@Research Paper <#LINE#>Improving Cold-Flow Propertiws of Jatrpha and Karanja Biodiesel<#LINE#>Rajesh@Kumar,Ram@Prasad <#LINE#>1-5<#LINE#>1.ISCA-RJCS-2016-151.pdf<#LINE#>Department of Chemical Engineering, H. B. Technological Institute, Kanpur-208002, India@Department of Chemical Engineering, H. B. Technological Institute, Kanpur-208002, India<#LINE#>22/3/2016<#LINE#>29/10/2016<#LINE#>In this paper, the low temperature properties of jatropha methyl ester and karanja methyl esters. Cold-flow improvers poly methyl acrylate and poly alpha olefin were tested at 0g to 10 g in 5 ml, 10 ml, 15 ml, and 100 ml. PMA and PAO additives reduced the pour point and cloud point jatropha and karanja methyl esters mixture and its blend petroleum diesel with cold flow improvers shows very little effect on cloud point. A considerable reduction in pour point has been noticed by using cold flow improvers. The experimental result showed that the poly alpha olefin cold flow improvers was very effective in the depression of the pour point of jatropha methyl ester and karanja methyl ester and retard viscosity increase of jatropha and karanja methyl esters.<#LINE#>Srivastava A. and Prasad R. (2004).@Transesterification of raw and used vegetable oils.@Indian Chemical Engineers, 44, 132-134.@Yes$Otera J. (1993).@Transesterification.@Chem. Rev., 93. 1449-1470.@Yes$Srivastava A. and Prasad R. (2000).@Triglycerides-based diesel fuels.@Renewable and Sustainable Energy Reviews, 4, 111-133.@Yes$Ma F., Clements L.D. and Hanna M.A. (1998).@Biodiesel fuel from animal fat Ancillary Studies on Transesterification of Beef Tallow.@Ind. Eng. Chem. Res., 37, 3768-3771.@Yes$University of Idaho (2005).@Biodiesel Tech Notes@Is published on a quarterly basis by the Department of Biological and Agricultural Engineering at the University of Idaho, Moscow, ID 83844-0904, 2(2).@No$Joshi R.M. and Pegg M.J. (2009).@Flow properties of biodiesel fuel blends at low temperatures.@Fuel, 43, 143-151.@Yes$Kumar R. and Prasad R. (2014).@Production, Physico-Chemical and Cold-Flow Properties of Biodiesel from Jatropha and Karanja Oils.@Research Journal of Chemical Sciences, 4(12), 9-12.@Yes$IS: 1448 (P: 10) (1970).@Methods of test for petroleum and its products cloud point and pour point.@Bureau of Indian Standard, New Delhi 1971.@No$IS: 1448 (P: 25) (1976).@Methods of test for petroleum and its products-determination of kinematic and dynamic viscosity.@Bureau of Indian Standards, New Delhi 1977.@Yes$IS 1460: (2005).@Automotive diesel fuel-Specifications.@Bureau of Indian Standards, New Delhi (2005).@No$Kumar R. et al., (2013).@Production, Properties and Improvement of Cold-Flow Properties of Karanja Biodiesel Blends.@International Journal of Scientific & Engineering Research, 4(9).@No <#LINE#>Synthesis and Application of Mordent and Disperse Azo Dyes Based on 2- Amino-6-Nitro-1,3- Benzothiazole<#LINE#>Ashok G.@Awale <#LINE#>6-16<#LINE#>2.ISCA-RJCS-2016-224.pdf<#LINE#>Department of Chemistry, Vinayak Ganesh Vaze College Mithaghar Road, Mulund East, Mumbai - 400081, India<#LINE#>2/10/2016<#LINE#>29/10/2016<#LINE#>A diazotized solution of 2-amino-6-nitro-1,3-benzothiazole was added to the cold solution of phenols or aromatic amines to obtain azo dyes. The synthesized compounds were characterized by 1H-NMR, FT-IR, UV-Vis and LC-MS spectroscopy. Dyeing assessment of synthesized compounds was done on cotton fabric. Cotton mordant fibers showed a better hue on dyeing. Compounds were tested against representatives of gram-positive, gram- negative bacteria and fungi by agar diffusion method. The results revealed that the compounds show a broad spectrum of activity against the tested microorganisms.<#LINE#>Robinson T. and Marchant R. et. al. (2001).@Remediation of dyes in textile effluent a critical review on current treatment technologies with a proposed alternative.@Bioresource.Tech.,7, 247-255.@Yes$Ayyappanpillai S., Ajayaghosh George J., Albertus P. and Schenning J. (2005).@Color in dye house effluent, the dye maker’s view.@Top curr. chem., 258, 83-118.@No$Moreira R., Kuhen N. and Peruch M. (1998).@Adsorption of reactive dyes onto granular activated carbon.@Latin Am. Appl. Res., 28, 37-41.@Yes$Cumming W. and Howie G. (1933).@Binaphthyl bases. II. reduction of 1,1@J. Chem Soc., 5, 133-130.@No$Mohamed S. and Nour E. (1999).@Solid state photolysis of triazene 1-oxides with naphthols, synthesis of azo dyes.@J. Chem. Research., 3(8), 508-513.@Yes$Peters A. and Walker D. (1956).@Intermediates and dyes. IV. Condensation of 2,3-thianaphthene dicarboxylic anhydride with hydrocarbons and phenols.@J. Chem. Soc., 36, 1429-1434.@No$Gordon P. and Gregory P. (1983).@Organic chemistry in color.@Berlin Ltd: Springer Verlag.@No$Srinivasan Damodaran and Owen Fennema (1996).@Fennema@Taylor and Francis group publication, London, 571-595. ISBN: 13:978-1-1200-2052-6@Yes$Eigenmann P.A. and Haengelli C.A. (2004).@Food colorings and preservatives- allergy and hyperactivity.@The Lancet., 364, 823-824.@Yes$Sternberg E., Dolphin M. and Matsuoka (Ed.). (1990).@Infrared absorbing dyes.@Plenum, New York., 193-212.@Yes$Gregory P. (1994).@Modern reprographics.@Rev. Prog. Coloration, 24 (1), 223-233.