@Research Paper <#LINE#>Conductometric and pH Metric Investigations on Thiosemicarbazone-Mn (II) Systems<#LINE#>Rathore@U.,Gupta@R.,Joshi@G.,Bhojak@N.* <#LINE#>1-11<#LINE#>1.ISCA-RJCS-2016-027.pdf<#LINE#>GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC –A Grade) Bikaner, India@GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC –A Grade) Bikaner, India@GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC –A Grade) Bikaner, India@GCRC, P.G. Department of Chemistry, Govt Dungar College (NAAC –A Grade) Bikaner, India<#LINE#>27/2/2016<#LINE#>1/7/2016<#LINE#>In current study thiosemicarbazone has been selected due to great therapeutic importance. Prepration, characterization, solution and antimicrobial study of Mn(II) thiosemicarbazone has been carried out. Solution studies on the complexes have also been carried out in different micellar systems at 25C and data have been compared with ethanol water mixture. Formation constants and molar ions in 60% ethanol were determined. Stability constants have been calculated from pH metric study.The conductivity of ligand and metal ligand complexes have been obtained in Triton X- 100 and polyoxethylene (23) lauryether. Association constants and formation constants have been calculated by molar conductance.<#LINE#>Kovala-Demertzi D., Boccarelli A., Demertzis M.A. and Coluccia M. (2007).@In vitro antitumor activity of 2-acetyl pyridine 4N-ethyl thiosemicarbazone and its platinum (II) and palladium(II) complexes.@Chemotherapy, 53(2), 148-152.@Yes$Kovala-Demertzi D., Varadinova T., Genova P., Souza P. and Demertzis M.A. (2007).@Platinum (II) and palladium(II) complexes of pyridine-2-carbaldehyde thiosemicarbazone as alternative antiherpes simplex virus agents.@Bioinorganic Chemistry and Applications, 2007.@Yes$Scovill J.P., Klayman D.L. and Franchino C.F. (1982).@2-acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents.@Journal of Medicinal Chemistry, 25(10), 1261–1264.@Yes$Quiroga A.G., Perez J.M. and Lopez-Solera I. (1998).@Novel tetranuclear orthometalated complexes of Pd(II) and Pt(II) derived from p-isopropylbenzaldehyde thiosemicarbazone with cytotoxic activity in cis-DDP resistant tumor cell lines Interaction of these complexes with DNA.@Journal of Medicinal Chemistry, 41(9), 1399-1408.@Yes$Costa R.F.F., Rebolledo A.P. and Matencio T. (2005).@Metal complexes of 2-benzoylpyridine-derived thiosemicarbazones: structural, electrochemical and biological studies.@Journal of Coordination Chemistry, 58(15), 1307–1319.@Yes$Agarwal R.K., Singh L. and Sharma D.K. (2006).@Synthesis, spectral, and biological properties of copper (II) complexes of thiosemicarbazones of Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes.@Bioinorganic Chemistry and Applications, 2006.@Yes$Pandey O.P., Sengupta S.K., Mishra M.K. and Tripathi C.M. (2003).@Synthesis, spectral and antibacterial studies of binuclear titanium(IV)/zirconium(IV) complexes of piperazine dithiosemicarbazones.@Bioinorganic Chemistry and Applications, 1(1), 35–44.@Yes$Shipman J.C., Smith S.H., Drach J.C. and Klayman D.L. (1986).@Thiosemicarbazones of 2-acetylpyridine, 2-acetylquinoline, 1- acetylisoquinoline, and related compounds as inhibitors of herpes simplex virus in vitro and in a cutaneous herpes guinea pig model.@Antiviral Research, 6(4), 197–222.@Yes$Gujarathi J.R., Pawar N.S. and Bendrea R.S. (2013).@Synthesis, physicochemical and biological evaluation of Co (II) complexes derived from 5-chloro-2-hydroxy acetophenone N(4) methyl thiosemicarbazone.@Journal of Chemical and Pharmaceutical Research, 5(7), 161-168.@Yes$Tang H.A., Wang L.F. and Yang R.D. (2003).@Synthesis, characterization and antibacterial activities of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with soluble Vitamin K3 thiosemicarbazone.@Transition metal chemistry, (28), 395-398.@Yes$Lobana T.S., Sanchez A. and Casas J.S. (1997).@Synthesis, characterization, and in vitro cytotoxic activities of benzaldehyde thiosemicarbazone derivatives and their palladium (II) and platinum (II) complexes against various human tumor cell lines.@Bioinorganic Chemistry and Applications, Article ID 690952, 9 pages.@Yes$Irving H.M. and Rosstti H.S. (1954).@The calculation of formation curves in mixed solvents.@J. chem. Soc., 2904-2910.@Yes$Gomaa E.A. and Jahdali B.M.A. (2011).@Association of Cu (NO3)2 with Kryptofix-221 in mixed (MeOH-DMF) solvents at different temperatures.@American Journal of Fluid Dynamics, 1(1), 4-8.@Yes$Shishtawi N.E., Hamada M.A. and Gomaa E.A. (2011).@Inflence of Permanent magnet on the association constants of FeCl3+10% PVA(Polyvinylalcohol) in 50% ethanol-water solutions conductometrically at 298.25K using new equation for 1:3 asymmetric electrolytes.@Physical Chemistry, 1(1), 14-16.@Yes$Gomaa E. A. (2010).@Solvation parameters of lead acetate in mixed N, N-dimethylformamide-water mixtures at 298.15K.@Analele Universitatii din Bucuresti-Chimie, (19), 45-48.@Yes$Biswas R. and Brahman D. (2009).@Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu(II) ions in methanol–1,4-dioxane binary solutions.@Indian J. Chem., (A 48), 1145.@Yes$Pund D.A., Bhagwatkar R.A., Tavade D.T. and Rathod D.B. (2010).@Studies on interaction between La (ii), and Nd (iii) metal ions and 1-(4-Hydroxy-6-methyl pyrimidino)-3-substituted thicarbamide at 0.1 m ionic strength pH metrically.@Rasayan J. Chem., 2(3), 246-249.@Yes$Janrao D.M., Pathan J., Kayande D.D. and Mulla J.J. (2014).@An over view of potentiometric determination of stability constants of metal complexes.@Sci. Revs. Chem. Commun., 4(1), 11-24.@Yes$Gryzybkowski W. and Pilarczyk M. (1989).@Electrical conductance and apparent molar volumes of Al(ClO4)2, Be(ClO4)2 and Cu(ClO4)2 in N,N-dimethylformamide solutions at 25oC.@Electrochimica Acta, (32), 1601-1605.@Yes$Shishtawi N.A.E., Hamada M.A. and Gomaa E.A. (2010).@Influence of permanent magnet on the association constants of FeCl3 in 50% ethanol-H2O solutions (conductometrically) at 298.15 K using a new equation for 1:3 asymmetric electrolytes.@Journal Chemical engineering data, (55), 5422-5424.@Yes$Hamada M.A., Shishtawiand N.A.E. and Gomaa E.A. (2009).@Conductometric evaluation of association constants for aqueous solutions of CoCl2 in the absence and presence of a magnetic field.@Southern Brazilian journal of chemistry, 17, 33-40.@No$Gomaa E.A. (1987).@Solute-solvent interactions of some univalent-univalent salts with various organic solvents at 25oC.@Thermochimica Acta, (120), 183-189.@Yes$Gomaa E.A. (1988).@Theoretical contribution of salvation of AgBr in some organic solvents at 25o.@Thermochimica Acta, (128), 99-120.@Yes$Dossoki F.I.E. (2008).@Electric conductance and semi-emperical studies on two thiophene derivatives/metal cation complexation.@Journal of Molecular Liquids, 142, 53-56.@Yes$Nasrabadi M.R., Ahmedi F., Tazari S.M.P., Ganjal M.P. and Alizadeh K. (2009).@Conductometric study of complex formation between some substituted pyrimidines and some metal ions in acetonitrile and the determination of thermodynamic parameters.@Journal of Molecular Liquids, (144), 97-101.@Yes <#LINE#>Synthesis and Luminescence Characteristics of Gd3+ Activated LiCa4(BO3)3 Phosphor<#LINE#>Chauhan@A.O.*,Sawala@N.S.,Palan@C.B.,Omanwar@S.K. <#LINE#>12-15<#LINE#>2.ISCA-RJCS-2016-035.pdf<#LINE#>Department of Physics, S.G.B.A.U, Amravati (MH)-444601, India@Department of Physics, S.G.B.A.U, Amravati (MH)-444601, India@Department of Physics, S.G.B.A.U, Amravati (MH)-444601, India@Department of Physics, S.G.B.A.U, Amravati (MH)-444601, India<#LINE#>22/3/2016<#LINE#>11/6/2016<#LINE#>LiCa4 (BO3)3 doped Gd3+ phosphor was successfully and intentionally synthesized by the modified conventional solid state diffusion (SSD) method. The phase purity of sample was characterized by powder X-ray diffraction (XRD). The photoluminescence (PL) property was studied using a Hitachi F-7000 spectrophotometer at room temperature. The sample LiCa4 (BO3)3: Gd3+ show intense narrow UVB emission of Gd3+ at 314 nm (corresponds to 6PJ  8S7/2) under the excitation of 275 nm. The emission spectrum of the phosphor is observed in the UV region and hence the phosphor can be potential candidate for medical applications.