@Research Paper <#LINE#>Application of 4-HADTOT-HCAC Composite for Removal of Cd(II) from Contaminated Water<#LINE#>Dongapure @A.C.,Rahangdale @P.K.,Burghate @P.D. <#LINE#>1-4<#LINE#>1.ISCA-RJCS-2016-054.pdf<#LINE#>Shankarlal Agarawal College, Salekasa-441916, India@Bhawabhuti College, Amgaon-441902, India@Science College, Congress Nagar, Nagpur-440013, India<#LINE#>22/3/2016<#LINE#>25/11/2016<#LINE#>The present research article reports the practical applicability of newly obtained 4-HADTOT-HCAC Composite for removal of toxic divalent Cadmium from contaminated water. Initially 4-HADTOT tercopolymer was synthesized by acid catalyzed condensation polymerization method using 4-Hydroxy Acetophenone (4-HA), Dithio Oxamide (DTO) and Trioxane(T) as starting materials. Activated carbon derived from Hibiscus cannabinus fruit shell (HCAC) was generated using known methods. The new Composite material was obtained from 4-HADTOT and HCAC and it has been abbreviated as 4-HADTOT-HCAC. The resulting Composite was characterized by SEM and FTIR spectroscopy studies. Adsorption studies for removal of Cd(II), a toxic pollutant, were conducted in the laboratory. The optimum conditions like adsorbent doses, agitation time, initial metal ion concentration and pH on adsorption of Cd(II) by 4 -HADTOT-HCAC Composite were investigated. AAS was used to determine Cd(II) concentration. At 300K temperature and pH 6, 95% of the Cd(II) was removed from metal ion solution (25 ml, 0.1 mg dm-3). Thus 4-HADTOT-HCAC Composite has been proved to be the new promising excellent material for waste water treatment with special reference to removal of Cd(II).<#LINE#>Jarup L. and Akesson A. (2009).@Current status of cadmium as an environmental health problem.@Toxicology and applied pharmacology, 238(3), 201-208.@Yes$M Sittig (1981).@Handbook of Toxic and Hazardous Chemicals.@Noyes Publications, Park Ridge, NJ, 119–120, 185–186.@Yes$Deng S. (2006).@Sorbent technology, Encyclopedia Chem.@Process http://dx.doi.org/10.1081/E-ECHP-120007963, 2825-2845.@Yes$A.K. Chakravarti ∗, S.B. Chowdhury, S. Chakrabarty, T Chakrabarty, D.C. Mukherjee (1995).@Liquid membrane Multiple emulsion process of chromium Cr(VI) separation from waste-water colloids.@surf A: Physio Chem. Engg. Aspects, 103, 59-71.@Yes$Erol P. and Altun T. (2008).@Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell.@Journal of Hazardous Materials, 155(2) 30 378–384.@Yes$Cimino G., Passerini A. and Toscano G. (2000).@Removal of toxic cations and Cr(VI) from aqeuos solution by hazelnut shell.@water Res, 34(11), 2955-2962.@Yes$Gode F. and Pehlivan E. (2005).@Removal of Cr (VI) from aqueous solution by two lewatit-anion exchange resin.@J Hazard Mater, 119, 175-182.@Yes$Juang R.S. and Shiau R.C. (2000).@Metal removal from aqueous solution using Chitosan enhanced membrane filtration.@J Membr Sci., 21(10), 1091-1097.@Yes$Lalvani S.B., Hubner A. and Wiltowski T.C. (2000).@Chromium adsorption by lignin.@Energy Sources, 22, 45-46.@Yes$Lu A., Zhong S., Chen J., Shi J. and Tang J. (2006).@Removal of Cr (VI) and Cr (III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite.@Environ Sci. Technol, 40(9), 3064-3069.@Yes$Loukidou M.X., Zouboulis A.I., Karapantsios T.D. and Matis K.A. (2004).@Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae.@Colloids and Surface A: Physiochemical and Engineering Aspect, 242, 93-104.@Yes$Hunge S.S., Rahangdale P.K., Lanjewar M.R. (2014).@Removal of Hexavalent Chromium from aqueous Solution using Pretreated Bio-Sorbent.@Int. Arch. App. Sci. Technol, 5(1) 06- 10.@Yes$Deng S. (2006).@Sorbent technology.@Encyclopedia Chem Process. http://dx.doi.org/10.1081/E-ECHP-120007963, 2825-2845.@Yes$Saifuddin N., Nian C.Y., Zhan L.W. and Ning K.X. (2011).@Chitosan– silver nanoparticles Composite as point-of-use drinking water filtration system for household to remove pesticides in water.@Asian J. Biochem.@Yes$B Rahmanifar, SM Dehaghi (2014).@Removal of organochlorine pesticides by chitosan loaded with silver oxide nanoparticles from water.@Clean Technol. Environ. Policy.@Yes$OS Amuda, AA Giwa, IA Bello (2007).@Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon.@Biochemical Engineering Journal, 36(2), 174–181.@Yes <#LINE#>Design and Facile Synthesis of 6-(Benzo Thiophen-3-YL)-3-para-Substituted-[1,2,4] Triazolo [3,4-a] Phthalazine Derivatives as Anti-Microbial Agents<#LINE#>V. @Prabhakar,K. Sudhakar @Babu,L.K. @Ravindranath,I. Lakshmi @Reddy,J. @Latha <#LINE#>5-17<#LINE#>2.ISCA-RJCS-2016-172.pdf<#LINE#>Faculty of Engineering Chemistry, SVR Engineering College, Jawaharlal Nehru Technological University-Anantapuramu (JNTU-A), Nandyal, Kurnool (Dist), A.P., India@Department of Chemistry, Sri Krishnadevaraya University, Ananthapuramu, (AP), India@Department of Chemistry, Sri Krishnadevaraya University, Ananthapuramu, (AP), India@Prajna Generics Pvt. Ltd., Hyderabad, Telangana, India@Dept. of Bio-technology, Sri Krishnadevaraya University College of Engineering & Tech., S.K. University, Anantapuramu–515003 (AP) India<#LINE#>29/4/2016<#LINE#>30/11/2016<#LINE#>The article is aimed to synthesize, characterize and screening the biological activity of novel a series of 6-(Benzo Thiophen-3-Yl)-3-Para-Substituted-[1,2,4] Triazolo[3,4-a] Phthalazine Derivatives (8 a-j)with good yields. The newly synthesized compounds were characterized by IR, 1H-NMR, 13C NMR and Mass spectral data. The anti-microbial activity of the novel compounds were screened by disc diffusion method. Compounds 8h, 8g, and 8f demonstrated good antimicrobial activity against all the tested microbial strains. Fused Phialazine 1, 2,4 Triazole linked thiophene with 2,5 di fluoro nucleus has shown good antibacterial and antifungal activities.<#LINE#>Ju Y. and Varma R.S. (2006).Aqueous N-Hetero cyclization of primary amines and hydrazines with dihalides: micro wave assisted Syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. Journal of Organic Chemistry, 71(1), 135–141.@undefined@undefined@Yes$Ju Y., Kumar D. and Varma R.S. (2006). Revisiting nucleophilic substitution reactions: microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. Journal of Organic Chemistry, 71(17), 6697–6700.