@Yes$Mekkawi D. and Abdel-Mottaleb M. (2005).@The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 anoparticles.@Int. J. Photoenergy., 7(2), 95-101.@Yes$Marchevsky E., Olsina R. and Marone C. (1985).@2-[2-(5-Chloropyridyl) azo]-5-dimethyl aminophenol as indicator for the complexometric determination of zinc.@Talanta., 32 (1), 54-56.@Yes$Helal M., Elgemeie G. and Masoud D. (2008).@Synthesis of a new series of poly functionally substituted thiazole azo dye systems for dyeing of synthetic fibres.@Pigment Resin Technol., 37 (6), 402-409.@Yes$Jiao G., Tao T., Shu-Jun F., Wei Y. and Wei H. (2011).@Structural investigations on four heterocyclic Disperse Red azo dyes having the same benzothiazole/azo/benzene skeleton.@Dyes Pigm., 90, 65-70.@Yes$Pavlovic G., Racane L., Cicak H. and Kulenovic V. (2009).@The synthesis and structural study of two benzothiazolyl azo dyes: X-ray crystallographic and computational study of azo–hydrazone tautomerism.@Dyes Pigment., 83, 354–362.@Yes$Faustino H., Brannigan C., Reis L. and Santos P. (2009).@Novel azobenzothiazole dyes from 2- nitrosobenzothiazoles.@Dyes Pigment., 83, 88-94.@Yes$Metwally M., Abdel-latif E. and Amer F. (2004).@Synthesis of new 5-thiazolyl azo-disperse dyes for dyeing polyester fabrics.@Dyes Pigment., 60, 249–256.@Yes$Singh K. and Taylor J. (2002).@Monoazo disperse dyes—part 1: synthesis, spectroscopic studies and technical evaluation of mono azo disperse dyes derived from 2-amino thiazoles.@Dyes Pigment., 54, 189–200.@Yes$Metwally M., Abdel-Galil E. and Amer F. (2012).@New azodisperse dyes with thiazole, thiophene, pyridone and pyrazolone moiety for dyeing polyester fabrics.@Dyes Pigment., 92, 902–908.@Yes$Abdel-Latif E., Amer F. and Metwally M. (2009).@Synthesis of 5-arylazo-2-(arylidenehydrazino)-thiazole disperse dyes for dyeing polyester fibres.@Pigment Resin Technol., 38 (2), 105–110.@Yes$Jae-Hong C., Sung-Hee H. and Eui-Jae J. (1999).@High fastness heterocyclic azo disperse dyes bearing ester functions.@Soc. Dyers Colourists., 115(1), 32- 37.@Yes$Jae-Hong S., Hong D. and Andrew J. (2000).@Structure-wet fastness relationships of some blue disperse dyes for polyester.@Soc. Dyers Colourists. 116(9), (2000) 273-278.@Yes$Simu G., Grad M. and Elena B. (2010).@Aggregation of two direct dye derived from 4,4’-diaminostilbene-2,2’-disulphonic acid.@Spectroscopic and mathematical studies. 14th International Electronic Conference on Synthetic Organic Chemistry, Spain, 1st -30th November, 1-3.@No$Syed M., Sim H. and Khalid A. (2009).@A simple method to screen for azo-dye-degrading bacteria.@J. Environ.Bio., 30 (1), 89-92.@Yes$Elisangela F. and Matthew J. (2012).@Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15.@Springer plus., 137-155.@Yes$Hodnett E. and Dunn W. (1970).@Structure-antitumor activity correlation of some Schiff bases.@J. Med. Chem. 13, 768-770.@Yes$Sridhar S., Saravanan M. and Ramesh A. (2001).@Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives.@Eur. J. Med. Chem., 36, 615–625.@Yes$Collins C. (1967).@Microbiological Methods.@Butterworth, London., 364.@Yes$Gordon P. and Gregory P. (1983).@Organic chemistry in colour.@Berlin, itd: Springer Verlag.@Yes <#LINE#>Gas Sensing Properties of Nanosized Mg0.2Cd0.8Al2O4 based Thick Film Sensor<#LINE#>S.V.@Agnihotri,V.D.@Kapse <#LINE#>17-21<#LINE#>3.ISCA-RJCS-2016-225.pdf<#LINE#>Department of Physics, Arts, Commerce and Science College, Kiran Nagar, Amravati 444606, Maharashtra State, India@Department of Physics, Arts, Science and Commerce College, Chikhaldara 444807, Maharashtra State, India<#LINE#>2/10/2016<#LINE#>14/11/2016<#LINE#>Nanocrystalline Mg0.2Cd0.8Al2O4 has been successfully synthesized by co precipitation method. The materials were investigated for structural properties by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR) and Scanning electron microscopy with dispersive analysis (SEM-EDAX). LPG sensing properties of Mg0.2Cd0.8Al2O4 were investigated at room temperature. Further the sensor was observed selective at an optimal operating temperature (338 K). The sensor was found to be stable and repeatable with good response and recovery time. The gas sensing mechanism of Mg0.2Cd0.8Al2O4 has been discussed elaborately.<#LINE#>Nuernberg G.B., Foletto E.L., Campos C., Fajardob H., Carreno N. and Probst L. (2012).@Direct decomposition of methane over Ni catalyst supported in magnesium aluminate.@J. Power Sour, 208, 409–414.@Yes$Saito F. and Kim W. (1999).@A review on magnesium aluminate (MgAl2O4) spinel synthesis.@Powder Technol, 113, 109–113.@No$Dung T.W., Ping L.R. and Azad A.M. (2001).@Magnesium aluminate (MgAl2O4) via self-heat-sustained (SHS) technique.@Mater. Res. Bull, 36, 1417–1430.@No$Mazzoni A.D., Sainz M.A., Caballero A. and Aglietti E.F. (2002).@Formation and sintering of spinels (MgAl2O4) in reducing atmosphere.@Mater Chem Phys, 78, 30–37.@Yes$Bocanegra S.A., Ballarini A.D., Scelza O.A. and Miguel S.R. (2008).@The influence of the synthesis routes of as support of dehydrogenation catalyst.@Mater. Chem Phys, 111, 534–541.@Yes$Noh W., Shin Y., Kim J., Lee W., Hong K., Akbar S.A. and Park J. (2002).@Surface morphology and sensing property of NiO-WO3 Thin film.