<#LINE#>Kaneko K., Takei Y., Aoki T., Ikeda S., Matsunami H. and Lynch S. (2000).@Bilirubin adsorption therapy and subsequent liver transplantation cured severe bilirubin encephalopathy in a long-term survival patient with Crigler-Najjar disease type I.@Int. Med., 39, 961-967.@Yes$Dittmar H., Pflieger D., Schopf E. and Simon J. (2001).@UVA1 phototherapy. Pilot study of dose finding in acute exacerbated atopic dermatitis.@Hautarzt., 52, 423-430.@Yes$Honigsmann H., Brenuer W. and Rauschmeier W. (1984).@Photochemotherapy for cutaneous T cell lymphoma. A follow-up study.@Am. Acad. Dermatol., 10, 238-42.@Yes$Scherschun L., Kim J.J. and Lim W.H. (2001).@Narrow band ultraviolet B is a useful and well tolerated treatment for vitiligo.@J. Am. Acad. Dermatol., 44, 999-1003.@Yes$Hawk J. (2000).@Sunbeds.@Radiat. Prot. Dosim., 91, 143-148.@Yes$Morita A., Kobayashi K., Isomura I., Tsuji T. and Krutmann J. (2000).@Ultraviolet A1 (340-400 nm) phototherapy for scleroderma in systemic sclerosis.@J. Am. Acad. Dermatol., 43, 670-674.@Yes$Weichenthal M. and Schwarz T. (2005).@Phototherapy: how does UV work?@Photodermatol. Photoimmunol. Photomed., 21, 260-266.@Yes$Gawande A.B., Sonekar R.P. and Omanwar S.K. (2014).@Luminescence improvement in Pr3+ and Gd3+ activated Sr2Mg(BO3)2 inorganic phosphor.@Mat. Res. Bull., 60, 285-291.@Yes$H. Van Weelden, H. Baart de la Faille, E. Young and J.C. van der Leun (1988).@A new development in UVB phototherapy of psoriasis.@British Journal of Dermatology, 199(1), 11-19.@Yes$Johnson B., Green C., Lakshmipathi T. and Ferguson (1988).@Ultraviolet Radiation Phototherapy for Psoriasis: The use of a new Narrowband UVB fluorescent lamp.@J. Light in biology and medicine, Plenum Press, NY, London., 173.@Yes$Sonekar R., Omanwar S., Moharil S., Dhopte S. and Muthal P., Kondawar V. (2007).@Combustion synthesis of narrow UVB emitting rare earth borate phosphors.@Opt. Mater., 30, 622-625.@Yes$Palan C.B., Koparkar K.A., Bajaj N.S. and Omanwar S.K. (2016).@Synthesis and TL/OSL properties of CaSiO3:Ce3+ biomaterial.@Mater. Lett., 175, 288-290.@Yes$Palan C.B., Bajaj N.S. and Omanwar S.K. (2016).@Luminescence properties of Eu 2+ doped SrB4O7 phosphor for radiation dosimetry.@Mater. Res. Bull., 76, 216-221.@Yes$Palan C.B., Koparkar K.A., Bajaj N.S., Soni A. and Omanwar S.K. (2016).@Synthesis and thermoluminescence/optically stimulated luminescence properties of CaB4O7:Ce3+ phosphor.@J. Mater. Sci.: Mater. Electron., 27, 5600-5606.@Yes$Bajaj N.S., Palan C.B., Koparkar K.A., Kulkarni M.S. and Omanwar S.K. (2016).@Preliminary results on effect of boron co-doping on CW-OSL and TL properties of LiMgPO4: Tb3+, B.@J. Lumin., 175, 9-15.@Yes$Palan C.B., Bajaj N.S., Soni A. and Omanwar S.K. (2016).@A novel KMgPO4: Tb3+ (KMPT) phosphor for radiation dosimetry.@J. Lumin., 176, 106-111.@Yes$Pekgozlu I. (2013).@A novel UV-emitting phosphor:LiSr4 (BO3)3:Pb2+.@J. Lumin., 143, 93-95.@Yes <#LINE#>Synthesis, Characterization of 3, 4, 5 - Isoxazolines and Antimicrobial Screening<#LINE#>Wankhade@B.B.,Kurhade@G.H.* <#LINE#>16-19<#LINE#>3.ISCA-RJCS-2016-049.pdf<#LINE#>Department of Chemistry, Vidnyan Mahavidyalaya Malkapur, Dist. Buldhana – 443101, Maharashtra, India@Department of Chemistry, Vidnyan Mahavidyalaya Malkapur, Dist. Buldhana – 443101, Maharashtra, India<#LINE#>22/3/2016<#LINE#>18/5/2016<#LINE#>A series of 3, 4, 5 – substituted isoxazolines were synthesized via flavanone. Flavanones reacting with hydroxyl amine hydrochloride to form substituted of 3, 4, 5 – isoxazolines. All these compounds are characterized by resources of their UV, IR, 1H NMR spectroscopic information. Synthesized compounds evaluate for their antimicrobial bustle. All the compounds exhibited weak to reasonable bustle against all organisms except three which shows strong bustle.<#LINE#>Wankhade B.B. and Chincholkar M.M. (2002).@Synthesis and antibacterial activity of some 1,3,4,5-substituted-D2-pyrazolines.@Orient. J .Chem, 18, 381-382.@No$Rajendraprasad Y., Ravikumar P. and Ramesh B. (2007).@Synthesis and antidepressant activity of some new 3-(2”-hydroxy naphthalen-1”-yl)-5-phenyl-2-isoxazolines.@Int. J.Chem. Sci, 5, 2, 542-548.@Yes$Khaty N.T. and Mahalle P.R. (2010).@Synthesis of some Bromo-substituted 3-aroyl flavanones and flavones.@E.J. Chem, 7, 4, 1359-1361.@Yes$Jung M.G., Lee J. and Jung H.J. (2007).@Novel synthesis of flavanones from 2- hydroxy benzoic acids.@Bull. Korean Chem. Soc, 28, 5, 859-862.@Yes$Pourmorad F., Hosseinimehr S.J. and Shahbjmajd N. (2006).@Antioxidant activity, phenol and flavanoid contents of some selected Iranian medicinal plants.@Africal J. Biotechnology, 5, 11, 1142-1145.@Yes$Kozikowski A.P. (1984).@The isoxazoline route to the molecules of nature.@ACC. Chem. Res, 17, 1984, 410.@Yes$Tomilovi Y.V., Okonnishnikova G.P., Shulishov E.V. and Nefedov O.M. (1995).@Acylation of spiro(1-pyrazoline-3,1’-cyclopropanes) to form 1-acyl-3-(2-chloroethyl)-2-pyrazolines and transformation of bicyclic 2-pyrazolines into 1,4,5,6-tetrahydropyridazines.@Russ. Che. Bull, 44, 2114.@Yes$Desai V. and Shah T. (2007).@Synthesis and antibacterial studies of some novel isoxazoline derivatives.@J. Serb. Chem. Soc, 72, 5, 443-449.@Yes$Quan M.L. (1999).@Design and synthesis of isoxazoline derivatives as factors Xa inhibitors.@J. Med. Chem, 42, 15, 1999, 2752-2759.@Yes$Maurya R., Gupta P., Ahamad G., Yadav D., Chand K., Singh A.B., Tamrakar A.K. and Srivastava A.K. (1999).@Synthesis of 3,5-disubstituted isoxazoline as protein tyrosine phosphatase1B inhibitors.@Med. che. Research, 17, 2-7, 123-136.@Yes$Mugesh G. and Singh H.B. (1998).@Synthesis and structural characterization of monomeric selenolato complexes of zinc, cadmium and mercury.@Inorg. Chem, 27, 2663-2669.@Yes$Sharma P.C., Sharma S.V., Jain S., Singh D. and Suresh B. (2009).@Synthesis of some new isoxazoline derivatives as possible anti-candida agents.@Acta Poloniac Pharmaceutica Drug Research, 66 ,1, 101-104.@Yes$Arai M.A., Arai T. and Sasai H. (1999).@Design and synthesis of the first spiro Bis (isoxazoline) derivatives as asymmetric ligands.@Org. Lett, 1, 11, 1795-1797.@Yes$Chang Raekyu and Kim Kyongtae (1999).@A facile and novel method for the synthesis of 2-isoxazolines.@40(37), 6773-6776.@Yes$Jadhav S.B., Shastri R.A., Gaikwad K.V. and Gaikwad S.V. (2009).@Synthesis and antimicrobial studies of some novel pyrazoline and isoxazoline derivatives.@E J. Chem, 6, 51, 5183-5188.@Yes$Shah T. and Desai V. (2007).@Synthesis and antibacterial studies of some novel isoxazoline derivatives.@J. Serb. chem. Soc., 72, 5, 443-449.@Yes <#LINE#>Speed of Sound, Density and Refractive Index Data of 5-chloro-3H-Benzooxazol-2-one in Acetonitrile-Water Mixt ures at 37oC<#LINE#>Deosarkar@S.D.