@undefined@undefined@Yes$Lokhande P.D., Waghamare B.Y. and Sakate S.S. (2005). Regioselective one-pot synthesis of 3,5-diarylpyrazoles. Indian Journal of Chemistry B, 44(11), 2338–2342.@undefined@undefined@Yes$Reddy G.J., Manjula D., Rao K.S., Khalilullah M. and Latha D. (2005). A Direct single step synthesis of 1,3-diaryl-4-cyanopyrazoles and their conversion to 1,3-diaryl-4-(4,6-diamino 1,3,5-triazin-2-yl) pyrazoles. Indian Journal of Chemistry B, 44, 2412–2415.@undefined@undefined@Yes$Zificsak C.A. and Hlasta D.J. (2004). Current methods for the synthesis of 2-substituted azoles. Tetrahedron, 60(41), 8991– 9016.@undefined@undefined@Yes$Haino T., Tanaka M., Ideta K., Kubo K., Mori A. and Fukazawa Y. (2004). Solid-phase synthesis of liquid crystalline isoxazole library. Tetrahedron Letters, 45(11), 2277–2279.@undefined@undefined@Yes$García-Valverde M. and Torroba T. (2005). Special issue: sulfur-nitrogen heterocycles. Molecules, 10(2), 318–320.@undefined@undefined@Yes$Tsoungas P.G. and Searcey M. (2001). A convenient access to benzo-substituted phthalazines as potential precursors to DNA intercalators. Tetrahedron Lett., 42, 6589-6592.@undefined@undefined@Yes$Sivakumar R., Gnanasam S.K., Ramachandran S. and Leonard J.T. (2002). Pharmacological evaluation of some new 1-substituted-4-hydroxyphthalazines. Eur. J. Med. Chem., 37, 793-801.@undefined@undefined@Yes$Joule J.A. and Mills K. (2012). Heterocyclic Chemistry at a Glance. John Wiley & Sons, NewYork, NY, USA, 2012.@undefined@undefined@Yes$Franklin E.C. and Bergstrom F.W. (1944). Heterocyclic nitrogen compounds: part-IIA. Hexa cyclic compounds: pyridine, quinoline, and isoquinoline. Chemical Reviews, 35(2), 77– 277.@undefined@undefined@Yes$Turk C., Svete J. and Stanovniketal B. (2001). Regioselective 1, 3-dipolar cycloadditions of (1Z)-1-(arylmethylidene)-5, 5-dimethyl-3 oxopyrazolidin-1-ium-2-ide azomethine imines to acetylenic dipolarophiles. Helvetica Chimica Acta, 84(1), 146–156.@undefined@undefined@Yes$Mavel S., Thery L. and Gueiffier A. (2002). Synthesis of imidazo[2, 1-a]phthalazines, potential inhibitors of p38 MAP kinase. Prediction of binding affinities of protein ligands. Archiv der Pharmazie Medicinal Chemistry, 335(1), 7–14.@undefined@undefined@Yes$Carling R.W., Moore K.W., Street L.J. et al. (2004). 3-Phenyl-6-(2pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues: high-affinity 𝛾-aminobutyric acid-a benzodiazepine receptorligandswith 𝛼2, 𝛼3,and 𝛼5-subtypebindingselectivity over 𝛼1. Journal of Medicinal Chemistry, 47(7), 1807–1822.@undefined@undefined@Yes$Imamura Y., Noda A., Imamura T., Ono Y., Okawara T. and Noda H. (2003). A novel methylthio metabolite of s-triazolo[3,4a]phthalazine, a lead compound for the development of antianxiety drugs, in rats. Life Sciences, 74(1), 29–36.@undefined@undefined@Yes$Kim J.S., Lee H.J. and Suhetal M.E. (2004). Synthesisandcytotoxicity of 1-substituted 2-methyl-1H-imidazo[4,5-g] phthalazine-4, 9 dionederivatives. Bioorganic and Medicinal Chemistry, 12(13), 3683–3686.@undefined@undefined@Yes$Lebsack A.D., Gunzner J., Wang B. et al. (2004). Identification and synthesis of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to the 𝛼2𝛿 -1 subunit of voltage gated calcium channel. Bioorganic and Medicinal Chemistry Letters, 14(10), 2463–2467.@undefined@undefined@Yes$Tsoungas P.G. and Searcey M. (2001). A convenient access to benzo substituted phthalazines as potential precursors to DNA intercalators. Tetrahedron Letters, 42(37), 6589–6592.@undefined@undefined@Yes$Sivakumar R., Gnanasam S.K., Ramachandran S. and Leonard J.T. (2002). Pharmacological evaluation of some new 1-substituted-4-hydroxy-phthalazines. European Journal of Medicinal Chemistry, 37(10), 793–801.@undefined@undefined@Yes$Coelho A., Sotelo E. and Fraizetal N. (2004). Pyridazines Part 36: synthesis and anti platelet activity of 5-substituted-6-phenyl-3(2H) pyridazinones. Bioorganic and Medicinal Chemistry Letters, 14(2), 321–324.@undefined@undefined@Yes$Demirayak S., Karaburun A.C. and Beis R. (2004). Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their anti hyper tensive activities. European Journal of Medicinal Chemistry, 39(12), 1089–1095.@undefined@undefined@Yes$Dogruer D.S., ahin M.F.S¸, upeli E.K¨ and Ye silada E. (2003). Synthesis and analgesic and anti-Inflammatory activity of new pyridazinones. Turkish Journal of Chemistry, 27(6), 727–738.@undefined@undefined@Yes$Dogruer D.S., Kupeli E., Yesilada E. and Sahin M.F. (2004). Synthesis of new 2-[1(2H)-phthalazinon-2-yl]-acetamide and 3-[1(2H)phthalazinon-2-yl]-propanamide derivatives as antinociceptive and anti-inflammatory agents. Archiv der Pharmazie, 337(6), 303–310.@undefined@undefined@Yes$Sonmez M., Berber I. and Akba¸s E. (2006). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. European Journal of Medicinal Chemistry, 41(1), 101–105.@undefined@undefined@Yes$Tanizaki Y., Ohtani J. and Kimura I. (1992). Actions and cross reactivity of antiallergic agents and a calcium channel antagonist on rat peritoneal mast cells. Difference in the action mechanisms and cross-reactivity among the agents. Agents and Actions, 37(1-2), 8–15.@undefined@undefined@Yes$Groves B.M., Rubin L.J. and M.F. Frosolono (1985). A comparison of the acute hemodynamic effects of prostacyclin and hydralazine in primary pulmonary hypertension. American Heart Journal, 110(6), 1200–1204.@undefined@undefined@Yes$Packer M., Greenberg B., Massie B. and Dash H. (1982).Deleterious effects of hydralazine in patients with pulmonary hypretension. The New England Journal of Medicine, 306(22), 1326–1331.@undefined@undefined@Yes$Keller C.A., Shepard Jr. J.W. and Chun D.S. (1984). Effects of hydralazine on hemodynamics, ventilation, and gas exchange in patients with chronic obstructive pulmonary disease and pulmonary hypertension 1-4. American Review of Respiratory Disease, 130(4), 606–611.@undefined@undefined@Yes$Yagisawa M. (2006). 1,2,4-Triazoles: Synthetic approaches and pharmacological importance. Jpn. J. Med. Mycol., 45, 77.