@Solid State Ionics, 152-153, 827–832.@No$Carotta M.C., Martinelli G., Sadaoka Y., Nunziante P. and Traversa E. (1998).@Environmental monitoring field tests using screen-printed thick-film.@Sens. Actuators B Chem., 48, 270–276.@No$Guidi V., Butturi M.A., Carotta M.C., Cavicchi B., Ferroni M., Malagu C., Martinelli G., Vincenzi D., Sacerdoti M. and Zen M. (2002).@Solide state gas sensor.@Sens. Actuat. B Chem. 84, 72-77.@No$Kong L. and Shen Y. (1996).@Gas sensing property and mechanism of CaxLa1-xFeO3 ceramic.@Sens. and Actuat. B 30, 217–221.@Yes$Llobet E., Ivanov P., Vilanova X., Brezmes J., Hubalek J., Malysz K.I., Gràcia I., Cané C. and Correig X. (2003).@Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems.@Sens. and Actuat. B Chem, 96, 1- 2, 94-104.@Yes$Olhero S.M., Ganesh I., Torres P.M.C. and Ferreira J.M.F. (2008).@Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing.@Langmuir, 24, 9525–9530.@Yes$Puriwat J., Chaitree W., Suriye K., Dokjampa S., Praserthdam P. and Panpranot J. (2010).@Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH) 2 catalysts.@Catal. Commun., 12, 80–85.@Yes <#LINE#>A Facile, Rapid, one-pot Synthesis and Biological Evaluation of some Thiadiazole Derivatives<#LINE#>Shipra@Verma,Alok Kumar@Srivastava,O.P.@Pandey <#LINE#>22-31<#LINE#>4.ISCA-RJCS-2016-228.pdf<#LINE#>Chemistry Department, Mahatma Gandhi P. G. College, Gorakhpur-273001, U. P., India@Chemistry Department, Mahatma Gandhi P. G. College, Gorakhpur-273001, U. P., India@Chemistry Department, D. D. U. Gorakhpur University Gorakhpur-273009, U.P., India<#LINE#>19/10/2016<#LINE#>30/10/2016<#LINE#>Some novel thiadiazole derivatives were synthesized through two routes viz.(i) single step reaction of substituted aromatic acid with thiosemicarbazide in presence of POCl3 and (ii) via multistep synthesis by converting substituted aromatic acid to their corresponding esters and then into their hydrazides, which are converted into derivative of their benzoyl thiosemicarbazide followed by cyclization. The structure of the synthesized compounds has been established on the basis of IR, 1H-NMR and 13C-NMR and mass spectrometry. The compounds have been evaluated for antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli, Xanthomonas citrii and antifungal against Aspergillus flavus, Aspergillus niger, Alternaria solanii, Fusarium oxysporum, Colletotrichum falcatum and showed moderate to good activities.<#LINE#>Purohit D.H., Dodiya B.L., Ghetiya R.M., Vekariya P.B. and Joshi H.S. (2011).@Synthesis and Antimicrobial Activity of Some New 1,3,4-Thiadiazoles and 1,3,4-Thiadiazines Containing 1,2,4-Triazolo nucleus.@Acta. Chem. Slov., 58, 53-59.@Yes$Mullick P., Khan S.A., Verma S., and Alam O. (2010).@Synthesis, Characterization and Antimicrobial Activity of New Thiadiazole Derivatives.@Bull. Korean Chem. Soc., 31(8), 2345-2350.@Yes$Reddy C.S., Rao L.S., and Nagaraj A. (2010).@Synthesis and Evaluation of Novel Bis[1,2,4]triazolo[3,4- b][1,3,4]thiadiazoles as potent antimicrobial agents.@Acta. Chim. Slov., 57, 726-732.@Yes$Demirbas A., Sahin D., Demirbas N. and Karaoglu S. (2009).@Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities.@Eur. J. Med. Chem., 44(7), 2896-2903.@Yes$Kadi A., El-Brollosy N.R., Al-Deeb O.A., Habib E.E., Ibrahim T.M. and El-Emam A.A. (2007).@Synthesis, antimicrobial and anti-inflammatory activities of novel 2-(1-adamantly) -5- substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles.@Eur. J. Med. Chem., 42(2), 235-242.@No$Bekhit A.A. and Abdel-Aziem T. (2004).@Synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents.@Bioorg. Med. Chem., 12(8), 1935-1945.@Yes$Oruc E.E., Rollas S., Kandemirli F., Shvets N. and Dimoglo A.S. (2004).@1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and structure-antituberculosis activity relationship investigation.@J. Med. Chem., 47(27), 6760-6767.@Yes$Karpoormath V. (2004).@Synthesis and antitubercular activity of a series of sulfonamido/trifluoromethyl-6-(40-substitutedaryl/heteroaryl)imidazo[2,1- b]-1,3,4-thiadiazole derivatives.@Bioorg. Med. Chem., 12, 5651-5659.@Yes$Foroumadi A., Mirzaei M. and Shafiee A. (2001).@Synthesis and antituberculosis activity of 2-aryl-1,3,4-thiadiazole derivatives.@Pharmazie., 56(8), 610-612.@Yes$Jain S.K. and Mishra P. (2014).@Study of analgesic and anti-inflammatory activity of some 2-substituted acetamido-5-aryl-1,3,4-thiadiazoles.@Eur. J. Exp. Biol., 4(2), 337-341.@Yes$Gupta S.K. and Sharma P.K. (2011).@Synthesis and anti-inflammatory activity of disubstituted 1, 3, 4-thiadiazole.@Int. J. Drug Formu. Res., 2(2), 344-350.@No$Asif M. and Asthana C. (2009).@2, 4- Di substituted-5-Imno-1, 3, 4- Thiadiazole Derivatives: Synthesis and Biological Evaluation of Antiinflammatory activities.@Int. J. Chem. Tech. Res., 1(4), 1200-1205.@No$Mathew V., Keshavayya J., Vaidya V.P. and Giles D. (2007).@Studies on synthesis and pharmacological activities of 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their dihydro analogues.@Eur. J.Med. Chem., 42(6), 823-840.@Yes$Mullican M.D., Wilson M.W., Connor D.T., Kostlan C.R., Schrier D.J. and Dyer R.D. (1993).