*,Sawale@R.T.,Tawde@P.D.,Arsule@A.D.,Kalyankar@T.M. <#LINE#>20-24<#LINE#>4.ISCA-RJCS-2016-116.pdf<#LINE#>School of Chemical Sciences, S.R.T.M. University, Nanded-431606 (MS) India@School of Chemical Sciences, S.R.T.M. University, Nanded-431606 (MS) India@School of Chemical Sciences, S.R.T.M. University, Nanded-431606 (MS) India@School of Chemical Sciences, S.R.T.M. University, Nanded-431606 (MS) India@School of Pharmacy, S.R.T.M. University, Nanded-431606 (MS) India<#LINE#>22/3/2016<#LINE#>30/6/2016<#LINE#>The experimental speed of sound (u), density (ρ) and refractive index (n) studies on soluti ons of muscle relaxant 5-chloro-3H-benzooxazol-2-one (chlorzoxazone ) have been carried out in binary acetonitrile (AN)-w ater mixtures of different vol% at 37oC. From experimental results, va rious acoustical properties like isentropic compres sibility (κs), intermolecular free length (Lf), specific acoustic impedance (Z), relative association (RA), apparent molar ise ntropic compressibility (κφ) and relaxation strength (r) have been calcu lated. Apparent molar volume (Vφ) of drug has been calculated from density data and fitted to modified Massons relation to obtain partial molar volume (V0φ) for the evaluation of drug-solvent interactions. The experimental and derived properties h ave been used to throw the light on drug-drug and drug-solvent interactions.<#LINE#>Raju K., Rajamannan B. and Rakkappan C. (2002).@Ultrasonic study of molecular interactions in binary mixtures of aprotic and inert solvents.@J. Mol. Liq., 100, 113-118.@Yes$Ali A. and Nain A.K. (2002).@Ultrasonic and volumetric study of binary mixtures of benzyl alcohol with amides.@, Bull. Chem. Soc. Jpn., 75, 681-687.@Yes$Kamila S., Jena S. and Swain B.B. (2005).@Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) With different diluents at temperature 303.15 K: An ultrasonic study.@J. Chem. Thermodyn., 37, 820-825.@Yes$Kharat S.J. (2013).@Partial molar volume, Jones–Dole Coefficient, and limiting molar isentropic compressibility of sodium ibuprofen in water and its hydration number and hydration free energy.@Thermochim. Acta., 566, 124-129.@Yes$Kumar H. and Kaur K. (2013).@Interaction of antibacterial drug ampicillin with glycine and its dipeptides analyzed by volumetric and acoustic methods at different temperatures.@Thermochim. Acta., 551, 40-45.@Yes$Kumar H. and Kaur K. (2012).@Investigation on molecular interaction of amino acids in antibacterial drug ampicillin solutions with reference to volumetric and compressibility measurements.@J. Mol. Liq., 173,130-136.@Yes$Deosarkar S.D., Deoraye S.M. and Kalyankar T.M. (2014).@Temperature and concentration dependences of density and refraction of aqueous duloxetine solutions.@Russ. J. Phy. Chem. A., 88, 1129-1132.@Yes$Deosarkar S.D. and Kalyankar T.M. (2013).@Structural properties of aqueous metoprolol succinate solutions. Density, viscosity, and refractive index at 311 K.@Russ. J. Phy. Chem. A., 87, 1060-1062.@Yes$Das J.K, Dash S.K., Swain N. and Swain B.B. (1999).@Ultrasonic investigation in a polar-polar system-methyl isobutyl ketone (MIBK) and aliphatic alcohols.@J. Mol. Liq., 81, 163-179.@Yes$Rajagopal K. and Gladson S.E. (2011).@Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures.@J. Chem. Thermodyn., 43, 852-867.@Yes$Karanth V.K. and Bhat D.K. (2013).@Partial molar volume and partial molar isentropic compressibility study of glycine betaine in aqueous and aqueous KCl or MgCl2 solutions at temperatures T=288.15–318.15K.@Thermochim. Acta., 572, 23-29.@Yes$Aswar A.S. and Choudhary D.S. (2013).@Densities and ultrasonic speed of 2-hydroxy-5-methyl-3-nitro acetophenone In N, N-dimethylformamide at different temperatures.@Bull. Chem. Soc. Ethiop., 27, 155-160.@Yes$Syal V.K., Chauhan A. and Chauhan S. (2005).@Ultrasonic velocity, viscosity and density studies of poly (ethylene glycols) (PEG - 8,000, PEG - 20,000) in acetonitrile (AN) and water (H2O) mixtures at 250C.@J. Pure Appl. Ultrason., 27, 61-69.@Yes$Mehrotra K.N., Chauhan M. and Shukla R.K. (1990).@Studies on ultrasonic velocity and electrical conductivity of samarium soaps in non-aqueous medium.@Monatsh. Chem., 121, 461-470.@Yes$Baluja S., Solanki A. and Kachhadia N. (2007).@An ultrasonic study of some drugs in solutions.@Russ J. Phys. Chem. A., 81, 742-746.@Yes$Bachem C. (1936).@The compressibility of electrolytic solution.@Z. Phys., 101, 541-577.@Yes$Koohyar F., Rostami A.A., Chaich M.J. and Kiani F. (2011).@Refractive indices, viscosities, and densities for l-cysteine hydrochloride monohydrate + D-sorbitol + water, and glycerol + D-sorbitol + water in the temperature range between T=303.15 K and T=323.15 K.@J. Solut. Chem., 40, 1361-1370.@Yes$Baluja S., Movaliya J. and Godvani N. (2006).@Acoustical studies of some derivatives of 1,5-benzodiazepines formamide and tetrahydrofuran solutions at 298.15 K.@Russ J. Phys. Chem. A., 83, 2223-2229.@Yes$Iqbal M.J. and Chaudhry M.A. (2009).@Thermodynamic study of three pharmacologically significant drugs: density, viscosity, and refractive index measurements at different temperatures.@J. Chem. Thermodyn., 41, 221-226.@Yes <#LINE#>Study the Effect of PVSA on the CMC of Brij-56 using Dye Solubilization Method<#LINE#>Jadhav@V.B. <#LINE#>25-28<#LINE#>5.ISCA-RJCS-2016-145.pdf<#LINE#>Department of Chemistry, JET’s ZulalBhilajirao Patil College, Deopur, Dhule - 424002 (MS) India<#LINE#>22/3/2016<#LINE#>11/6/2016<#LINE#>The micellization and solubilization phenomenon of non-ionic surfactants has been studied by various methods such as cloud point determination, surface tension measurement, dye solubilization etc. in presence and in absence of additives. The solubilization phenomenonfor non-ionic surfactant Brij-56 with the water insoluble orange OT dye has been discussed. The effect of additive polyelectrolyte PVSA on the critical micelle concentration (CMC) of non-ionic surfactant Brij-56 has been studied in aqueous medium by measuring the absorbance of the pure Brij-56 aqueous system as well as Brij-56 and PVSA mixed aqueous system with Orange-OT dye using dye solubilization method. The absorbance increases with increasing concentration of pure Brij-56 in aqueous medium with Orange-OTdye. The absorbance of Brij-56 and PVSAmixed aqueous systems with Orange-OTdye also show same trend. The results of the investigation verify that, the CMC of pure Brij-56 decreases with increasing concentration of additive PVSA in aqueous medium. Therefore the effect of additive PVSA on the CMC of Biij-56 support to made probable evidence that the dye solubilization is complex phenomenon of micelles aggregation of surfactant monomers so as to perform various surface activities.<#LINE#>Shoji N., Ueno M. and Meguro K. (1976).@Determination of critical micelle concentrations of some surfactants by keto-enoltautomerism of benzoylacetone.@Journal of The American OIL Chemist@Yes$Dominguez A., Fernandez A., Gonzalez N., Iglesias E. and Montenegro L. (1997).@Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques.@Journal of Chemical Education, 74 (10), 1227-1231.@Yes$Shinoda K. and Nakagawa T. (1963).@Colloidal Surfactants: Some Physicochemical Properties.@Academic Press, New York, 9-15. Library of Congress Catalog Card no.62-13114.@Yes$Goto R., Koizumi N., Hayama N. and Sugano T. (1953).@Micelle Formation of Non-ionic Surfactants. (I) Properties of Aqueous Solution of Polyoxyethylene mono-alkyl Ether.@Bulletin of the Institute for Chemical Research, Kyoto University , 31(4), 285-294.@Yes$McBain J.W., Merrill Jr. R.C. and Vinograd J.R. (1940).@Solubilizing and detergent action in non-ionizing solvents.@J.Am. Chem. Soc., 62, 2880 -2881.@Yes$Becher P. (1967).@Non-ionic Surfactants.@M J Schick, Ed., Marcel Dekker, New York, N.Y.,478-482, , ISBN-0-8247-7530-9.@No$Ross S. and Olivier J.P. (1959).@A New Method for the Determination of Critical Micelle Concentrations of Un-ionized Associations Colloids in Aqueous or in Non-aqueous Solution.@J. Phys. Chem., 63(10), 1671–1674.@Yes$Patil A.A. and Patil T.J. (2011).@Measurement of Critical Micelle Concentration of Technical Grade Non-ionic Detergent in Presence of Chloramine-T using Dye Solubilization Technique.@Orient. J. of Chem., 27(2), 753-756.@Yes$Han Lu. Qianru, Chen. Wang, Yu. Chuanbo, Gao. and Shunai. Che. (2011).@Synthesis of amino group functionalized monodispersedmesoporous silica nanospheres using anionic surfactant.