. (2010).@Synthesis, anticonvulsant and neurotoxicity of some novel 1,3,4-oxadiazole derivatives of phthalimide.@Der Pharma Chemica, 2(2) 1-10.@Yes$Kasabe A.J. and Kasabe P.J. (2010).@Synthesis, Anti tubercular and Analgesic Activity Evaluation of new 3- pyrazoline Derivatives.@International Journal of Pharmacy and Pharmaceutical Sciences, 2(2), 132-135.@Yes$Pattan S.R. et al. (2009).@Synthesis and Evaluation of Some Novel Substituted 1,3,4- Oxadiazole and Pyrazole Derivatives For Anti- tubercular Activity.@Indian. J. Chem., 48(B), 1453-1456.@Yes$Rivera N.R., Balsells J. and Hansen K.B. (2006).@Synthesis of 2-amino-5-substituted-1,3,4-oxadiazoles using 1,3-dibromo-5,5-dimethylhydantoin as oxidant.@Tetrahedron Lett., 47, 4889-4891.@Yes$Essawy E.l. and Khattab F.A. et. al. (2007).@Synthesis of 1,2,4-triazol-3-ylmethyl-,1,3,4-oxa-, and -thiadiazol-2-ylmethyl-1H-[1,2,3]-triazolo[4,5-d]pyrimidinediones.@Monatsh. Chem, 138, 777.@Yes$Arthur M. and Courvalin P. (1993).@Genetic and mechanism of glycopeptide resistance in enterococci.@Antimicrob Agents Chemother., 37, 1563-1571.@Yes$Sangapure S.S. et. al. (2004).@Synthesis and biological Activities of some 1,3,4- oxadiazole,Thiadiazole, Triazole and Related compounds possessing Benzofuran moiety.@Indian Journal of Pharmaceutical Science., 221- 225.@Yes$Yar S.M., Siddiqui A.A. and Ali M.A. (2007).@Synthesis and Anti-tuberculostatic Activity of Novel 1,3,4-Oxadiazole Derivatives.@Journal of the Chinese Chemical Society, 54, 5-8.@Yes$Barbuceanu S.F. et. al. (2010).@New heterocyclic compounds from 1,3,4-thiadiazole, 1,3,4-oxadiazole and 1,2,4-triazole class with potential antibacterial activity.@Rev. Chem. (Bucuresti), 6(2), 140-145.@Yes$Chaudhari Bhata. R. et. al. (2012).@Synthesis and Antimicrobial Activity of Some New 1, 4-Benzothiazine Containing Thiosemicarbazides and 1, 3, 4-Oxadiazole Derivatives.@E- Journal of Chemistry., 9(1), 318-322.@Yes$Ananthnarayan R. and Jagram Pancka G.K. (1990).@Text Book of Microbiology.@4th Edn, (Orient Longman).@No$Prescott M.L., Harley P.J. and Klein A.D. (2002).@Microbiology Win C.@5th edition, Brown Publisheres, 919-923.@Yes$Connors K.A. (2004).@A Textbook of Pharmaceutical Analysis.@John Wiley and Sons Inc.@No <#LINE#>Synthesis and Second Harmonic Generation Study of Nd3+ Doped Lithium Alumino-Borate Non-Linear Optical Material<#LINE#>Dagdale @S.R.,Pahurkar @V.G.,Muley @G.G.<#LINE#>58-60<#LINE#>10.ISCA-RJCS-2016-119.pdf<#LINE#>Department of Physics, Sant Gadge Baba Amravati University, Amravati, MS - 444 602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati, MS - 444 602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati, MS - 444 602, India<#LINE#>22/4/2016<#LINE#>25/8/2016<#LINE#>A polycrystalline neodymium doped lithium aluminum borate (Li2Al2(1-x) Nd2(x)B2O7, Nd:LABO) with x=0 and 0.03 has been synthesized by simple solid-state technique. The obtained Nd: LABO polycrystalline was characterized by powder X-ray diffraction and second harmonic generation efficiency measurement. The second harmonic generation efficiency of the polycrystalline material was obtained by the classic Kurtz and Perry powder technique using a fundamental wavelength 1064 nm of Nd:YAG laser in comparison with potassium dihydrogen phosphate.<#LINE#>Atuchin V.V., Bazarov B.G., Grossman V.G., Molokeev M.S. and Bazarov Z.G. (2013).@Structural field of K2Al2B2O7-family crystals.@Proc. of SPIE., 8772, 87721O-1-8.@No$Dagdale S.R. (2015).