@Design 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-1,3,4-thiadiazoles, -1,3,4-oxadiazoles, and 1,2,4-triazoles as orally active, nonulcerogenic antiinflammatory agents.@J. Med. Chem., 36(8), 1090-1099.@No$Chapleo C.B., Myers M., Myers P.L., Saville J.F., Smith A.C.B., Stilling M.R., Tulloch I.F., Walter D.S. and Welbourne A.P. (1986).@Substituted 1,3,4-thiadiazoles with anticonvulsant activity. 1. Hydrazines.@J. Med. Chem., 29(11), 2273-2280.@Yes$Chapleo C.B., Myers P.L., Smith A.C., Stilling M.R., Tulloch I.F., and Walter D.S. (1988).@Substituted 1,3,4-thiadiazoles with anticonvulsant activity.4. Amidines.@J. Med. Chem., 31(1), 7-11.@Yes$Kikkeri P.H., Kikkeri N.M. and Lingappa M. (2013).@Synthesis of indazole substituted-1,3,4-thiadiazoles and their anticonvulsant activity.@Drug Invent. Today, 5, 92-99.@Yes$LuszczkiJ J., Karpińska M., Matysiak J., Niewiadomy A. (2015).@Characterization and preliminary anticonvulsant assessment of some 1,3,4-thiadiazole derivatives.@Pharmcol. Rep., 67(3), 588-592.@Yes$Gupta S.K., Sharma P.K., Bansal M. and Kumar B. (2011).@Synthesis and Antifungal activities of 5-(o-Hydroxy phenyl)-2-[4’ aryl-3’chloro-2’azetidinon-1-yl]-1,3,4- thiadiazole.@E-J. Chem., 8(2), 594-597.@Yes$Li Q., Ren J., Dong F., Feng Y., Gu G. and Guo Z. (2013).@Synthesis and antifungal activity of thiadiazole-functionalized chitosan derivatives.@Carbohydr. Res., 373, 103-107.@Yes$Lin-Jiong Z., Ming-Yan Y., Zhao-Hui S., Cheng-Xia T ., Jian-Quan W., Hong-Ke W. and Xing-Hai L. (2014).@Synthesis and Antifungal Activity of 1,3,4-Thiadiazole Derivatives Containing Pyridine Group.@Lett. Drug Des. Discov., 11(9), 1107-1111.@Yes$Alwan W.S., Karpoormath R., Palkar M.B., Patel H.M., Rane R.A., Shaikh M.S., Kajee A. and Mlisana K.P. (2015).@Novel imidazo [2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans.@Eur. J. Med. Chem., 95, 514-525.@Yes$Xin-Ping H., Lin-Mei Z., Zi-Yi Z., Qin W. and Fang W. (1999).@Synthesis and antibacterial activities of 1,3,4-thiadiazole, 1,3,4-oxadiazole and 1,2,4-triazole derivatives of 5-methylisoxazole.@Ind. J. Chem., 38B, 1066-1069.@Yes$Samel A.B. and Pai N.R. (2010).@Synthesis of Novel Aryloxy Propanoyl Thiadiazoles as Potential Antihypertensive Agents.@J. Chin. Chem. Soc., 57(6), 1327-1330.@Yes$Turner S., Myers M., Gadie B., Nelson A.J., Pape R., Saville J.F., Doxey J.C. and Berridge T.L. (1988).@Synthesis of some 2-aryl-5-hydrazino-1,3,4-thiadiazoles with vasodilator activity.@J. Med. Chem., 31, 902-906.@Yes$Turner S., Myers M., Gadie B., Hale S.A., Horsley A., Nelson A.J., Pape R., Saville J.F., Doxey J.C. and Berridge T.L. (1988).@Antihypertensive thiadiazoles. 2. Vasodilator activity of some 2-aryl-5-guanidino-1,3,4-thiadiazoles.@J. Med. Chem., 31(5), 906-913.@Yes$Vio L., Mamolo M.G., and Laneve A. (1989).@Synthesis and antihypertensive activity of some 1,3,4-thiadiazole derivatives.@Farmaco., 44(2), 165-172.@Yes$Chitale S.K., Ramesh B., Bhalgat C.M., Jaishree V., Puttaraj C. and Bharathi D.R. (2011).@Synthesis and Antioxidant Screening of some Novel 1,3,4-thiadiazole Derivatives.@Res. J. Pharm. Tech., 4(10), 15401544.@Yes$Cressier D., Prouillac C., Hernandez P., Amourette C., Diserbo M., Lion C. and Rima G. (2009).@Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles.@Bio.Med. Chem., 17, 5275-5284.@Yes$Kamal A., Reddy V.S., Santosh K., Kumar G.B., Shaik A.B., Mahesh R., Chourasiya S.S., Sayeed I.B. and Kotamraju S. (2014).@Synthesis of imidazo [2,1-b][1,3,4]thiadiazole–chalcones as apoptosis inducing anticancer agents.@Med. Chem. Commun., 5, 1718-1723.@Yes$Joseph A., Shah C.S., Kumar S.S., Alex A.T., Maliyakkl N., Moorkoth S. and Mathew J.E. (2013).@Synthesis, in vitro anticancer and antioxidant activity of thiadiazole substituted thiazolidin-4-ones.@Acta. Pharm., 63(3), 397-408.@Yes$Radi M., Crespan E., Botta G., Falchi F., Maga G., Manetti F., Corradi V., Mancini M., Santucci M.A., Schenone S, Botta L.M. (2008).@Discovery and SAR of 1,3,4-thiadiazole derivatives as potent Ab1 tyrosine kinase inhibitors and cytodifferentiating agents.@Bioorg. Med. Chem. Lett., 18(3), 1207-1211.@Yes$Matysiak J., Nazulewicz A., Pelczynska M., Switalska M., Jaroszewicz I. and Opolski A. (2006).@Synthesis and antiproliferative activity of some 5- substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles.@Eur. J. Med. Chem., 41(4), 475-482.@Yes$Chou J.Y., Lai S.Y., Pan S.L., Jow G.M. Chern J.W. and Guh J.H. (2003).@Investigation of anticancer mechanism of thiadiazole-based compound in human non-small cell lung cancer A549 cells.@Biochem. Pharmacol., 66(1), 115-124.@Yes$Datar P.A. and Deokule T.A. (2014).@Design and Synthesis of Thiadiazole Derivatives as Antidiabetic Agents.@Med. Chem., 4(4), 390-399.@Yes$Pattan S.R., kekare P. and Dighe N.S. (2009).@Synthesis and biological evaluation of some 1,3,4-thiadiazoles.@J. Chem. Pharm. Res., 1(1), 191-198.@Yes$Tahghighi A., Razmi S., Mahdavi M., Foroumadi P., Sussan K., Emami S., Kobarfard F., Dastmalchi S., Shafiee A. and Foroumadi A. (2012).@Synthesis and anti-leishmanial activity of 5-(5-nitrofuran-2-yl)- 1,3,4- thiadiazol- 2-amines containing N-[(1- benzyl-1H-1,2,3-triazol-4-yl)methyl] moieties.@Eur. J. Med. Chem., 50, 124-128.