@undefined@undefined@Yes$Johnson E.M., Szekely A., Warnock D.W. (1999). Antimicrob. Agents Chemother, 43, 1260.@undefined@undefined@No$Tsukuda Y., Shiratori M., Watanabe H., Ontsuka H., Hattori K., Shirai M. and Shimma N. (1998). Modeling, synthesis and biological activity of novel antifungal agents. Bioorg. Med. Chem. Lett., 8, 1819.@undefined@undefined@Yes$Narayanan A., Chapman D.R., Upadhyaya S.P. and Bauer L. (1993). Conversion of 4-amino-4H-1,2,4-triazole to 1,3-bis(1H-azol-l-yl)-2-aryl-2-propanols and 1-phenacyl-4-[(benzoyl or 4-toluenesulfonyl)-imino]-(1H-1,2,4-triazolium) Ylides. J. Heterocycl. Chem., 30, 1405.@undefined@undefined@Yes$Bailey E.M. and Krakovsky D.J. (1990). The triazole antifungal agents: a review of itraconazole and fluconazole. J. Pharmacotherapy , 10, 146-153.@undefined@undefined@Yes$Roberts J., Schock K., Marino S. and Andriole V.T. (2000). Efficacies of Two New Antifungal Agents, the Triazole Ravuconazole and the Echinocandin LY-303366, in an Experimental Model of Invasive Aspergillosis. Antimicrob. Agents Chemother., 44, 3381-3388.@undefined@undefined@Yes$Sanati H., Belanger P., Fratti R. and Ghannoum M. (1997). A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob. Agents Chemother. , 41, 2492-2496.@undefined@undefined@Yes$Espinel-Ingroff A. (1998). Comparison of In Vitro Activities of the New Triazole SCH56592 and the Echinocandins MK-0991 (L-743,872) and LY303366 against Opportunistic Filamentous and Dimorphic Fungi and Yeasts. J. Clin. Microbiol., 36, 198-202.@undefined@undefined@Yes$Urbina J.A., Lazardi K. and Aguirre T. (1991). Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. J. M. Ann. N.Y. Acad. Sci., 544, 86.@undefined@undefined@Yes$Oakley K.L., Moore C.B. and Denning D.W. (1997). In vitro activity of SCH-56592 and comparison with activities of amphotericin B and itraconazole against Aspergillus spp. Antimicrob. Agents Chemother. , 41, 1124-1126.@undefined@undefined@Yes$Zitouni G.T., Kaplancikh Z.A., Yildiz M.T., Chevallet P. and Kaya D. (2005). Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. Eur. J. Med. Chem., 40, 607-613.@undefined@undefined@Yes$Walczak K., Gondela A. and Suwin´ski (2004). Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles. J. Eur. J. Med. Chem., 39, 849-853.@undefined@undefined@Yes$Ainsworth C., Easton N.R., Livezey M., Morrison D.E. and Gibson W.R. (1962). The Anticonvulsant Activity of 1,2,4-Triazoles. J. Med. Pharm. Chem., 5, 383-389.@undefined@undefined@Yes$Kane J.M., Baron B.M., Dudley M.W., Sorensen S.M., Staeger M.A. and Miller F.P. (1990). 2,4-Dihydro-3H-1,2,4-triazol-3-ones as anticonvulsant agents. J. Med. Chem., 33, 2772-2777.@undefined@undefined@Yes$Mano T., Stevens R.W., Okumura Y., Kawai M., Okumura T. and Sakakibara M. (2005). 5-Lipoxygenase inhibitors: convenient synthesis of 4-[3-(4-heterocyclylphenylthio)phenyl]-3,4,5,6-tetrahydro-2H-pyran-4-carboxamide analogues. Bioorg. Med. Chem. Lett., 15, 2611-2615.@undefined@undefined@Yes$Holla B.S., Veerendra B., Shivananda M.K. and Poojary B. (2003). Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 38, 759-767.@undefined@undefined@Yes$Matesanz A.I., Joie C. and Souza P. (2010). Chemistry, anti proliferative activity and low nephrotoxicity of 3,5-diacetyl-1,2,4-triazol bis(4N-thiosemicarbazone) ligands and their platinum(II) complexes. J. Chem. Soc. Dalton Trans., 7059-7065.@undefined@undefined@Yes$Souza P., Matesanz A.I. and Pastor C. (2002). Preparation and structural characterisation of a novel palladium (II) binuclear complex containing triazole bis thio semi carbazone bridges. Inorg. Chem. Commun., 5, 344-346.@undefined@undefined@Yes$Holm S.C. and Straub B.F. (2011). Synthesis of N-Substituted 1,2,4-Triazoles. A Review.@undefined@undefined@Yes$Janam S.R. and Kumar S.D. (2010). Novel Syntheses of Some 1, 2, 4-Triazoles as Potent Bacteriocidal Agents. Journal of Chemistry, 7(1), 37-40.@undefined@undefined@Yes$Kaplaushenko A.G., Panasenko A.I., Knysh E.G. and Svintozelsky A.A. (2008). Farmatsevtichnii Zhurnal Kiev, Ukraine. 4, 57.@undefined@undefined@No$Zhong X.L., Shu-sheng Z., Zhi-qiang H. and Kui J. (2003). Studies on Synthesis and Biological Activities of Novel Triazole compounds Containing Thiophene Groups. Chemical Research in Chinese Universities. 19(3), 310-313.@undefined@undefined@No$Kim S.H., Kang S.W., Ahn H.J., Kim H.R. and YH Kim - KR (2009). Repub. Korean Kongkae Taeho Kongbo. 34.@undefined@undefined@Yes$Hull Jr J.W., Romer D.R. and Adaway T.J. (2009). Development of Manufacturing Processes for a New Family of 2, 6-dihaloaryl 1, 2, 4-triazole Insecticides. 13, 1125.@undefined@undefined@Yes$Churilov I.S., Popkov S.V., Grishina A.A., Chembarova E.V. and Mironova O.Y. (2008). Khimicheskaya Promyshlennost Segodnya. 8, 31.@undefined@undefined@No$Rida S.M., E.L. Hawash A.M., Hesham T.Y., Hazzaa A.A., Meligy E. and Mostafa M.M. (2006). Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Archives of Pharmacal Research. 29(10), 826-833.@undefined@undefined@Yes$Meide W.F., Leslie O.A., Jensema A.J., Peekel I., William R.F., Schallig F.H., Fat R.F. and Lai M.A. (2009). Evaluation of treatment with pentamidine for cutaneous leishmaniasis in Suriname. International Journal of Dermatology. 48, 52.@undefined@undefined@Yes$Qian G., Chun-ling Z., Wei-wei F. and Ju-zheng F. (2009). Huaxi Yaoxue Zazhi. 24, 475.@undefined@undefined@No$Bayer H.O., Cook R.S. and von Meyer W.C. (1972). 1 2 4-triazole metal salt complexes. Chem. Abstr., 76, 113224.@undefined@undefined@Yes$Jianxin GUO, Na XUE, Ting KANG, Bingqiang YE, Xinfa CHEN and Xin ZHANG (2014). Tao Patent: EP2799435A1, Location in patent: Paragraph 0049; 0068 ; 0069. Chengdu Di@undefined@undefined@No$Zhang Qiu­Rong, Xue Deng­Qi He, Peng Shao, Kun­Peng, Chen Peng­Ju, Gu Yi­Fei, Ren Jing­Li, Shan Li­Hong, Liu Hong­Min (2014). Bio organic and Medicinal Chemistry Letters. 24(4), 1236 ­ 1238.@undefined@undefined@No$Merck Sharp and Dohme (2001). Therapeutically active 1,2,4-triazolo[4.,3-B] pyridazine derivatives as ligands for GABA receptors. Patent: US6313125 B1 2001.