@Microporous and Mesoporous Materials, 139(1-3), 94-103.@Yes$Feng F., Coutinho D., Yang Z., Ferraris J.P. and Balkus Jr. Kenneth (2005).@Synthesis of proton conducting tungstosilicatemesoporous materials and polymer composite membranes.@Microporous and Mesoporous Materials, 81 (1-3), 217-234.@Yes$Hayward R.C., Peter Alberius C.A., Kramer E.J. and Chmelka B.F. (2004).@Thin Films of Bicontinuous Cubic Mesostructured Silica Templated by a Nonionic Surfactant.@Langmuir, 20(14), 5998-6004.@Yes$Pourjavadi A. and Ghasemzadeh H. (2007).@Carrageenan-g-Poly (Acrylamide) / Poly (Vinylsulfonic Acid, Sodium Salt) as a Novel Semi-IPN Hydrogel: Synthesis, Characterization and Swelling Behavior.@Polym. Engg. and Sci., 47(9), 1388-1395.@Yes$Li J., Li H.Z., Yang H.Y., Zhu P.P. and He P.S. (2008).@Effects of NH4Cl on the interaction between poly(ethylene oxide) and ionic surfactants in aqueous solution.@Chinese Journal of Polymer Science, 26(1), 31-37.@Yes$Goddard, E. D. and Ananthapadmanabhan, Kavssery P. (1993).@Interactions of surfactants with polymers and proteins.@CRC, Boca Raton, FL. pp123, ISBN-9780849367847.@Yes$Saito S. (1989).@Non-ionic surfactants- Physical chemistry.@Edited by M.J. Schick, Marcel Decker Inc. New York, 881-890, ISBN-0-8247-7530-9.@No$Egan R.W. (1976).@Hydrophile-Lipophile Balance and Critical Micelle Concentration as Key Factors Influencing Surfactant Disruption of Mitochondrial Membranes.@J. Biol. Chem., 251(14), 4442-4447.@Yes$Patel J., Varade D. and Bahadur P. (2004).@Effect of tetraalkylammonium bromides on micellar behaviour of ionic and non-ionic surfactants.@Ind. J. of Chemistry, 43(A), 715-721.@Yes <#LINE#>Kinetics and Mechanism of Oxidation of Guaifenesin by Keggin type 12-Tungstocobaltate (III) in Hydrochloric Acid<#LINE#>Nagolkar @B.B.,Gurame@V.M.,Chavan@L.D.,Shankarwar@S.G.* <#LINE#>29-34<#LINE#>6.ISCA-RJCS-2016-160.pdf<#LINE#>Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra, India@Department of Chemistry, Shri Shivaji Mahavidyalaya Barshi, 413411 Maharashtra, India@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra, India@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra, India<#LINE#>14/4/2016<#LINE#>24/5/2016<#LINE#>The kinetics of oxidation of expectorant drug guaifenesin by 12-tungstocobaltate (III) was studied spectrophotometrically at λmax 624 nm under pseudo first-order conditions in aquous acidic medium at a constant ionic strength of 0.3 mol dm-3. The stoichiometry of the reaction was found to be 1 : 2, [Guaifenesin :12-tungstocobaltate (III)] in acidic medium. The products of the reaction were identified by using spectral studies, FT-IR, 1H-NMR, and mass.The effect of [H+] ion and ionic strength on the rate of reaction have been investigated. The rate constants for slow steps of the mechanism are calculated. The values of activation parameters have been evaluated by using the plots logk versus 1/T and log(k/T) versus 1/T. By using the observed results the mechanism of the reaction has been proposed.<#LINE#>Kozhevinkov I. V. (1995).@Heteropoly Acids and Related Compounds as Catalysts for Fine Chemical Synthesis, Catal.@Rev. Sci. Eng., 37(2), 311-352. DOI:10.1080/01614949508007097.@Yes$Rhule J. T, Hill C. L and Judd D. A., (1998).@Polyoxometalates in medicine.@Chem. Rev., 98,327-357. DOI:10.1021/cr960396q.@Yes$Raynaud M, Chermann J. C, Plata F, Jasmin C and Mathe G, (1971).@Inhibitors of the murine leukemia sarcoma group viruses: Silicotungstates.@Acad. Sci. Paris, 272,347-348.@Yes$Weinstock I. A. (1998).@Homogeneous-phase electron-transfer reactions of polyoxomalates.@Chem. Rev., 98,113-170. DOI: 10.1021/cr9703414.@Yes$Saha S. K, Ali M. and Banerjee P. (1993).@Electron exchange and transfer reactions of heteropoly oxometalates.@Coord. Chem. Rev., 122, 41-62. DOI:10.1016/0010-8545(93)80041-3.@Yes$Chester A. W. (1970).@Oxidation of alkyl aromatic hydrocarbons by potassium 12-tungstocobaltate(III).@J. Org. Chem, 35, 1797-1800. DOI: 10.1021/jo00831a017.@Yes$Nolan A. L, Burns R. C. and Lawrance G. A. (1998).@Oxidation of [CoIIW12O40]6– to [CoIIIW12O40]5– by peroxomonosulfate in strong and weak acid solutions, an example of zero-order kinetics.@J. Chem. Soc. Dalton Trans., 3041-3048, DOI: 10.1039/A804598D.@Yes$Mizuno N. and Misono M. (1998).@Heterogeneous Catalysis.@Chem. Rev., 98(1), 199-218. DOI: 10.1021/cr960401q.@Yes$Drugs.com (2008).@Guaifenesin.@Drugs.com, Retrieved 29-10-2008, john.@No$Gutierrez, K. (2007).@Pharmacotherapeutics: Clinical Reasoning in Primary Care.@Elsevier, ISBN-13: 978-1416032878.@Yes$Smith S M, Schroeder K, Fahey T Smith and Susan M. (2008).@Over-the-counter medications for acute cough in children and adults in ambulatory settings.@Cochrane Database Syst, Rev., 23(1), DOI: 10.1002/14651858.CD001831.pub3.@Yes$Puttaswamy and Anu Sukhdev (2009).@Oxidation of mephenesin and guaifenesin with chloramine-B in hydrochloric acid medium: Design of kinetic model.@Indian Journal of Chemistry, 48A, 339-345.@Yes$Baker, L. C. W. and Mccutcheon, T. P. (1956).@Heteropoly Salts Containing Cobalt and Hexavalent Tungsten in the Anion.@J. Am. Chem. Soc., 78, 4503-4510. DOI: 10.1021/ja01599a001.@Yes$Rasmussen, P. G. and Brubaker, C. H., (1964).@The Kinetics of the Electron Exchange between the 12-Tungstocobaltate(II) and the 12-Tungstocobaltate(III) Anions in Aqueous Solution.@Inorg. Chem., 3, 977-980. DOI: 10.1021/ic50017a011.@Yes$Goyal, B., Prakash, A. and Mehrotra, R. N. (1999).@Kinetics and mechanism of the oxidation of hydroxylamine by 12-tungstocobaltate(III) ion in acetate buffer.@Indian J. Chem., 38A, 541-546.@Yes$Bhosale B. D and Gokavi G. S, (2002).@Kinetics and mechanism of oxidation of antimony (III) by keggin‐type 12‐tungstocobaltate (III) in aqueous hydrochloric acid medium.@Int. J. Chem. Kinetics., 359(1), DOI: 10.1002/kin.10097.@Yes$Manu Mehrotra and Raj N. Mehrotra (2008).@Kinetics and mechanism of the oxidation of tris (1,10-phenanthroline)iron(II) by peroxomonosulphate (oxone) ion Polyhedron.@27, 2151-2156, DOI: 10.1016/j.poly.2008.04. 011.@Yes$Veeresh T M, Lamani S. D and Nandibewoor S. T. (2009).@Mechanistic and spectroscopic investigations of oxidative degradation of aspirin by aqueous alkaline permanganate.@Transition Metal Chemistry, 34, 317-324. DOI 10.1007/s11243-009-9197-9.@Yes$Naik P. N. Chimatadar S. A. and Nandibewoor S. T. (2009).@Kinetics and oxidation of fluoroquinoline antibacterial agent, norfloxacin, by alkaline permanganate: a mechanistic study.@Industrial & Engineering Chemistry Research, 48 (5), 2548-2555. DOI: 10.1021/ie801633t.@Yes$Hiremath G. C., Mulla, R. M. and Nandibewoor, S. T. (2005).@Mechanistic study of the oxidation of isonicotinate ion by diperiodatocuprate(III) in aqueous alkaline medium.@J. Chem. Res., 5, 197-201, DOI: http://dx.doi. org/10.3184/0308234054213690.@Yes$Mahadevaiah D. T. (2006).@Kinetic studies on free radical polymerization of acrylonitrile, initiated by chloramine-T/hydrogen peroxide redox system.@J. Appl. Polym. Sci., 102, 5877-5883. DOI: 10.1002/app.24992.@Yes$Veeresh seregar, Veeresh T M and Nandibewoor S T (2007).@Ruthenum (III) catalysed oxidation of l-leucine by a new oxidant, diperiodatoargentate(III) in aqueous alkaline medium, polyhedron.@26, 1731-1739, DOI: 10.1016/j.poly.2006.12.021.@Yes$Ali M., Saha S. K. and Banarjee, P. (1990).@Kinetics of Electron Transfer between Dodecatungstocobaltate(III) and Thiosulfate in Weak Acidic Medium.@Indian J. Chem Sect A, 29, 528.@Yes$Amjad Z., Brodovitch J. C. and Auley, A. M., (1977).@Metal-ion oxidations in solution. Part XXI. Kinetics and mechanism of the reaction of ascorbic acid, hydroquinone, and catechol with 12-tungstocobaltoate(III).@Can. J. Chem., 55, 3581-3586. DOI: 10.1139/v77-502.