@Yes$Behrouzi-Fardmoghadam M., Poorrajab F., Ardestani S.K., Emami S., Shafiee A. and Foroumadi A. (2008).@Synthesis and in vitro anti-leishmanial activity of 1-[5-(5-nitrofuran-2-yl)- 1,3,4-thiadiazol-2-yl]- and 1-[5-(5-nitrothiophen-2-yl)-1,3,4- thiadiazol-2-yl]-4-aroylpiperazines.@Bioorg. Med. Chem., 16(8), 4509-4515.@Yes$Foroumadi A., Emami S., Pournourmohammadi S., Kharazmi A. and Shafiee A. (2005).@Synthesis and in vitro leishmanicidal activity of 2-(1-methyl-5-nitro-1H- imidazol-2-yl)-5- substituted-1,3,4-thiadiazole derivatives.@Eur. J. Med. Chem., 40(12), 1346-1350.@Yes$Valgas C., Desouza S.M., Smania E.F.A. and Smania Jr.A. (2007).@Screening methods to determine antibacterial activity of natural products.@Braz. J. Microbiol., 38, 369-380.@Yes <#LINE#>Corrosion Inhibition of mild steel in Formic acid using Tamarindus Indica Extract<#LINE#>Khadijah I.@Khalid,O’Donnell P.@Sylvester,Linus N.@Okoro <#LINE#>32-35<#LINE#>5.ISCA-RJCS-2016-229.pdf<#LINE#>American University of Nigeria, PMB 2250, Yola, Nigeria@American University of Nigeria, PMB 2250, Yola, Nigeria@American University of Nigeria, PMB 2250, Yola, Nigeria<#LINE#>25/10/2016<#LINE#>30/10/2016<#LINE#>Heat of Adsorption of Tamarindus indica leaves extract and mild steel corrosion inhibition in formic acid solutions using Tamarindus Indica as natural inhibitor have been studied using gravimetric technique. Inhibition efficiency was observed to increase with an increase in Tamarindus indica leaf extract concentration. Temperature effect on the corrosion behavior of mild steel in 0.5M, 1M and 2M Formic acid solutions with addition of plant extracts was studied at the temperatures 30°C and 45°C. Optimum Inhibition efficiencies at 45°C are 76.18% for 0.5M, 74.88% for 1M, and 70.82% for 2M. Very low inhibition efficiencies are observed at 30°C. The adsorption mechanism proposed from the heat of adsorptions for 1M and 2M formic acid solutions is physisorption while 0.5M shows chemisorption based on the calculated values of the heat of adsorption.<#LINE#>Buchweishaija J. (2009).@Phytochemicals as green corrosion inhibitors in various corrosive media: A review.@Tanz. J. Sci., 35, 77-92.@Yes$Dariva C.G. and Galio A.F. (2014).@Corrosion Inhibitors – Principles, Mechanisms and Applications Developments in Corrosion protection, Intech.@365-379, http://dx.doi.org/10.5772/57255.@Yes$Rivera-GrauL M. et al. (2013).@Effect of Organic Corrosion Inhibitors on the Corrosion Performance of 1018 Carbon Steel in 3% NaCl Solution.@Int. J. Electrochem. Sci., 8, 2491-2503.@Yes$Shukla S.K. and Ebenso E.E. (2011).@Corrosion Inhibition, Adsorption Behavior and Thermodynamic Properties of Streptomycin on Mild Steel in Hydrochloric Acid Medium.@Int. J. Electrochem. Sci., 6, 3277-3291.@Yes$Shukla S.K., Quraishi M.A. and Prakash R. (2008).@A self-doped conducting polymer “polyanthranilic acid”: An efficient corrosion inhibitor for mild steel in acidic solution.@Corros. Sci., 50, 2867-2872.@Yes$Raja P.B. and Sethuraman M.G. (2008).@Natural products as corrosion inhibitor for metals in corrosive media-a review.@Mater.Lett., 62, 113-116.@Yes$Shukla S.K. and Quraishi M.A. (2009).@Cefotaxime sodium: a new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution.@Corros. Sci., 51, 1007-1011.@Yes$Shukla S.K. and Quraishi M.A. (2009).@Ceftriaxone: a novel corrosion inhibitor for mild steel in hydrochloric acid.@J. Appl. Electrochem., 39, 1517-1523.@Yes$Shukla S.K. and Quraishi M.A. (2010).@The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution.@Corros.Sci., 52, 314-321.@Yes$Bhadoriya S.S. (2011).@Tamarindus indica: Extent of explored potential.@Pharmacognosy Reviews, 5, 73-81.@Yes$A. Ousslim et al., (2013).@Thermodynamics, Quantum and Electrochemical Studies of Corrosion of Iron by Piperazine Compounds in Sulphuric Acid.@Int. J. Electrochem. Sci., 8, 5980-6004.@Yes$Nnanna L.A. et. al. (2013).@Adsorption and Corrosion Inhibition of Gnetum Africana Leaves Extract on Carbon Steel.@Int. J. Mat and Chem., 3, 10-16.@Yes @Short Communication <#LINE#>Green Synthesis of 2,4,5-trisubstituted Imidazole Derivatives using Silica Tungstic Acid as an Efficient Catalyst<#LINE#>N.G.@Salunkhe,C.A.@Ladole,N.V.@Thakare ,A.S.@Aswar <#LINE#>36-39<#LINE#>6.ISCA-RJCS-2016-082.pdf<#LINE#>Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India@Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India@Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India@Department of Chemistry, Sant Gadge Baba Amravati University, Amravati, 444602, India<#LINE#>22/3/2016<#LINE#>24/10/2016<#LINE#>Synthesis of 2,4,5-trisubstituted imidazole derivatives via one-pot three components reaction of benzil, aldehydes and ammonium acetate by using silica tungstic acid as an efficient catalyst. The reaction was performed under mild reaction conditions with microwave irradiation as an energy source. Compared with the classical reaction conditions, this method has an advantage of significant enhance in yields (86–95%). The advantages of this protocol include the excellent yield, operational simplicity, short reaction time and avoidance the excess use of organic solvents. The catalyst was separated and reused for several time cycles without any significant loss of activity. Products were identified using physical and IR, 1H and 13C NMR, MS spectroscopic technique.