@undefined@undefined@Yes$Kikkeri N. Mohana, Basava Patna N., Kumar Prasanna and Lingappa Mallesha (2013). Synthesis and antiproliferative activity of some new fluorinated Schiff bases derived from 1,2,4-triazoles. Journal of Fluorine Chemistry, 156, 15-20.@undefined@undefined@No$Pelle Lidström, Jason Tierney, Bernard Wathey and Jacob Westman (2001). Microwave assisted organic synthesis-a review microwave assisted microwave assisted synthesis. Tetrahedron, 57, 9225-9283.@undefined@undefined@Yes <#LINE#>Effect of Musi River Pollution on Human Anthropogenic Activities<#LINE#>Srisailam @Gogula,Sunder @Kumar Kolli <#LINE#>18-24<#LINE#>3.ISCA-RJCS-2016-190.pdf<#LINE#>Department of Chemistry, Govt. City College, Hyderabad, Telangana-500008, India@Department of Chemistry, Annamacharya Institute of Technology Sciences, Hyderabad, India<#LINE#>22/5/2016<#LINE#>5/12/2016<#LINE#>At the present day the world is mainly focused on the depletion of the atmospheric ozone layer by environmental pollution. Environmental pollution is unfavorable alteration of our surroundings. The water is most important resource and one of the universal solvent, it is used by living organisms. The major source of water is mainly oceans, rivers, lakes, ponds and makes 65% of human body. The water is using for daily activities and also used for several industries may causes water pollution. In present study, an extensive investigation of physico-chemical parameters of water samples of river Musi located in Hyderabad was carried out. For this area sampling sites were selected along the river Musi in and around Hyderabad on affected areas like Himayath Sagar-1, Langer House-2, Govt. City college-3, Nagole-4 and Peerjadiguda-5 (Ground water). Water samples were collected during a month of February 2016. The observed values of different parameters such as Colour, Odour, pH, EC, TDS, Turbidity, CO3, HCO3, Cl, F, NO3, SO4, Na, K, Ca, Mg, TH, BOD and COD of samples were indentified in different locations in and around Hyderabad city.<#LINE#>R Costanza, R d@The value of the world@Nature, 387, 253-260.@Yes$Karanth K.R. (1987).@Groundwater assessment, Development and management.@Tata-McGraw Hill Publishing Company Limited, New Delhi: 720.@Yes$Ramessur R.T. (2000).@Determination of some dissolved trace metals from groundwater in Mauritius using inductively–coupled plasma mass spectrometry.@Science and Technology Journal, 5.@Yes$Abollino O., Aceto M., Malandrino M., Sarzanini C., Mentasti E., (2003).@Adsorption of heavy metals on Na-montmorillonite Effect of pH and organic substances.@Water Res., 37, 1619–1627.@Yes$AD Benetti (2008).@Water Reuse: Issues, Technologies and Applications.@McGraw-Hill, New York.@Yes$V Lazarova, A Bahri (2004).@Water Reuse for Irrigation: Agriculture, Landscapes and Turf Grass.@CRC Press, Boca Raton, FL.@Yes$Brenda W.L and Lee Lerner K. (2009).@Environmental Science.@In Context vol. 1 & 2, Gale, Cengage Learning, New York.@No$Minhas P.S. and Samra J.S. (2003).@Quality assessment of water resources in the Indo-Gangetic basin part in India.@Central Soil Salinity Research Institute, Karnal, India: 68.@Yes$Marcin P., Bartlomiej W., Nicholas H., (2013).@Scots pine needles macronutrient (N, P, K, CA, MG, and S) supply at different reclaimed mine soil substrates—as an indicator of the stability of developed forest ecosystems.@DOI 10.1007s10661-013-3111-9.@Yes$Semenza J.C., Roberts L., Henderson A., Bogan J., Rubin C.H. (1998).@Water distribution system and diarrheal disease transmission: a case study in Uzbekistan.@American Journal of Tropical Medicine and Hygiene. 59(6), 941-946.@Yes$Lahlou Z.M. (2002).@Water quality in distribution systems.@Tech Brief. A national drinking Water Clearinghouse fact sheet. West Virginia University.@Yes$A Jayyousi (2001).@Protection of the Quality and Supply of Freshwater Resources: Application of Integrated Approaches to the Development, Management and Use of Water Resources.@The United Nations Conference on Environment and Development. Chapter 18, Agenda 21.@Yes <#LINE#>Bent-Shaped Molecules with Terminal Trimethylsilyl Group: Synthesis and Characterisation<#LINE#>Hosapalya Thimmaiah @Srinivasa,Suresh @Hariprasad <#LINE#>25-31<#LINE#>4.ISCA-RJCS-2016-219.pdf<#LINE#>Raman Research Institute, Sadashivanagara, Bengaluru-560080, Karnataka, India@Department of Chemistry, Central College Campus, Bangalore University, Bengaluru-560001, Karnataka, India<#LINE#>20/9/2016<#LINE#>19/11/2016<#LINE#>The synthesis and characterizations of four symmetric and unsymmetric achiral banana-shaped esters possessing the terminal trimethylsilyl group are described. The chemical structures are confirmed by IR, NMR techniques and further compounds have been examined for liquid crystal properties by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). In unsymmetric molecule B1 mesophase has been observed. The remaining compounds are hard to exhibit liquid crystalline property.<#LINE#>Keith C., Reddy R.A., Baumeister U., Hahn H., Lang H. and Tschierske C. (2006).@Continuous transition from antiferroelectric to ferroelectric switching liquid crystalline phases in two homologous series of bent-core mesogenic dimers based on crbosilane spacer units.@J. Mater. Chem., 16, 3444-3447.@Yes$Naciri J., Ruth J., Crawford G., Shashidhara R. and Ratna B.R. (1995).@Novel ferroelectric and electroclinic organosiloxane liquid crystals.@Chem. Mater., 7, 1397-1402.@Yes$Naciri J., Carboni C. and George A.K. (2003).@Low transition temperature organosiloxane liquid crystals displaying a de Vries smectic A phase.@Liq. Cryst., 30, 219-225.@Yes$Link D.R., Natale G., Shao R., Maclennan J.E., Clark N.A., Korblova E. and Walba D.M. (1997).@Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules.@Science, 278, 1924-1927.@Yes$Takezoe H. and Takanishi Y. (2006).@Bent-core liquid crystals: Their mysterious and attractive world.@Jpn. J. Appl. Phys., 45, 597-625.@Yes$Sekine T., Niori T., Watanabe J., Furukawa T., Choi S.W. and Takezoe H. (1997).@Spontaneous helix formation in smectic liquid crystals comprisingachiral molecules.@J. Mater. Chem., 7, 1307-1309.