@Yes <#LINE#>Synthesis, Spectral Characterization and Antibacterial Assay: Co(II) Coordination Compounds of 4-Aminoantipyrine based Macrocyclic Ligands<#LINE#>Srinath@Boinapalli,Ch. Abraham@Lincoln* <#LINE#>35-47<#LINE#>7.ISCA-RJCS-2016-171.pdf<#LINE#>Department of Chemistry, Osmania University, Hyderabad, Telangana State, India@Department of Chemistry, Osmania University, Hyderabad, Telangana State, India<#LINE#>28/4/2016<#LINE#>15/5/2016<#LINE#>A new series of tetra dentate N4 donor macrocyclic Schiff bases L1-L5 were synthesized by condensation reaction between thederivative of 4-aminoantipyrine(L) and a variety of diamines such as 1,4-diamino butane, carbanohydrazide,4H-1,2,4-traizole-3,5-diamine,2-amino benzohydrazide and naphthalene-1,8-diamine respectively. Macrocyclic Schiff base ligands L1-L5 were further treated with cobalt chloride to yield Co(II) complexes(CoL1-CoL5). All these newly prepared ligands and complexes have been characterized with the help of Mass, Infra-Red, 1H & 13C NMR, Electronic spectral, Elemental magnetic, Molar conductance and Thermal studies. Macrocycles and complex compounds were screened to evaluate antibacterial property in opposition to some cultured microbes. Inhibition zones are measured further minimum inhibitory concentrations determined, compared with existing drugs.<#LINE#>Raman N., Johnson Raja S. and Sakthivel A. (2010).@Transition meal complexes with Schiff-base ligands:4-aminoantipyrene based derivatives-a review.@J. Coord. Chem., 62, 691-709.@Yes$Raman N., Kulandaisamy A. and Thangaraja C. (2004).@Synthesis, structural characterization and electrochemical and antibacterial studies of Schiff base copper complexes.@Transition Met. Chem., 29, 129-135.@Yes$Guerreiro P., Tamburini S., Vigato P.A., Russo U. and Benelli C. (1993).@Mossabauer and magnetic properties of mononuclear, homo- and hetero-dinuclear complexes.@Inorg. Chim. Acta, 213, 279-287.@Yes$Okawa H., Furutachi H. and Fenton D.E. (1998).@Heterodinuclear metal complexes of phenol-based compartmental macrocycles.@Coord. Chem. Rev., 174, 51-75.@Yes$Guerreiro P., Tamburini S. and Vigato V.A. (1995).@From mononuclear to polynuclearmacrocyclic or macrocyclic complexes.@Coord. Chem. Rev., 139, 17-243.@Yes$Canali L. and Sherrington D.C. (1999).@Utilisation of homogeneous and supported chiral metal (salen) complexes in asymmetric catalysis.@Chem. Soc. Rev., 28, 85-93.@Yes$Fenton D.E. and Vigato P.A. (1988).@Macrocyclic Schiff base complexes of lanthanides and actinides.@Chem. Soc. Rev., 17, 69-90.@Yes$Vigato P.A., Tamburini S. and Fenton D.E. (1990).@The activation of small molecules by dinuclear complexes of copper and other metals.@Coord. Chem. Rev., 106, 25-170.@Yes$Gopalakrishnan J., Patel C.C. and Ravi A. (1967).@Studies of pentakisantipyrine Copper (II) perchlorate.@Bull. Chem. Soc. Japan, 40, 791.@Yes$Bose K.S. and Patel C.C. (1970).@Cu( II) complexes of 1-benzyl-2-phenyl-benzimidazole.@J. Nucle. Chem., 32(4), 1141-1146.@Yes$Agarwal R.K. and Prasad S. (2005).@Synthesis, spectral and thermal invastigations of some mixed ligand complexes of thorium (IV) derived from semicarbzones and diphenyl sulfoxide.@J. Iran. Chem. Soc., 2, 168-175.@Yes$Raman N. Thalamuthu S., Dhaveethu Raja J., Neelakandan M.A. and Banerjee S. (2008).@DNA cleavage and antimicrobial activity studies of transition metal(II) complexes of 4-aminoantipyrine derivative.@J. Chi. Chem. Soc., 53, 1450-1454.@Yes$Hitoshi T., Tamao N., Hideyyki A., Manabu F. and Takayuki M. (1997).@Preparation and characterization of novel cyclic tetranuclear manganese (III) complexes: MnIII4(X-salmphen)6 (X-salmphenH2 = N,N′-di-substituted-salicylidene-1,3-diaminobenzene (X = H, 5-Br).@Polyhedron, 16, 3787-3794.@Yes$Rosu T., Pasculescu S., Lazar V., Chifiriuc C. and Cernat R. (2006).@Copper (II) Complexes with Ligands derived from 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one: Synthesis and Biological Activity.@Molecules, 11(11), 904-914.@Yes$Raman N., Johnson Raja S., Joseph J. and Raja J.D. (2007).@Synthesis, spectral characterization and DNA cleavage study of heterocyclic Schiff base metal complexes.@J. Chil. Chem. Soc., 52(No 2), 1138-1141.@Yes$Ismail K.Z., Dissouky A.E. and Shehada A.Z. (1997).@Spectroscopic and magnetic studies on some copper (II) complexes of antipyrine Schiff base derivatives.@Polyhedron, 16(17), 2909-2916.@Yes$Choi Y.K., Chjo K.H., Park S.M. and Doddapaneni N. (1995).@Oxygen Reduction at Co(II)2 –Disalophen Modified Carbon Electrodes.@J. Electrochem. Soc., 142, 4107-4112.@Yes$Katia B., Simon L., Anne R., Gerard C., Francoise D. and Bernard M. (1996).@Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminonaphthyl or Diiminocyclohexyl Moieties as Potential EnantioselectiveEpoxidation Catalysts.@Inorg. Chem., 35(2), 387-396.@Yes$Keppler B.K., Friesen C., Moritz H.G., Vongerichten H. and Vogel E. (1991).@Tumor-inhibiting bis(b-Diketonato) meta; complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV).@Struct. Bond., 78, 97-127.@Yes$Dharmaraj N., Viswanathamurthi P. and Natarajan K. (2001).@Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity.@Transition Met. Chem., 26(1), 105-109.@Yes$Raman N., Kulandaisamy A., Thangaraja C. and Jeyasubramanian K. (2003).@Redox and antimicrobial studies of transition metal (II) tetradentate Schiff base complexes.@Transition Met. Chem., 28(1), 29-36.@Yes$Muralidhar Reddy P., Shanker K., Srinivas V., Ravi Krishna E., Rohini R., Srikanth G., Hu, A. and Ravinder, V. (2015).@Hydrolysis of Letrozole by macrocyclic Rhodium (I) Schiff-base complexes.@Spectrochim. Acta A, 139, 43-48.@Yes$Alam S. (2004).@Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one.@Ind. Acad. Sci., J. Chem. Sci., 166(6), 325-331.@Yes$Cushine T.P.T. and Lamb A.J. (2005).@Antimicrobial activity of flavonoids.@Inter. J. Antimicrobial Agents, 26, 343-356.@Yes$Salmon S.A., Watts J.L. and Cheryal A. (1995).@Comparision of MICs of Ceftiofur and Other Antimicrobial Agents against Bacterial Pathogens of Swine from the United States, Canada and Denmark.@J. Clin. Microbiol., 33(9), 2435-2444.@Yes$Mallie M., Bastide J.M., Blancard A., Bonni A., Bretagne S., Cambon M., Chandenier J., Chauveau V., Couprie B., Darty A., Feuilhade M., Grillot C., Guiguen C., Lavarde V., Letscher V., Linas M.D., Michel A., Morin O., Paugam A., Piens M.A., Raberin., Tissot E., Toubas D. and Wade A. (2005).@In Vitro susceptibility testing of Candida and Aspergillus spp. to voriconazole and other agents using Etest. Results of a French multicentre study.@Inter. J. Antimicrobial Agents, 25(4), 321-328.@Yes$Omrum U., Arikan S., Kocagoz S., Sancak B. and Unal S. (2000).@Susceptibility testing of voriconazole, fluconazole, itraconazole and amphotericine B against yeast isolates in a Turkish University Hospital and effect of time of reading.@Diagno. Microbio. Infect. Diseases, 38, 101-107.@Yes$Mendham J, Denney RC, Barnes J.D, Thomas J.K. (2004).@Vogel’s Text book of Quantitative Chemical Analysis.@Pearson Education, India, ISBN:10-058222628713-978-058222628-9.@Yes$Shakir M., Chishti H.T.N. and Chingsubam P. (2006).@Metal ion-directed synthesis of 16-membered tetraazamacrocyclic complexes and their physico - chemical studies.@Spectrochim. Acta, 64(A), 512-517.@Yes$Raman N., Raja J.D. and Sakthivel A. (2007).@Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies.@J. Chem. Sci., 119(4), 303-310.@Yes$Rajasekar K., Ramachandramoorthy T. and Paulraj A. (2012).@Microwave Assisted Synthesis, Structural Characterization and Bilogical Activities and Thiocyanate Mixed Ligand Complexes.@Res. J. Pharmaceutical Sci.1(4), 22-27.@No$Thomas M., Nair M.K.M. and Radhakrishan R.K. (1995).@Rare earth iodide complexes of 4-(2’,4’-dihydroxyphenylazo) antipyrene.@Synth. React. Inorg. Met.-Org. Chem., 25, 471-479.@Yes$Mishra L. and Upadhyay K.K. (1992).