<#LINE#>Lutz W. (2002).@The application of multi-component reactions in drug discovery.@Curr. Med. Chem., 9(23), 2085-2093, DOI: 10.2174/0929867023368719.@Yes$Christopher H. and Vijay G. (2003).@Multi-component Reactions: Emerging Chemistry in Drug Discovery From Xylocain to Crixivan.@Curr. Med. Chem., 10 (1), 51-80, DOI: 10.2174/0929867033368600@Yes$David E. Golan, Ehrin J. Armstrong, April W. Armstrong (2016).@Principles of Pharmacology-The Pathophysiologic Basis of Drug Therapy.@Wolters Kluwer, USA, 1-1024. ISBN: 9781451191004.@Yes$Narayan R.B., Peisheng Z. and Sangeeta B.M. (2007).@p38 MAP Kinase Regulation of Oligodendrocyte Differentiation with CREB as a Potential Target.@Neurochem Res., 32(2), 293-302. DOI: 10.1007/s11064-006-9274-9.@Yes$Joseph G.L. and Edward H.W. (1974).@Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles.@J. Med. Chem., 17(11), 1182-1188. DOI: 10.1021/jm00257a011@Yes$Misono M. (2001).@Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state.@Chem. Commun., 13, 1141-1152. DOI: 10.1039/B102573M@Yes$Ümit U., Nalan G.K. and İlhan I. (2001).@Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives.@II Farmaco., 56(4), 285-290. http://dx.doi.org/10.1016/S0014-827X(01)01076-X@Yes$Linda L.C., Kelly L.S., Margaret A.C., Stephen L., Greg K., Bing L., Malcolm M., Nathan M., O@Substituted Imidazoles as Glucagon Receptor Antagonists.@Bioorg. Med. Chem. Lett., 11(18), 2549-2553. http://dx.doi.org/10.1016/S0960-894X(01)00498-X@Yes$Yi Ming R. and Chun C. (2011).@Highly Efficient, One-Pot, Solvent-Free Synthesis of Highly Substituted Imidazoles Using Molecular Iodine as Catalyst.@Adv Mat Res., 396-398, 1871-1874. DOI:10.4028/www.scientific. net/AMR.396-398.1871.@Yes$Shitole N.V., Shelke K.F., Sonar S.S., Sadaphal S.A., Shingate B.B. and Shingare S.M. (2009).@L-Proline as an Efficient Catalyst for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles.@Bull. Korean Chem. Soc., 30(9), 1963-1966.@Yes$Satyanarayana V.S.V. and Sivakumar A. (2011).@An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by UO2(NO3)2•6H2O under heterogeneous conditions.@Chemical Papers, 65(4), 519-526. DOI: 10.2478/s11696-011-0028-z.@Yes$Sangshettia N.J., Kokarea N.D., Kotharkara S.A. and Shindea D.B. (2008).@ZrOCl2•8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4-di(4,5-diphenylimidazol-yl)benzene.@Chin Chem Lett., 19(7), 762-766. http://dx.doi.org/10.1016/j.cclet.2008.05. 007.@Yes$Karami B., Dehghani F.M. and Eskandari K. (2012).@Facile and Rapid Synthesis of Polysubstituted Imidazoles by Employing Y(NO3)3×6H2O as Catalyst.@Croat. Chem. Acta., 85(2), 147-153. DOI: 10.5562/cca1979@Yes$Marques M.V., Marcelo M., Ruthner M.M., Fontoura L.A.M. and Russowsky D. (2012).@Metal Chloride Hydrates as Lewis Acid Catalysts in Multicomponent Synthesis of 2,4,5-Triarylimidazoles or 2,4,5-Triaryloxazoles.@J. Braz. Chem. Soc., 23(1), 171-179. http://dx.doi.org/10.1590/S0103-50532012000100024@Yes$Sharma G.V.M., Jyothi Y. and Lakshmi P.S. (2006).@Efficient Room‐Temperature Synthesis of Tri‐ and Tetrasubstituted Imidazoles Catalyzed by ZrCl4.@Synthetic commun., 36(20), 2991-3000. http://dx.doi.org/10.1080 /00397910600773825.@Yes$Khodabakhshi S. and Karamib B. (2012).@A rapid and eco-friendly synthesis of novel and known benzopyrazines using silicatungstic acid (STA) as a new and recyclable catalyst.@Catal. Sci. Technol., 2(9), 1940-1944. DOI: 10.1039/C2CY20227A.@Yes <#LINE#>Eco-Friendly Synthesize and Biological Evaluation of 2-Amino-5-substituted-1,3,4-thiadiazoles<#LINE#>Shubhangi @Athawale,Vijay H.@Masand,Subodh E.@Bhandarkar <#LINE#>40-43<#LINE#>7.ISCA-RJCS-2016-136.pdf<#LINE#>Department of Chemistry, G.V.I.S.H., Amravati, Maharashtra-444602, India@Sant Gadge Baba Amravati University, Amravati, Maharashtra-444602, India@Sant Gadge Baba Amravati University, Amravati, Maharashtra-444602, India<#LINE#>22/3/2016<#LINE#>7/10/2016<#LINE#>In the present work, we synthesized the 2-amino-5-substituted-1,3,4-thiadiazole moiety and its different derivatives. The preparation of above 1,3,4-thiadiazole involves cyclisation of aromatic acid with thiosemicarbazide in presence of few drops of POCl3 as dehydrating agent. The derivatives, mostly Schiff’ bases, were synthesized using ‘Green Chemistry’ approach. The reactions are simple one step reactions.The purity of derivatives confirmed by Thin Layer Chromatography. IR spectra was recorded on FT-IR SHIMADAZU, and X-ray Diffraction by RIGAKUMINIFLEXII. The synthesized compounds were tested for their antimicrobial activity against three microorganisms namely E-coli, S. Aureus and P. Seudomonas, and the minimum inhibitory concentrations (MICs) of the tested compounds were determined by the dilution method using Ampicillin, Chloramphenicol, Tetrecyclin.<#LINE#>Rajput P.R. (1993).@Synthesis in Nitrogen and Oxygen Heterocyclic Compounds.@PhD thesis submitted to Amravati University.@No$Ulrich S. and Plter P. (1984).@Aminothiadiazoles and their use in combating unwanted plant growth.@EP 86473.