@Yes$Niori T., Sekine T., Watanabe J., Furukawa T. and Takezoe H. (1996).@Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules.@J. Mater. Chem., 6, 1231-1233.@Yes$Reddy R.A. and Tschierske C. (2006).@Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems.@J. Mater. Chem., 16, 907-961.@Yes$Pelzl G. and Weissflog W. (2007).@In Thermotropic liquid crystals: recent advances, ed. Ramamoorthy.@A. Springer, Berlin, Germany, 1-58.@Yes$Tschierske C. (2009).@In chirality at the nano scale, Edn. Amabiliino DB.@Wiley-VCH, Weinheim, 271.@No$Karahaliou P.K., Vanakaras A.G. and Photinos D.J. (2009).@Symmetries and alignment of biaxial nematic liquid crystals.@J. Chem. Phys., 131, 124516.@Yes$Liao C.T., Wu Z.L., Wu N.C., Liu J.Y., Jiang M.H., Zou S.F. and Lee J.Y. (2010).@Low-temperature and wide ferroelectric phase in mixtures of chiral and non-chiral tilted smectic-c type liquid crystals.@Mol. Cryst. Liq. Cryst., 533, 3-15.@Yes$Dantlgraber G., Baumeister U., Diele S., Kresse H., Luhmann B., Lang H. and Tschierske C. (2002).@Evidence for a new ferroelectric switching liquid crystalline phase formed by a carbosilane based dendrimer with banana-shaped mesogenic units.@J. Am. Chem. Soc., 124, 14852-14853.@Yes$Shanker G., Prehm M. and Tschierske C. (2012).@Laterally connected bent-core dimers and bent-core-rod couples with nematic liquid crystalline phases.@J. Mater. Chem., 22, 168-174.@Yes$Nishikawa E. and Samulski E.T. (2000).@New mesogens with cubic phases: hydrogen-bonded bipyridines and siloxane-containing benzoic acids II. Structure studies.@Liq. Cryst., 27, 1463-1471.@Yes$Venkatesha M.A. and Hariprasad S. (2013).@Synthesis of five- and six-membered 2-trimethylsilyl-1,3,3-trimethylcycloalkenes: A novel preparation of alkyl/alkenyl/aryl-(1@J. Serb. Chem. Soc., 78, 1-18.@Yes$Srinivasa H.T. and Hariprasad S. (2012).@Synthesis of novel aryloxysilylethers using hexamethyldisilazane and laponite RD® catalyst.@Org. Chem. Ind. J., 8, 130-134.@Yes$Srinivasa H.T. and Hariprasad S. (2014).@Synthesis of some novel aromatic alkynyl silanes: mesomorphic characterization of ethynyl-substituted rod-shaped molecules.@Mol. Cryst. Liq. Cryst., 588, 17-27.@Yes$Vita F., Hegde M., Portale G., Bras W., Ferrero C., Samulski E.T., Francescangeli O. and Dingemans T. (2016).@Molecular ordering in the high-temperature nematic phase of an all-aromatic liquid crystal.@Soft Matter., 12, 2309-2314.@Yes$Srinivasa H.T. and Hariprasad S. (2014).@4-[2-(Trimethylsilyl)ethynyl]benzoates: Synthesis and evaluation for mesomorphic properties of some novel calamitic molecules.@J. Organomet. Chem., 774, 19-25.@Yes$Umadevi S., Sadashiva B.K., Shreenivasamurthy H.N. and Raghunathan V.A. (2006).@Mesogenic dimers composed of bent-core molecules with flexible alkylene spacer.@Soft Matter, 2, 210-214.@Yes$Umadevi S. and Sadashiva B.K. (2005).@Banana-shaped mesogens: mesomorphic properties of seven-ring esters derived from 5-chlororesorcinol.@Liq. Cryst., 32, 287-297.@Yes$Sadashiva B.K., Reddy R.A., Pratibha R. and Madhusudana N.V. (2001).@Biaxial smectic a liquid crystal in a pure compound.@Chem Commun., 20, 2140-2141.@Yes$Fodor-Csorba K., Vajda A., Jakli A., Slugovc C., Trimmel G., Demus D., Baitz E.G., Holly S. and Galli G. (2004).@Ester type banana-shaped liquid crystalline monomers: synthesis and physical properties.@J. Mater.Chem., 14, 2499-2506.@Yes$Balamurugan S. and Kannan P. (2009).@Synthesis and characterization of symmetrical banana shaped liquid crystalline polyethers.@J. Mol. Str., 934, 44-52.@Yes$Tschierske C. and Dantlgraber G. (2003).@From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core molecules.@PRAMANA, 61, 455-481.@Yes <#LINE#>Preparation and Study of Some Optical Parameters of (Polyvinyl Alcohol -KI) Composite Films<#LINE#>S.A. @Salman,N.A. @Bakr,Mayada F. @Khalil <#LINE#>32-39<#LINE#>5.ISCA-RJCS-2016-222.pdf<#LINE#>Department of Physics, College of Science, University of Diyala, Diyala, Iraq@Department of Physics, College of Science, University of Diyala, Diyala, Iraq@Department of Physics, College of Science, University of Diyala, Diyala, Iraq<#LINE#>28/9/2016<#LINE#>3/12/2016<#LINE#>Polyvinyl Alcohol - potassium iodide composite films have been prepared by using casting technique with different dopant concentrations of (2, 4, 6, 8, and 10) wt%. Some optical parameters of all films were studied. The UV-Vis spectra have been recorded in the range of (250-1100) nm. The results show that the filler content has significant effect on the transmittance, absorbance and other optical parameters of all samples. Furthermore, the results also show that the pure and PVA-KI have allowed indirect energy gap (Eg).<#LINE#>Pethrick R.A., Amornsakchai T. and North A.M. (2011).@Introduction to Molecular Motion in Polymers.@Whittles Publishing, United Kingdom, 1-214. ISBN 1849950083@Yes$Kontos G., Soulintzis A. and Karahaliou P.K. (2007).@Electrical Relaxation Dynamics in TiO2 – Polymer Matrix Composites.@J. Express polymer Letters, 1(12), 781-789.@Yes$Mustafa S. (2008).@Engineering Chemistry, Library of Arab Society for Publication and Distribution.@Jordan@No$Mahsan M., Sheng C., Isa M., Ghapur E., Ali E. and Razali M., (2009).@Structural and Physical Properties of PVA/TiO2 Composite.@From Malaysia Polymer International Conference 10, 21st–22nd October@Yes$Tawansi A., Migahed M.D. and El-Hamid M.I.A. (1986).@Electrical Conduction of Poly (vinyl alcohol) films.@Journal of Polymer Science Part B: Polymer physics. 24(12), 2631-2642@Yes$El-Dahshan M.E. (2002).@Introduction to Material Science and Engineering.@King Saud University Press, Saudi Arabia@Yes$A Munaim, A Hashim (2010).@Electronic Transitions for (PS-LiF) Composites.@From 6th Science Conference of College of Science, University of Mustansiriah, Baghdad, Iraq@Yes$Mwolfe C., Holouyak N. and Stillman G.B. (1989).@Physical Properties of Semiconductor.@Prentice Hall, New York, 1-354, ISBN 9780136699613@No$Sze S.M. and Kwok K. Ng. (2007).@Physics of Semiconductor Devices.@3rd Ed., John Wiley and Sons Inc., Hoboken, New Jersey, pp 832, ISBN: 978-0-470-06830-4@Yes$Gabur K. (2010).@Preparation and Study the Electrical and Optical Properties of (PS-Ni) Composites.