@Metal directed condensation of ethyl acetoacetate with 1,6-diaminohexane.@Ind. J. Chem. 31(A), 642.@Yes$Reddy P.M., Ho Y.P., Shanker K., Rohini R. and Ravinder V. (2009).@Physicochemical and biological characterization of novel macrocycles derived from o-phthalaldehyde.@Eur. J. Med. Chem., 44, 2621–2625.@Yes$Geary W.J. (1971).@The use of conductivity measurements in organic solvents for the characterization of coordination compounds.@Coord. Chem. Rev., 7, 81-115.@Yes$James E Huheey, Ellen A Keiter and Richard L Keiter (1993).@Inorganic Chemistry: Principle of Structure and Reactivity.@4th Edition, Harper Collins College Publisher, New York. ISBN:10- 006042995X 13-9780060429959.@Yes$Colak A.T., Tumer M. and Serin S. (2000).@Nickel ion as a template in the synthesis of macrocyclic imine-oxime complexes from carbonyl compounds and o-phenylenediamine.@Transition Met. Chem., 25, 200-204.@Yes$Guo L., Hu G. and Wei S. (2012).@Synthesis and Photolumnescent Properties of a Zinc(II) Complex with Phenanthrolline Derivative.@Adv. Mate. Res., 496, 38-41.@Yes$Tweedy B.G. (1964).@Plant extracts with metal ions as potential antimicrobial agents.@Phytopathol. 1964, 55, 910-914.@Yes$Atabay N.M.A., Dulger B. and Gucin F. (2005).@Structural characterization and antimicrobial activity of 1,3-bis(2-benzimidazyl)-2-thiapropane ligand and its Pd(II) and Zn(II) halide complexes.@Eur. J. Med. Chem., 40, 1096-1102.@Yes <#LINE#>Physico-Chemical Analysis of Drinking Water Samples from Different Regions of Nagpur and Amravati in Maharashtra State, India<#LINE#>Swaroopa Rani@N. Gupta <#LINE#>48-61<#LINE#>8.ISCA-RJCS-2016-184.pdf<#LINE#>Department of Chemistry, Brijlal Biyani Science College Amravati, Maharashtra, India<#LINE#>25/5/2016<#LINE#>10/6/2016<#LINE#>During the last few years, there has been an increasing realization that water resources are limited and must be conserved, leading to the necessity for stringent quality control. Many of the communicable diseases having the greatest impact on mankind are waterborne, and a permanent reduction in morbidity and mortality can most effectively be achieved by providing safe drinking water, Effective water quality management involves systematic programme of sampling and analysis of river, lake and ground water and all stages of waste treatment. Proven and harmonized procedures must be adopted if results are to be reliable, reproducible and comparable. Analytical procedures needed to obtain quantitative information are often a mixture of chemical, bio–chemical, biological, bacteriological, bioassay and instrumental methods. Physicochemical analysis is the prime consideration to assess the quality of water for its best usage say for drinking, bathing, fishing, industrial processing and so on, while for waste water either domestic or industrial to known the pollution strength and its effect on the ecology. River water often necessitates examination of water samples from different points and under varying condition to find out the extent of pollution and natural purification that takes place in the water. Well water are examined to locate the potable sources of water as well as to study the effect of pumping in coastal areas, or in saline water tracts. Waters are also examined to test the samples to ascertain their suitability for particular trade, e.g. paper making, tanning, steam raising, dying, daring etc. In such case a particular parameter assumes importance e.g. for steam raising water should be checked for hardness and dissolved oxygen, water used in textiles should be checked for iron and hardness. Similarly domestic and industrial waste waters are analyzed for various parameters to decide upon what physical, chemical or biological treatment should be given to make them suitable for discharge either on land for irrigation or in other water bodies. Comparatively this analysis for example determination of pH, temperature, DO, COD can be done quick enough to adopt by regulatory agencies to monitor and control the ecological balance of nature. Quantitative analytical procedure fall into three broad groups, viz. gravimetric, volumetric and colorimetric estimations. Advanced techniques of analysis for certain parameters make use of special electrodes, atomic absorption spectrophotometer, chromatography etc. The objectives of the present study was to analyze physicochemical and biological parameters of drinking water samples collected from the selective localities of Maharashtra state to assess health impacts linked with the consumption of drinking water and to suggest possible mitigation measures for the identified problems. Likewise physico-chemical analysis of 45 drinking water samples was carried out to develop a data base on the quality of water being consumed in different areas of Maharashtra state. The drinking water samples were taken from the main water sources where maximum peoples were using them for drinking purpose. Physicochemical analysis of water is categorized as Mineral Analysis consisting of physical parameters and significant anions and cations, Demand Analysis covering COD, BOD, DO, Permanganate value etc., Nutrient Analysis consisting of different forms of nitrogen, phosphorous and Heavy Metal Analysis covering analysis of heavy metals by different methods along with sample pretreatment. Measurement of Temperature, pH, Conductivity, Total Dissolved Solids (TDS), Salinity, Turbidity and Dissolved Oxygen was done by Digital Water and Soil Analysis kit Labtronics Model-191E-an ISO 9001. Different methods were applied to determine the quantities of other components. Most of the water samples were within WHO/ ISI standards. For samples which do not have physico-chemical parameters within desirable limit, treatment for correction of corresponding parameter is to be done. The results of the present research work showed that drinking water collected from different areas of Maharashtra state was found to be suitable for human health. It is recommended to boil water, use aqua guards, proper chlorination, use efficient system for garbage collection and its disposal, sewage waste treatment, recycling of waste into useful products such fertilizers, education of people through media about the causes and consequences of water pollution.<#LINE#>Zvidzai C., Mukutirwa T., Mundembe R. and Sithole-Niang I. (2007).@Microbial community analysis of drinking water sources from rural areas of Zimbabwe.@African Journal of Microbiology Research, 1(6), 100-103.@Yes$Sleema B. and Ramesh Babu M.G. (2009).@Physico-Chemical Characteristics Of Water Samples Of Vadakkekara Panchayath, Ernakulam District, Kerala.@XVI(1&2) SB Academic Review, 164-170@Yes$Mahananda M.R., Mohanty B.P. and Behera N.R. (2010).@Physico-Chemical Analysis Of Surface And Ground Water Of Bargarh District, Orissa, India.@IJRRAS, 2(3), 284-295.@Yes$Manjare S.A., Vhanalakar S.A. and Muley D.V. (2010).@Analysis of Water Quality Using Physico-Chemical Parameters Tamdalge Tank In Kolhapur District, Maharashtra.@International Journal of Advanced Biotechnology and Research, 1(2), 115-119.@Yes$Anwar Khalid, Amir Haider Malik, Amir Waseem, Shazmeen Zahra and Ghulam Murtaza. (2011).@Qualitative and quantitative analysis of drinking water samples of different localities in Abbottabad district, Pakistan.@International Journal of the Physical Sciences, 6(33), 7480 - 7489.@Yes$Shams Ali Baig, Xinhua Xu, Naveedullah, Niaz Muhammad, Zia Ullah Khan, Bahadar Nawab, Qaisar Mahmood and Rashid Khan. (2012).@Pakistan’s Drinking Water and Environmental Sanitation Status in Post 2010 Flood Scenario: Humanitarian Response And Community Needs.@Journal of applied Science in Environmental Sanitation, 7(1), 49-54.@Yes$Martin E. Ohanu, Iniekong P. Udoh, Clara I. Eleazar. (2012).