@Synthesis and Optical Study of Novel Nd3+:Na2Mg2ZnB4O10 Single Crystal.@OIIRJ., 5(3), 105-110.@No$Dagdale S.R., Pahurkar V.G. and Muley G.G. (2016).@Review Article High Temperature Crystal Growth: An Overview.@Macromolecular Symposia, 362(1), 139-141.@Yes$Chen C.T., Wang Y.B., Wu B.C., Wu K.C., Zeng W.L. and Yu L.H. (1995).@Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7.@Nature, 373(6512), 322-324.@Yes$Lin Z., Wang Z., Chen C., Chan S.K. and Lee M.H. (2003).@Mechanism for linear and nonlinear optical effects in crystals of the Sr2Be2B2O7 family.@J. Appl. Phys., 93(12), 9717-9723.@Yes$Meng X.Y., Wen X.H. and Liu G.L. (2008).@Structure and Stacking Faults in Sr2Be2B2O7 Crystal.@J. Korean Phys. Soc., 52(4), 1277-1280.@Yes$Qi H. and Chen C.T. (2001).@A new UV-nonlinear optical material Ba2Be2B2O7.@Chem. Lett., 30(1), 354-356.@Yes$Ye N., Zeng W.R., Wu B.C., Huang X.Y. and Chen C.T. (1998).@Crystal structure of barium aluminium borate, BaAl2B2O7.@Z. Kristallogr, New Cryst. Struct., 213, 452.@Yes$Yamada K. (1994).@Japan Kokai Tokyo Koho.@Japanese Patent No., 09.61, 864.@No$Ye N., Zeng W.R., Jiang J., Wu B.C., Chen C.T., Feng,B. and Zhaang X. (2000).@New nonlinear optical crystal K2Al2B2O7.@J. Opt. Soc. Am. B., 17(5), 764-768.@Yes$Hu X.B., Wang J.Y., Zhang C.Q. and Xu X.G. (2004).@Raman study of phonons in K2Al2B2O7 crystals.@Appl. Phys. Lett., 85(12), 2241-2243.@Yes$Hu Z.G., Higashiyama T., Yoshimura M., Mori Y. and Sasaki T. (1999).@Redetermination of the crystal structure of dipotassium dialuminum borate, K2AI2B2O7, a new non-linear optical material.@Z. Kristallogr. New Cryst. Struct,. 214, 433-434.@Yes$Hu Z.G., Higashiyama T., Yoshimura M., Yap Y.K., Mori Y. and Sasaki T. (1998).@A New Nonlinear Optical Borate Crystal K2Al2B2O7 (KAB).@Jpn. J. Appl. Phys., 37(10A), L 1093-L1094.@Yes$Kaduk J.A., Satek L.C. and Mckenna S.T. (1999).@Crystal structures of metal aluminum borates.@Rigaku J., 16(2), 17-30.@Yes$Hu Z.G., Ushiyama N., Yap Y.K., Yoshimura M., Mori Y. and Sasaki T. (2002).@The crystal growth and nonlinear optical properties of K2Al2B2O7.@J. Cryst. Growth, 237-239, 654-657.@Yes$Rza-Zade P.F., Guseinova S.G. and Ganf K.L., Abdullaev G.K. and Samedov F.R. (1971).@English translation ofIzv. Akad. Nauk SSR.@Inorg. Mater., 7, 1135.@No$He M., Chen X.L., Zhou T., Hu B.Q., Xu Y.P. and Xu T. (2001).@Crystal structure and infrared spectra of Na2Al2B2O7.@J. Alloys Compd., 327, 210-214.@Yes$He M., Kienle L., Simon A., Chen X.L. and Duppel V. (2004).@Re-examination of the crystal structure of Na2Al2B2O7: stacking faults and twinning.@J. Solid State Chem., 177(9), 3212–3218.@Yes$Ahman J., Svensson G. and Grins J. (1997).@Lithium aluminium borate, LiAl7B4O17.@J. Acta Chemica Scandinavica., 51, 1045-1050.@Yes$Palaspagar R.S., Gawande A.B., Sonekar R.P. and Omanwar S.K. (2014).@Combustion synthesis and photoluminescence properties of a novel Eu3+ doped lithium alumino-borate phosphor.@J. Luminescence 154, 58–61.@Yes$Dagdale S.R. and Muley G.G. (2016).@Synthesis and Optical Properties of Polycrystalline Li2Al2B2O7 (LABO).@AIP Conf. Proc., 1728, 020436-1-4.@No$Kurtz S.K. and Perry T.T. (1968).@A powder technique for the evaluation of nonlinear optical materials.@J. Appl. Phys., 39(8), 3798-3813.@Yes$Dong C. (1998).@Institute of Physics National Lab. for Superconductivity.@P.O. Box 603, Beijing 100080 PowderX Nov. 16.@No$Dagdale S.R. and Muley G.G. (2016).@Synthesis and characterization of a novel nonlinear optical material Mg2Na2ZnB4O10.@Procedia Technology, 682-688.@Yes