@(Unpublished M.Sc. Thesis). Babylon University, College of Science, Iraq@Yes$Ghosh D.K. and Samanta L.K. (1986).@Refractive indices of some narrow and wide bandgap materials.@Infrared physics, 26(5), 335-336@Yes$Chopra K (2012).@Thin Films Device Applications.@Plenum Press, New York, 1-300. ISBN: 978-1-4613-3684-6@Yes$Berglund R., Graham P. and Miller R. (1993).@Applications of In-situ FT-IR in Pharmaceutical Process R & D.@Spectroscopy, 8, 31-42@Yes$Klingshirn C.F. (2012).@Semiconductor Optics, Springer Berlin Heidelberg.@1-560. ISBN: 978-3-642-28361-1@Yes <#LINE#>Hydrogen Sulfide sensing characteristics of Spinel-type Nanocrystalline Zn0.7Mg0.3Co2O4<#LINE#>T.R. @Tatte,V.D. @Kapse <#LINE#>40-46<#LINE#>6.ISCA-RJCS-2016-223.pdf<#LINE#>Department of Physics, Government Vidarbha Institute of Science & Humanities, Amravati 444604, Maharashtra, India@Department of Physics, Arts, Science and Commerce College, Chikhaldara 444807, Maharashtra State, India<#LINE#>2/10/2016<#LINE#>4/12/2016<#LINE#>Nanocrystalline Zn1-xMgxCo2O4 (x = 0.3) spinel having cubic structure was synthesized by sol–gel method successfully calcined at 500oC for 2 h. The formation of Zn1-xMgxCo2O4 confirms by means of an X-ray powder diffraction (XRD) and Fourier Transform-Infra-red spectrum (FT-IR). Scanning electron microscopy (SEM) was examined the surface morphology. To study hydrogen sulfide gas sensing characteristics of Zn1-xMgxCo2O4 spinel were systematically investigated. Zn1-xMgxCo2O4 showed excellent gas sensing properties like, high gas response towards 50 ppm hydrogen sulfide gas at 100oC, good selectivity at lower operating temperature 100oC. The response and recovery time for Zn1-xMgxCo2O4 were found to be 16 s and 52 s respectively. The results proved that nanocrystalline Zn1-xMgxCo2O4 is a potential candidate for detection of hydrogen sulfide. Moreover, possible hydrogen sulfide sensing mechanism is discussed.<#LINE#>Xu S. and Shi Y. (2009).@Low temperature high sensor response nano gas sensor using ITO nanofibers.@Sens. Actuators B, 143, 71–75.@Yes$Yun S., Lee J., Yang J. and Lim S. (2010).@Hydrothermal synthesis of Al-doped ZnO nanorods arrays on Si substrate.@Physica B, 405, 413–419.@Yes$Wang C., Yin L., Zhang L., Xiang D. and Gao R. (2010).@Metal Oxide Gas Sensors: Sensitivity and Influencing Factors.@Sensors, 10, 2088-2106.@Yes$Basu S. and Basu P.K. (2009).@Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals.@J. Sensors, 20, 861968.@Yes$Ghose J. and Murthy K.S.R.C. (1996).@Activity of Cu2+Ions on the Tetrahedral and Octahedral Sites of Spinel Oxide Catalysts for CO Oxidation.@J. Catal., 162, 359-360.@Yes$Yang B.L., Cheng D.S. and Lee S.B. (1991).@Effect of steam on the oxidative dehydrogenation of butene over magnesium ferrites with and without chromium substitution.@Appl. Catal., 70, 161-173.@Yes$Jacobs J.P., Maltha A., Reintjes J.G.H., Drimal J., Ponec V. and Brongersma H.H. (1994).@The Surface of Catalytically Active Spinels.@J. Catal., 147, 294-300.@Yes$Sloczynski J., Zi´o lkowski J., Grzybowska B., Grabowski R., Jachewicz D., Wcislo K. and Gengembre L. (1999).@Oxidative Dehydrogenation of Propane on NixMg1−xAl2O4 and NiCr2O4 Spinels.@J. Catal., 187, 410-418.@Yes$Karthikeyan K., Kalpana D. and Renganathan N.G. (2009).@Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications.@Ionics, 15, 107–110.@Yes$Trasatti S., Lipkowski J., Ross P.N. (1994).@The Electrochemistry of Novel Materials.@VCH Publishers, Weinheim, 207.@Yes$Omata K., Takada T. and Kasahara S. (1996).@Active site of substituted cobalt spinel oxide for selective oxidation of COH2. Part II.@J. Appl. Catal. A: Gen., 146, 255-267.@Yes$Zhang G.Y., Guo B. and Chen J. (2006).@MCo2O4 (M = Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors.@Sens. Actuators B, 114, 402-409.@Yes <#LINE#>Photocatalytic Degradation of Violet GL2B using Synthesized CaZnAl2O5 Metal Oxide Nano-Particle<#LINE#>Madhusudhana @Narayanappa,Yogendra @Kambalagere,Kittappa M. @Mahadevan,Kiran G. @Rajgopalakrishna <#LINE#>47-53<#LINE#>7.ISCA-RJCS-2016-235.pdf<#LINE#>Dept. of PG Studies and Research in Environmental Science, Kuvempu Uni., Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, India@Dept. of PG Studies and Research in Environmental Science, Kuvempu Uni., Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, India@Dept. of PG Studies and Research in Chemistry, P.G. Center Kadur, Kuvempu University, Kadur(T), Chickmagalur(D), Karnataka, India@Dept. of PG Studies and Research in Environmental Science, Kuvempu Uni., Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, India<#LINE#>22/11/2016<#LINE#>15/12/2016<#LINE#>Azo dyes present in textile wastewater require a proper technique for their removal, due to their negative environmental and health effects. Although there are several ways to treat such wastewater, this study is focused on photocatalytic degradation on Calcium Zinc Aluminate (CaZnAl2O5) nano catalyst. Violet GL2B (VGL2B) dye was used for photocatalytic degradation studies at 30 mg/L concentration. Colour degradation was monitored using UV-Vis spectroscopy. Complete colour removal was observed for the azo dye. It is found that, degradation rate of VGL2B for CaZnAl2O5 the degradation was found to be 99.07% at pH 4 in 120 minutes for 0.6g/100ml. Also the results revealed that, the degradation facility is directly bear upon by the concentration of dye solution.<#LINE#>Ameneh E., Sam H. and Akbar E. (2016).@Photocatalytic decolorization of reactive red 198 dye by a TiO2–activated carbon nano-composite derived from the sol–gel method.@Res. Chem. Intermed., 42(3), 2461-2471.@Yes$Arezoo S. and Alireza N.E. (2016).@Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample.@J. Mol. Catal. A: Chem., 411(1), 222-229.@Yes$Bibak O. and Aliabadi M. (2014).@Photocatalytic degradation of malachite green in aqueous solution using TiO2 nanocatalyst.@J. Biol. Environ.Sci., 5(4), 301-310.@Yes$Di-Paola A., Augugliaro V., Palmisano L., Pantaleo G. and Savinov E. (2003).@Heterogeneous photocatalytic degradation of nitrophenols.