@Microbiological Analysis of Sachet and Tap Water in Enugu State of Nigeria.@Advances in Microbiology, 2(4), 547-551.@Yes$Makwana S.A., Patel C.G. and Patel T.J. (2012).@Physico-Chemical analysis of drinking water of Gandhinagar District.@Scholars Research Library Archives of Applied Science Research, 4(1), 461-464.@Yes$Bheshdadia B.M., Chauhan M.B., Patel P.K. (2012).@Physico-Chemical Analysis of Underground Drinking Water in Morbi-Malia Territor.@Current world Environment, 7, 169-173.@Yes$Neerja Kalra, Rajesh Kumar, Yadav S.S. and Singh R.T. (2012).@Physico-chemical analysis of ground water taken from five blocks (Udwantnagar, Tarari, Charpokhar, Piro, Sahar) of southern Bhojpur (Bihar).@Journal of Chemical and Pharmaceutical Research, 4(3), 1827-1832.@Yes$Mustafa Alhaji Isa, Ibrahim Alkali Allamin, Haruna Yahaya Ismail and Abubakar Shettima (2013).@Physicochemical and bacteriological analyses of drinking water from wash boreholes in Maiduguri Metropolis, Borno State, Nigeria.@African Journal of Food Science, 7(1), 9-13.@Yes$Chittaranjan Hazarika. (2013).@A Study on Quality of Drinking Water in Kamrup District, Assam, India and defluoridation of water using bioadsorbents.@Global Research Analysis, 2(2), 7-8.@Yes$Tahir M.A. and Rasheed H. (2013).@Cost and impact analysis of preventive and remedial measures for safe drinking water.@Drink. Water Eng. Sci. Discuss., 6, 1-26.@Yes @Short Communication <#LINE#>Synthesis and Characterization of Carbyne<#LINE#>Pande@A.R.,Wadekar@K.F.,Waghuley@S.A.* <#LINE#>62-64<#LINE#>9.ISCA-RJCS-2016-036.pdf<#LINE#>Department of Physics, Sant Gadge Baba Amravati University, Amravati-444 602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati-444 602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati-444 602, India<#LINE#>22/3/2016<#LINE#>20/6/2016<#LINE#>Carbyne is an alkyl carbynes (R=H, phenyl, methyl). Carbyne have occurrence in interstellar medium as well as in earth. It has certain occurrence in biological objects. It is also prepare in special gas and space environment. First, in our review, we study the carbynes in the different fields by using its outstanding properties. Thereafter, we study the carbyne in different fields by literature survey. Secondly, represents details of synthesis of carbyne. There is a big dispute on its existence because of stability difficulties in the laboratory synthesis. The most promising objects of modern nanotechnology are the carbon-based materials. Finally, we reported the methodology used for synthesis of carbyne. Overall our review gives the systematic report for synthesis, properties and used of carbyne in different fields.<#LINE#>Rybachuk A.M., Lu Q.B. and Duley W.W. (2007).@Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation.@Appl. Phys. Lett., 91, 131906 (1-3).@Yes$Kavan L. (1998).@Electrochemical Preparation of Hydrogen Free Carbyne-Like Materials.@Acad. of sci. Czech rep., 36(5-6), 801-808.@Yes$Park M. and Lee H. (2013).@Carbyne bundles for a lithium-ion-battery anode.@J. korean phys. Soc., 63, 1014-1018.@Yes$Chalifoux W.A. and Tykwinski R.R. (2010).@Synthesis of polyynes to model the sp-carbon allotrope carbine.@Nat. Chem., 2, 967-971.@Yes$Prazdnikov Y.E., Lepnev L.S., Bozhko A.D. and Novikov N.D. (2005).@Conductance spectra of carbyne transverse to carbon chains. Is it related to the soliton lattice?.@J. Russ. Laser Res., 26, 245-251.@Yes$Xue K.H., Tao F.F., Shen W., He C.J., Chen Q.L., Wu L.J. and Zhu Y.M. (2004).@Linear carbon allotrope – carbon atom wires prepared by pyrolysis of starch.@Chem. Phys. Lett., 385, 477–480.@Yes$Januszewski J.A. and Tykwinski R.R. (2014).@Synthesis and properties of long [n] cumulenes (n ≥ 5).@Chem. Soc. Rev., 43, 3184-3203.@Yes$Cannella C.B. and Goldman N. (2015).@Carbyne Fiber Synthesis within Evaporating Metallic Liquid Carbon.@J. Phys. Chem. C., 119, 21605−21611.@Yes$Wesolowski M.J., Kuzmin S., Moores B., Wales B., Karimi R., Zaidi A.A., Leonenko Z., Sanderson J.H. and Duley W.W. (2011).@Polyyne synthesis and amorphous carbon nano-particle formation by femtosecond irradiation of benzene.@Carbon, 49, 625-630.@Yes$Xue K.H., Tao F.F., Shen W., He C.J., Chen Q.L., Wub L.J. and Zhu Y.M. (2004).@Linear carbon allotrope – carbon atom wires prepared by pyrolysis of starch.@Chem. Phys. Lett., 385, 477–480.@Yes$Kavan L. (1998).@Electrochemical Preparation of Hydrogen Free Carbyne-Like Materials.@Carbon., 36(5-6), 801-808.@Yes$Liu H., Zhang Z., Hu W. and Wang R. (2012).@Study on the oxidation coupling of acetylene catalyzed to synthesize carbyne by Ag (I).@Adv. Mater. Res., 549, 374-377.@Yes$Pan B., Xiao J., Li J., Liu P., Wang C. and Yang G. (2015).@Carbyne with finite length: The one-dimensional sp carbon.@Sci. Adv., 1, e1500857(1-10).@Yes$Wesley A. Chalifoux, Rik R. Tykwinski (2010).@Synthesis of polyynes to model the sp-carbon allotrope carbine.@Nat. Chem.@Yes$Ravagnan L., Manini N., Cinquanta E., Onida G., Sangalli D., Motta C., Devetta M., Bordoni A, Piseri P and Milani P (2009).@Effect of Axial Torsion on sp Carbon Atomic Wires.@Phys. Rev. Lett., 102, 245502, (1-7).@Yes$Artyukhov V. I., Liu M., Yakobson B. I. (2014)@Mechanically Induced Metal−Insulator Transition in Carbyne.@Nano. Lett., 14, 4224−4229.@Yes$Kudryavtsev Y. P., Heimann R. B. and Evsyukov S. E. (1996).@Carbynes: advances in the field of linear carbon chain compounds.@J. Mater. Sci., 31, 5557-5571.@Yes$Sorokin P. B., Lee H., Antipina L. Y., Singh A. K. and Boris I. Yakobson (2011).@Calcium-Decorated Carbyne Networks as Hydrogen Storage Media.@Nano Lett., 11, 2660–2665.@Yes$NuLi Y., Chen Q., Wang W., Wang Y., Yang J. and Wang J. (2014).@Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries.@Scientific World Journal., Article ID 107918, 7 pages.@Yes @Review Paper <#LINE#>Thin Film Coating through Sol-Gel Technique<#LINE#>Gaurav@Bahuguna,Neeraj Kumar@Mishra,Pratibha@Chaudhary,Amit@Kumar,Rajeev@Singh* <#LINE#>65-72<#LINE#>10.ISCA-RJCS-2016-153.pdf<#LINE#>Material/ Organometallics Laboratory, Department of Chemistry, ARSD College, University of Delhi-110021, India@Material/ Organometallics Laboratory, Department of Chemistry, ARSD College, University of Delhi-110021, India@Maitreyi College, University of Delhi, Bapudham Complex, Chanakyapuri, New Delhi, 110021, India@Department of Polymer Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075, India@Material/ Organometallics Laboratory, Department of Chemistry, ARSD College, University of Delhi-110021, India<#LINE#>31/3/2016<#LINE#>2/5/2016<#LINE#>Thin film coatings are a much explored domain, since films are well suited for the studies of physical, particularly optical properties and have numerous scientific, technological, and commercial applications. For depositing thin films, a large number of techniques have been used which involves different types of precursors. This review will highlight coating technology utilizing the sol-gel mediated precursor, which delivers high homogeneity, low temperature processing and various other advantages. Besides this, thin film depositing techniques like spin coating, dip coating have also been discussed with their various applications.<#LINE#>Bradley D.C., Mehrotra R.C. and Gaur D.C. (1978).@Metal Alkoxides.@Academic Press, London, 411, ISBN: 0-12-124250-1.@Yes$Niederberger M., Bartl M.H. and Stucky G.D. (2002).@Benzyl alcohol and transition metal chlorides as a versatile reaction system for the non aqueous and low-temperature synthesis of crystalline nano objects with controlled dimensionality.@J. Am. Chem. Soc., 124(46), 13642–13643.@Yes$Rogojan R., Andronescu E., Gghiţulica C. and Vasile B.S. (2011).@Analysis of structure and morphologyof hydroxyapatite nanopowder obtained by sol-gel and pirosol methods.@Advanced material research, 590(1), 63-67.@Yes$Murali P. and Sarma G.V.S. (2014).