@Yes$Zhange Z. and Yang F. and Chin (1994). J. Org. Chem., 5, 19.@undefined@undefined@No$Yang X. and Chen F. (1995). Res. Chin. Univ., 16, 234.@undefined@undefined@No$Varvarason A., Tantili Kakoulidou A., Siatra Papastasikoudi T. and Tiligada E. (2000).@Synthesis and biological evaluation of indole containing derivatives of thiosemicarbazide and their cyclic 1, 2, 4-triazole and 1, 3, 4-thiadiazole analogs.@ArzenimForsh. 50, 48.@Yes$Visoya S.L., Paghdar D.J., Chovatia P.T. and Joshi H.S. (2005).@Synthesis of some New Thiosemicarbazide and 1,3,4-Thiadiazole Heterocycles Bearing Benzo[b] Thiophene Nucleus as a Potent Antitubercular andAntimicrobial Agents.@J.Sci.I.R.Iran, 16(1), 33.@Yes$Siddiqui A.A., Arora A., Siddiqui N. and Misra A. (2005).@Synthesis of some 1, 2, 4-triazoles as potential antifungal agents.@Indian J. Chem., 44B, 838.@Yes$Kucukguzel I., Kucukguzel S.G., Rollas S. and Kiraz M. (2001).@Some 3-thioxo/alkylthio-1, 2, 4-triazoles with a substituted thiourea moiety as possible antimycobacterials.@Bioorg. Med.s Chem. Lit., 11, 1703.@Yes$Palaskla P., Sahin G., Kelicen P., Durlu N.T. and Altinok G. (2002).@Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones.@Farmaco, 57(2), 101.@Yes$Amir M. and Kumar S. (2005).@Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of 3,5-dimethyl pyrazoles, 3-methyl pyrazol-5-ones and 3,5-disubstituted pyrazolines.@Niscair.@Yes$Kucukguzel S.G.., Kucukgzel I., Tatar E., Rollas S., Sahin F., Gulluce M., De Clercq E. and Kawasaki l. (2007).@Synthesis of some novel heterocyclic compounds derived from diflunisal hydrazide as potential anti-infective and anti-inflammatory agents.@Eur. J. Med. Chem., 42, 893-901.@Yes$Sahin G., Palaska E., Kelicen P., Demirdamar R. and Altmok G. (2001).@Synthesis of Some New 1-Acylthiosemicarbazides, 1, 3, 4-Oxadiazoles, 1, 3, 4-Thiadiazoles and l, 2, 4-Triazole-3-thiones and their Anti-inflammatory Activities.@Arzneim. Forsh., 51, 478.@Yes$Le C.G., Ding J.H. and Yang S. (2002). Chem. World, 366.@undefined@undefined@Yes$Dua Rajiv, Sonwane S.K., Srivastava S.K. and Srivastava S.D (2010).@Greener and expeditious synthesis of 2-azetidinone derivative from 2-mercaptobenzothiazole and their pharmacological screening of the synthesized.@World J. of Chem., 2(1), 415-423.@Yes$Cherkupally Sanjeeva.R., Dasari Chandrashekar R., Yakub Vookanti andNagaraj Adki (2010).@Synthesis and antimicrobial study of bis-[thiadiazol-2-yltetrahydro-2H-pyrazolo[3,4-d][1,3]thiazole]methanes.@Org. Comm., 3(3), 57-69.@Yes$Jalha Sunny, Jindal Anil, Gupta Avneet and Hemraj (2012).@synthesis, biological activities and chemistry of thiadiazole derivatives and Schiff bases.@Asian Journal of Pharmaceutical and Clinical Research, 5(3).@Yes$Ashraf M.A., Mahmood K. and Wajid A. (2011).@Synthesis, Characterization and Biological Activity of Schiff Bases.@IPCBEE, 10, 1-7.@Yes$Lawrence J.F. and. Freij. W. (1976).@Chemical Derivatization in Chromatography.@Elsevier, Amsterdam.@No <#LINE#>Efficient Ultrasound Synthesis, Spectral studies of 1-(2-hydroxyphenyl)-3-(4-nitrophenyl) propane-1, 3-dione with metal complexes as antibacterial and antifungal agents<#LINE#>Dayanand M.@Suryawanshi,Vijayanand D.@Ingale,Anjali S.@Rajbhoj,Suresh T.@Gaikwad <#LINE#>44-47<#LINE#>8.ISCA-RJCS-2016-217.pdf<#LINE#>Department of Chemistry, Rayat Shikshan Sanstha’s Annasaheb Awate College, Manchar (M.S.), India 410 503@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) India 431 004@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) India 431 004@Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.) India 431 004<#LINE#>22/8/2016<#LINE#>15/11/2016<#LINE#>The newly synthesized 1-(2-hydroxy phenyl)-3-(4-nitrophenyl) propane-1, 3-dione with their transition metal (II) complexes 5(a-e) under ultrasound irradiation methods at low temperature were characterized by elemental analysis, FTIR, 1H-NMR spectrum, Mass, and Electronic spectroscopy. The ratio of the metal (II) complexes was found to be 1:2 (metal: ligand). The analytical data suggested that octahedral geometry for the all complexes. The synthesized ligand and their metal complexes 5(a-e) were screened for antimicrobial activity against S. aureus, B. Subtilis and A. Niger and F. Oxysporum using streptomycin as a references drugs.<#LINE#>Bray D.J., Clegg J.K., Lindoy L.F. and Schilter D. (2007).@Synthetic, structural, electrochemical and solvent extraction studies of neutral trinuclear Co(II), Ni(II), Cu(II) and Zn(II) metallocycles and tetrahedral tetranuclear Fe(III) species incorporating 1,4-aryl-linked bis-b-diketonato ligands.@Adv. Inorg. Chem., (59), 1-37.@Yes$Aromi G., Gamez P. and Reedik J. (2008).@Poly beta-diketones: Prime ligands to generate supramolecular metalloclusters.@Coord. Chem. Rev., (252), 964–989@Yes$Alessandro Vigato P., Valentina Peruzzo and Sergio Tamburini (2009).@The evolution of β-diketone ligands and related complexes.@Coord. Chem. Rev., (253), 1099–1201,@Yes$Aho P., Backstrom R., Honkanen E., Linden I., Nissien E. and Pohto P. (1994).@nr 163044 BI.@PL Patent.@Yes$Acton N., Brossi A., Newton D.L. and Sporn M.B. (1980).@Potential prophylactic antitumor activity of retinylidene 1,3-diketones.