@J. Photochem. Photobiol. A: Chem., 155(1-3), 207-214.@Yes$Mao Z., Wu Q., Wang M., Yang Y., Long J. and Chen X. (2014).@Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes.@Nanoscale Res. Lett., 9(1), 2-9.@Yes$Kamila B., Julia C., Diana D. and Antoni W.M. (2010).@Methylene Blue and Phenol Photocatalytic Degradation on Nanoparticles of Anatase TiO2.@Pol. J. Environ. Stud., 19(4), 685-691.@Yes$Manoj Kumar Reddy P., Mahammadunnisa S.K. and Subrahmanyam C.H. (2014).@Mineralization of aqueous organic pollutants using a catalytic plasma reactor.@Indian J. Chem., 53(4), 499-503.@Yes$Gopalappa H., Yogendra K., Mahadevan K.M. and Madhusudhana N. (2012).@A comparative study on the solar photocatalytic degradation of Brilliant Red azo dye by CaO and CaMgO2 nanoparticles.@Int. J. Sci. Res., 1(2), 91-95.@Yes$Bhavya C., Yogendra K. and Mahadevan K.M. (2015).@Synthesis of Calcium Aluminate Nanoparticle and its Application to Photocatalytic Degradation of Coralene Navy Blue 3G and Coralene Violet 3R.@Int. J. Res. Chem. Environ., 5(1), 28-33.@Yes$Sushil Kumar K., Navjeet Kaur and Sukhmehar Singh (2009).@Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts.@Nanoscale Res. Lett., 4(7), 709-716.@Yes$Yogendra K., Mahadevan K.M., Suneel Naik and Madhusudhana N. (2011).@Photocatalytic activity of synthetic ZnO composite against Coralene Red F3BS dye in presence of solar light.@Int. J. Environ. Sci., 1(5), 839-846.@Yes$Bhavya C., Yogendra K. and Mahadevan K.M. (2016).@A Study on the Synthesis, Characterization and Photocatalytic Activity of CaO Nanoparticle against Some Selected Azo Dyes.@Indian J. Appl. Res., 5(6), 362-365.@Yes$Madhusudhana N., Yogendra K. and Mahadevan K.M. (2012).@A comparative study on photocatalytic degradation of violet GL2B azo dye using CaO and TiO 2 nanoparticles@Res. J. Chem. Sci., 2(5), 72-77.@Yes$Gopalappa H., Yogendra K., Mahadevan K.M. and Madhusudhana N. (2014).@Solar Photocatalytic Degradation of Azo Dye Brilliant Red in Aqueous Medium by Synthesized CaMgO2 Nanoparticle as an Alternative Catalyst.@Chem. Sci. Trans. 3(1), 232-239.@Yes$Santhanalakshmi J. and Komalavalli R. (2012).@Visible Light Induced Photocatalytic Degradation of some Textile Dyes Using Silver Nano Particles.@Res. J. Chem. Sci., 2(4), 64-67.@Yes$Sawant D.K., Patil H.M., Bhavsar D.S., Patil J.H. and Girase K.D. (2011).@Structural and Optical Properties of Calcium Cadmium Tartrate.@Arch. Phys. Res., 2(2), 67-73.@Yes$Subramani A.K., Byrappa K., Ananda S., Lokanatha Rai K.M., Ranganathaiah C. and Yoshimura M. (2007).@Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon.@Bull. Mater. Sci., 30(1), 37-41.@Yes$Madhu G.M., Lourdu Antony Raj M.A. and Vasantha Kumar Pai K. (2009).@Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue.@J. Environ. Biol., 30(2), 259-264.@Yes$Turchi C.S. and Ollis D.F. (1990).@Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack.@J. Catal., 122(1), 178-192.@Yes$Mirkhani V., Tangestaninejad S., Moghadam M., Habibi M.H. and Rostami Vartooni A. (2009).@Photocatalytic Degradation of Azo Dyes Catalyzed by Ag Doped TiO2 Photocatalyst.@J. Iran. Chem. Soc., 6(3), 578-587.@Yes$Byrappa K., Subramani A.K., Ananda S., Lokanatha Rai K.M., Dinesh R. and Yoshimura M. (2006).@Photocatalytic degradation of Rhodamine B dye using hydrothermally synthesized ZnO.@Bull. Mater. Sci., 29(5), 433-438.@Yes$Guillen Santiago A., Mayen S.A., Torres Delgado G., Castanedo Perez R., Maldonado A. and de la Olvera M.L. (2010).@Photocatalytic degradation of Methylene blue using undoped and Ag doped TiO2 thin films deposited by a sol gel process: Effect of the ageing time of the starting solution and the film thickness.@Mater. Sci. Eng. B., 174(1-3), 84-87.@Yes$Movahedi M., Mahjoub A.R. and Janitabar Darzi S. (2009).@Photodegradation of Congo Red in Aqueous Solution on ZnO as an Alternative Catalyst to TiO2.@J. Iran. Chem. Soc., 6(3), 570-577.@Yes @Short Communication <#LINE#>SrCe2O3 Nanoparticles as Electrolyte Material for Proton Conducting Fuel Cell<#LINE#>Manish M. @Fukate,A.B. @Bodade ,G.N. @Chaudhary <#LINE#>54-55<#LINE#>8.ISCA-RJCS-2016-079.pdf<#LINE#>Department of Chemistry Shivaji Science Nanotechnology Laboratory, Amravati, MS, India@Department of Chemistry Shivaji Science Nanotechnology Laboratory, Amravati, MS, India@Department of Chemistry Shivaji Science Nanotechnology Laboratory, Amravati, MS, India<#LINE#>22/3/2016<#LINE#>26/11/2016<#LINE#>SrCe2O3 nano particles are synthesised as electrolyte catalyst material for Proton conducting fuel cell. The material is synthesised by sol gel method. Phase stability structure were analysed by X ray diffraction. The surface structure was analyzed by scanning electron microscopy (SEM). The electric conductivity behaviour of SrCe2O3 calcined pellets was determined by electrochemical impedance spectroscopy. The DC conduction (Eσ) calculations indicates that the charge carriers responsible for conductivity. The application for PCFC was studied by variation of conductivities at different temperature. In the temperature range of 5500C-7500C, which showed that the conductivity of SrCe2O3was mainly due to the incorporation of water and the maximum conductivity was found to be 1.3S cm-1. It is found that at 650OC, presence of water in SrCe2O3 matrix which increases jumping that facilitates the increases the conductivity.<#LINE#>Livage J. (1997).@Sol-gel processes.@Current Opinion in Solid State and Materials Science, 2(2), 132–138, 1997. J.D. Mackenzie and E.P. Bescher, Chemical routes in the synthesis of nanomaterials using the sol-gel process, Accounts of Chemical Research, 40(9), 810–818,@Yes$JH Li, XZ Fu, GH Zhou, JL Luo, KT Chuang (2011).@FeCr2O4 Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity.@Advances in Physical Chemistry,@Yes$Katahira K., Kohchi Y., Shimura T. and Iwahara H. (2000).@Protonic conduction in Zr-substituted BaCeO3.@Solid State Ionics, 138(1-2), 91–98.@Yes$Tao Z., Hou G., Xu N., Chen X. and Zhang Q. (2014).@Pr Doped Barium Cerate as the Cathode Material for Proton-Conducting SOFCs.@Fuel Cells,@Yes$Fabbri E., Pergolesi D. and Traversa E. (2016).@Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells.@Science and Technology of Advanced Materials, 11(4), article 044301.@Yes <#LINE#>A Novel Method to Quantify the Nucleophilicity of Dihydroxy Benzoic Acid Regioisomers by Polarography<#LINE#>V.T. @Borkar,B.B. @Bahule,V.T. @Dangat,S.S. @Salunke ,Mohammed M. @Ali <#LINE#>56-58<#LINE#>9.ISCA-RJCS-2016-230.pdf<#LINE#>Department of Chemistry, Nowrosjee Wadia College, affiliated to SPPU, Pune 411 001, India@Department of Chemistry, Nowrosjee Wadia College, affiliated to SPPU, Pune 411 001, India@Department of Chemistry, Nowrosjee Wadia College, affiliated to SPPU, Pune 411 001, India@Department of Chemistry, Nowrosjee Wadia College, affiliated to SPPU, Pune 411 001, India@Department of Chemistry, Nowrosjee Wadia College, affiliated to SPPU, Pune 411 001, India<#LINE#>2/11/2016<#LINE#>14/12/2016<#LINE#>The reduction propensities of 2,6-dihydroxy benzoic acid (2,6-DBA) and 3,5-dihydroxy benzoic acid (3,5-DBA) in aqueous medium using classical polarography have been studied to portray their reactivity in aromatic substitution reactions in terms of their relative nucleophilicity. The half-wave reduction potentials for 2,6-DBA and 3,5-DBA have been found to be 800 and 900 mV respectively indicating lower nucleophilicity for 2,6-DBA than that of 3,5-DBA. These results have been confirmed from complementary data by kinetic studies for the iodination of these two regioisomers. This two-pronged complementary study assesses the reactivity of the two substrates in a quantitative manner.<#LINE#>Berliner E. (1966).@The Current State of Positive Halogenating Agents.@J.Chem. Edu., 43(3), 124‐133.@Yes$Bonde S.L., Dangat V.T., Borkar V.T. and Yadav R.P. (2012).@Rapid Iodinations of Xylidines in Aqueous Medium: Kinetic Verification of Speculated Reactivities.@Res.J.Chem.Sci., 2(6), 1‐5.@Yes$Bashir W, Borkar V.T. and Dangat V.T. (2015).@A Quantitative Assessment of the Nucleophilicity of Cytocine in Aqueous Solution by Polarography Complemented by Hydrodynamic Voltammetry.@Oriental J. of Chem., 31(4), 2421-2425.@Yes$Borkar V.T. and Dangat V.T. (2014).@Structure-Reactivity Correlation of Thiophene and Thiophene -2- Sulfonic Acid by Investigation of Rapid Kinetics of Bromination in Aqueous Medium.@Res.J.Chem.Sci., 4(2), 48‐51.@No$Bashir W., Borkar V.T. and Dangat V.T. (2016).@Rapid Bromination Study of Nuclebase-Uracil in Aqueous Medium by Hydrodynamic Voltammetry.@Asian Journal f Chemistry, 28(8), 1871-1872.@Yes @Short Review Paper <#LINE#>Chemical Synthesis and Characterization of Aluminium doped Zinc Oxide (AZO) Nanocomposites - A Review<#LINE#>G.V. @Agulla,P.B. @Ratthod,S.A. @Waghuley <#LINE#>59-61<#LINE#>10.ISCA-RJCS-2016-062.pdf<#LINE#>Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India<#LINE#>22/3/2016<#LINE#>28/11/2016<#LINE#>Aluminium-doped zinc oxide (AZO) nanoparticles can be called a multifunctional material because of its unique physical and chemical properties. The present review broadly divided in to three main sections, namely introduction, literature survey and selection of problem followed by methodology. The introduction of review comprises summary of physical properties and its importance for modern application. Whereas, literature survey section gives idea about various routes for preparation of AZO nanoparticles. By analysing some recent report in literature, we will plane to synthesize AZO nanoparticles by co-precipitation method at low temperature.<#LINE#>Kim A., Won Y., Woo K., Kim C.H. and Moon J. (2013).@Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells.@ACS nano, 7, 1081-1091.@Yes$Kang S., Kim T., Cho S., Lee Y., Choe A., Walker B., Ko S.J., Kim J.Y. and Ko H. (2015).@Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices.@Nano Lett., 15, 7933-7942.@Yes$Ozgur U., Alivov Y.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.J. and Morkoc H.J. (2005),@A comprehensive review of ZnO materials and devices@App. Phys., 98, 041301.@Yes$Kao K.S., Chang S.H., Hsieh P.T., Wang C.M. and Cheng D.L. (2009).@Transparence and Electrical Properties of ZnO-Based Multilayer Electrode.@Appl. Phys. A: Mater. Sci. Process, 96, 529-533.@Yes$Cho S., Jung S.H., Jang J.W., Oh E. and Lee K.H. (2008).@Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer@Crystal growth and design, 8, 4553-4558.@Yes$Hartner S., Ali M., Schulz C., Winterer M. and Wiggers H. (2009).@Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis.@Nanotechnology, 20, 445701-445709.@Yes$Hou Q., Merg F. and Sun J. (2013).@Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films. prepared by atomic layer deposition@Nanoscale research letters, 8, 144-150.@Yes$Ohyama M., Kozuka H. and Yoko T. (1998).@Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation.@Am ceram, 81, 1622-32.@Yes$Park K.C., Ma D.Y. and Kim K.H. (1997).@The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering.@Thin solid films, 305, 201-209.@Yes$O. Lupan , S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean (2009).@Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications.@Solar Energy Materials and Solar Cells 93, 1417-1422.@Yes$Zhang J. and Que W. (2010).@Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method.@Solar energy material and solar cell, 94, 2181-2186.@Yes$Venkatachalam S., Ida Y. and Kama Y.N. (2008).@Superialation and microstructure.@44, 127-135.@No$Agura H., Suzuki A., Takanori Aoki, Masahiro Okuda and Matsushita T. (2003).@Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition.@thin solid film, 445, 263-267.@Yes$Sahay P.P. and Nath R.K. (2008).@Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors sensor and actuators B.@133, 222-227.@Yes$Martin A., Espinos J.P., Justo A., Holgado J.P., Yubero F. and Gonzalez-Elipe A.R. (2002).@Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD.@surface and coating technology, 151- 1522, 289-293.@Yes$Jood P., Mehta R.J., Zhang Y., Peleckis G., Wang X., Richard W., Siegel T.B., Tasciuc S.X. and Dou G. (2014).@Heavy Element Doping for Enhancing Thermoelectric Properties of Nanostructured Zinc Oxide.@RSC Advances. 4, 6363-6368.@Yes