@Studies on HEBM and Sintering Process via Sol-Gel Method on Alumina and Copper Alumina Nanocomposites.@International Journal of Engineering Research and Reviews, 2(4), (133-143).@No$Niederberger M. and Pinna N. (2009).@Metal oxide nanoparticles in organic solvents synthesis, formation, assembly and application.@217, ISBN: 978-1-84882-670-0.@Yes$Hench L.L. (1997).@Sol-gel material for bioceramic applications.@Curr. Opin. Solid State Mater. Sci., 2, 604-10.@Yes$Guzman G., Beteille F., Morineau R. and Livage J. (1996).@Electrical switching in VO2 sol–gel films.@J. Mat. Chem., 6, 505-506.@Yes$Hench L.L. (1986).@Use of drying control chemical additives (DCCAs) in controlling sol-gel processing. In L. L. Hench and D. R. Ulrich eds. Science of Ceramic Chemical Processing.@John Wiley & Sons, Inc. 1986, 52-64.@Yes$Babic B., Djokic D. and Krstaji N. (2005).@Characterization of carbon cryogels synthesized by sol-gel polycondensation.@J.Serb.Chem.Soc., 70(1), 21-31.@Yes$Pierre A.C. and Pajonk G.M. (2002).@Chemistry of aerogel and their application.@Chem. Rev, 102, 4243-4265.@Yes$Siouffi A.M. (2003).@Silica gel-based monoliths prepared by the sol–gel method: facts and figures.@J. Chromatogr. A., 1000, 801-818.@Yes$Krumeich F., Muhr H.J., Niderberger M., Bieri F., Schnyder B and Nesper R. (1999).@Morphological and topochemical study of novel vanadium oxide nanotubes.@J. Am. Chem.Soc., 121, 8324-8311.@Yes$Huizar-Felix A.M., Hernandez T., de la Parra S., Ibarra J. and Kharisov B. (2012).@Sol–gel based Pechini method synthesis and characterization of Sm1-xCaxFeO3 perovskite 0.1≤x≤0.5.@Powder Technology, 229, 290–293.@Yes$Pierre A.C. (1998).@Introduction to Sol–Gel Processing.@Kluwer, Boston.@Yes$Cruz M.R.A., Zarzoza G.O., Castanon G.A.M. and Martínez J.R. (2012).@Thin films from different materials obtained by the Sol-Gel method: study of the morphology through Atomic Force Microscopy (AFM).@Current Microscopy Contributions to Advances in Science and Technology, 1370-1376.@Yes$Znaidi L. (2010).@Sol–gel-deposited ZnO thin films: A review.@Materials Science and Engineering B, 174, 18-30.@Yes$Chai C., Ben-Nissan B., Pyke S. and Evans L. (1995).@Sol-gel derived hydroxyapatite coatings for biomedical applications.@Mater. Manuf. Process., 10, 205-216.@Yes$Choi A.H. and Ben-Nissan B. (2014).@Advancement of sol-gel technology and nanocoatings in Australia.@Journal of the Australian Ceramics Society, 50, 121-136.@Yes$Geffcken W. and Berger E. (1939).@Verfahren zur änderung des reflexionsvermögens optischer gläser.@German Patent, 736411.@Yes$Roy D.M. and Roy R. (1995).@An experimental study of the formation and properties of synthetic sepentines and related layer silicates.@Am. Mineral, 39, 957-975.@Yes$Schroeder H. (1965).@Water-dispersed industrial and architectural coatings.@Paint Varnish Prod., 55, 31-46.@Yes$Coradin T. and Livage J. (2006).@Sol-gel synthesis of of solids.@Encyclopedia of inorganic chemistry.@No$Alhamed M. and W. Abdullah W. (2010).@Structural and optical properties of ZnO:Al films prepared by the sol–gel method.@Journal of Electron Devices, 7, 246- 252.@Yes$Dislich H. (1971).@New Routes to Multicomponent Oxide Glasses.@Angew.Chem. (Engl), 10, 363-370.@Yes$Sakka S. (2003).@Yogyo- Kyokai- Shi.@J. Sol -Gel and Tech., 85, 299.@No$Schroeder WC, et. all (1961).@Apparatus for feeding finely divided solids.@United State Patent, 3001652.@Yes$Dislich H. and Hinz P. (1982).@History and principles of sol-gel process, and some new multicomponent oxides coatings.@Journal of Non-Crystalline Solids, 48, 11-16.@Yes$Mackenzie J.D. (1988).@Applications of the Sol-Gel Process.@Journal of Non-Crystalline Solids, 100, 162-168.@Yes$Schmidt H. (1988).@Chemistry of material preparation by sol-gel process.@Journal of Non-Crystalline Solids, 100, 51-64.@Yes$Wang D. and Bierwagen G.P. (2009).@Sol–gel coatings on metals for corrosion protection.@Progress in Organic Coatings, 64, 327-338.@Yes$Miyazawa K., Suzuki K. and Wey M.Y. (1995).@Microstructure and Oxidation-Resistant Property of Sol-Gel-Derived ZrO2-Y2O3 Films Prepared on Austenitic Stainless Steel Substrates.@J. Am. Ceram. Soc., 78, 347-355.@Yes$Dislich H. and Hussamann E. (1981).@Amorphous and crystalline dip coatings obtained from organometallic solutions: Procedures, chemical processes and products.@Thin Solid films., 77, 129-139.@Yes$Aegerter M.A. and Mennig M. (2004).@Sol–Gel Technologies for Glass Producers and Users.@Kluwer Academic Publishers, Norwell, Mass., 37-48.@Yes$Lou X.B., Shen H.L. and Zhang H. (2007).@Optical Properties of Nanosized ZnO Films Prepared by Sol-Gel Process.@Transactions of Nonferrous Metals Society of China, 17, 814-817.@Yes$Shakti N. and Gupta P.S. (2010).@Structural and Optical Properties of Sol-gel Prepared ZnO Thin Film.@Applied Physics Research, 2(1), 19-28.@Yes$Moncada E., Quijada R. and Retuert J. (2007).@Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene.@Nanotechnology, 18, 335606, 1-7.@Yes$Schmidt H.K., Geiter E., Mennig M., Krug H., Becker C. and Winkler R.P. (1998).@The sol-gel process for nano technologies: nanocomposites with interesting optical and mechanical properties.@Journal of Sol-Gel Science and Tech., 13, 397-404.@Yes$Attia S.M., Wang J., Wu G., Shen J. and Ma J. (2002).@Review on Sol—Gel Derived Coatings: Process, Techniques and Optical Applications.@J. Mater. Sci. Technol., 18(3), 211-218.@Yes$Dimitriev Y., Ivanova Y. and Iordanova R. (2008).@History of sol-gel science and technology.@Journal of the University of Chemical Technology and Metallurgy, 43(2), 181-192.@Yes$Mackenzie J.D. (1988).@Applications of the Sol-Gel Process.@Journal of Non-Crystalline Solids, 100, 162-168.@Yes$Bressanone (2006).@Coatings.@Universita Degli Studi Di Padova, Italy, http://www.chimica.unipd.it/offerte/pubblica /dottorato /coatings.pdf.@No$Cruz M.R.A., Zarzoza G.O., Castanon G.A.M. and Martínez J.R. (2012).@Thin films from different materials obtained by the Sol-Gel method: study of the morphology through Atomic Force Microscopy (AFM).@Current Microscopy Contributions to Advances in Science and Technology, 2, 1370-1376.@Yes$Brinker C.J., Hurd A.J., Frye G.C., Ward K.J. and Ashley C.S. (1990).@Sol-gel thin-film formation.@Journal of Non-Crystalline Solids, 121, 294-302.@Yes$Bornside D.E., Macosko C.W. and Scriven L.E. (1989).@Spin coating: Onedimensional model.@Journal of Applies Physics, 66, 5185-5193.@Yes$Wani I.A., Khatoon S., Ganguly A., Ahmed J., Ganguli A.K. and Ahmad T. (2010).@Silver nanoparticles: Large scale solvothermal synthesis and optical properties.@Materials Research Bulletin, 45(8), 1033-1038.@Yes$Sadekar H.K., Ghule A.V. and Sharma R. (2013).@Nanocrystalline ZnSe thin films prepared by solution growth technique for photosensor application.@Composites: Part B, 44(1), 553–557.@Yes$Benlarbi M., Farre C., Chaix C., Lawrence M.F., Blum L.J., Lysenko V. and Marquette C.A. (2010).@Semiconducting properties of thin films with embedded nanoparticles.@Synthetic Metals, 163(23-24), 2675–2680.@Yes$Shen G.X., Chen Y.C. and Lin C.J. (2005).@Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method.@Thin Solid Films, 489,130-136.@Yes$Jin Z., Zhou H., Jin Z.L., Savinell R.F. and Liu C. (1998).@Application of nano-crystalline porous tin oxide thin film for CO sensing.@Sensors and Actuators B, 52, 188–194.@Yes$Jiang Y., Yan Y., Zhang W., Ni L., Sun Y. and Yin H. (2011).@Synthesis of cauliflower-like ZnO–TiO2 composite porous film and photoelectrical properties.@Applied Surface Science, 6583–6589.@Yes$A. Murakami, A., Yamaguchi, T., Hirano, S., Kikuta, K., Murakami, A., Yamaguchi, T., Hirano, S. and Kikuta, K. (2008).@Synthesis of porous titania thin films using carbonatation reaction and its hydrophilic property.@Thin Solid Films, 516(12), 3888-3892.@Yes