@J. Med. Chem., (23), 805-809.@Yes$Dalal A., Kamboj R.C., Kumar D., Sharma M.K. and Selvarajan N. (2015).@Crystal structure of (Z)-3-[5-chloro-2-(prop-2-ynyloxy)phenyl]-3-hy-droxy-1-[4-(trifluoromet hyl)phenyl]prop-2-en-1-one.@Acta Cryst., E71, 556-557.@Yes$Nishiyama T., Shiotsu S. and Tsujita H. (2002).@Antioxidative activity and active site of 1,3-indandiones with the β-diketone moiety.@Polym. Degrade. Stab, (76), 435-439.@Yes$Crouse G.D., McGowan M.J. and Boisvenue R.J. (1989).@Polyfluoro 1,3-diketones as systemic insecticides.@J. Med. Chem., (32), 2148-2151@Yes$Hemmila I.A. (1991).@Applications of Fluorescence in Immunoassay.@Wiley, New York, ISBN: 0-85186-225-x@Yes$Sabbatini N., Guardigli M. and Lehn J.M. (1993).@The chemistry of Metal-Organic Framework.@Coord. Chem., (123), 201–228@No$Zhimin Chen, Wu. Yiqun, Fuxin. Huang, Gu. Donghong and Fuxi. Gan, (2007).@Spectroscopic and thermal properties of short wavelength metal (II) complexes containing alpha-isoxazolylazo-beta-diketones as coligands.@Spectrochim. Acta Part A., (66), 1024–102.@Yes$Karvembu R. and Natarajan K. (2002).@Synthesis and spectral studies of binuclear ruthenium (II) carbonyl complexes containing bis (β-diketone) and their applications.@Polyhedron., (21), 219–223@Yes$Huaqiang Zeng, Jianming Xie and Schultz P.G. (2006).@Genetic introduction of a diketone-containing amino acid into proteins@Bioinorg. Med. Chem. Lett., (16), 5356-5359.@Yes$Ameerunisha Begum M.S., Sounik Saha, Akhtar Hussiain and Chakravarty A.R. (2009).@Synthesis, Crystal Structure of DNA cleavage of Copper (II) Complexes.@Indian J.Chem, (48A), 9-14,@Yes$Raman N., Mitu L., Sakthivel A. and Pandi M.S.S. (2009).@Studies on DNA cleavage and antimicrobial screening of transition metal complexes of 4-aminoantipyrine derivatives of N2O2 type.@J. Iran. Chem. Soc., (6), 738–748.@Yes$Bennett I., Broom N.J.P., Cassels R., Elder J.S., Masson N.D. and O’Hanlon P.J. (1999).@Synthesis and antibacterial properties of beta-diketone acrylate bioisosteres of pseudomonic acid.@Med. Chem. Lett., (9), 1847-1852@Yes$Kumari Neetu, Yadav Pradeep and Joshi Yogesh C. (1978).@Synthesis of Some Novel β-Diketones and β-Ketoesters of 4-Methyl Sulphonyl Benzoyl Methylene Bromide.@Chem. Sci Trans., 2(1), 81-84.@Yes$Korde N.S., Gaikwad S.T., Khade B.C. and Rajbhoj A.S. (2013).@Efficient Ultrasound Synthesis, Characterizations and Antimicrobial Screening of Novel Cyclic ß-Diketones.@Chem. Sci. Trans., (2),@Yes$Korde N.S., Gaikwad S.T., Korde S.S. and Rajbhoj A.S. (2013).@Ultrasound synthesis, characterization and thermal study of some ransition metal complexes of β-diketone ligand.@J. of Rec. Tech. and Engin. (2), 4.@Yes$Kumar U. and Chandra S. (2011).@Mn(II), Co(II), Ni(II), & Cu(II) Complexes of Nitrogen and Sulphur Donar ligands.@J. Saudi Chem. Soc. (15), 187–193@Yes$Munde A.S., Jagdale A.N., Jadhav S.M. and Chondhekar T.K. (1979).@Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand.@Journal of Serbian Chemical Society, 75(3), 349-359.@Yes$Sing D.P., Kumar R., Malik V. and Tagi P. (2007).@Template synthesis and characterization of biologically active transition metal complexes comprising 14-membered tetraazamacrocyclic ligand.@Journal of Serbian Chemical Society, 75(2), 217-228.@Yes$Chandra S., Tyagi M. and Agrawal S. (2010).@Synthesis and characterization of a tetraaza macrocyclic ligand and its cobalt (II), nickel (II) and copper(II) complexe.@J. Serb. Chem. Soc., 75(7) 935–941.@Yes$Chandra S., Tyagi M. and Agarwal S. (2010).@Antibacterial and antifungal activity of Schiff base ligands and their metal complexes.@Serb. Chem. Soc., 75(7), 935–941.@No$Hunter T.M., Paisley S.J. and Park H.S. (2004).@Investigations of internal mannich Reactions.@J. Inorg. Biochem, (98), 713@No$Athira C.J., Sindhu Y., Sujamo M.S. et. al. (2006).@Synthesis and spectroscopic characterization of some Lanthanide (III) nitrate complexes of ethyl 2-[2-(1-acetyl-2- -isopropyl) Azo]-4,5-dimethyl-3-thiophenecarboxyat.@Russ. J. Coord. Chem., 76(2), 249-261.@Yes @Short Review Paper <#LINE#>Synthesis of Graphene Oxide by Hummer’s Method and its Physical Applications<#LINE#>R.M.@Apturkar,K.R.@Nemade,P.B.@Rathod,S.A.@Waghuley <#LINE#>48-50<#LINE#>9.ISCA-RJCS-2016-104.pdf<#LINE#>Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati- 444602, India<#LINE#>22/3/2016<#LINE#>6/10/2016<#LINE#>Graphene is newly invented material which is very important in condensed matter physics and material science. Graphene has high crystal and electronics properties. Graphene is a two dimentional crystal made up of only carbon atoms. Graphene does not requires any proof of its importance because of its electronic spectrum, grapheme is emerging as a new standard of “relativistic” condensed matter physics. It is 100 times stronger than steel. This review deals with the synthesis methods, characterizations and applications.<#LINE#>Stankovich et.al. (2006).@Graphene-based composite materials.@nature, 422, 282-286.@Yes$Eda G. and Fanchini G. et.al.@Large-area ultrathin films of reduce graphene oxide As a transparent and flexible electronicmaterial.@Nature nanotechnology, 3, 270-274.@Yes$Wang X., Zhi L and Mullen K. (2007).@Transparent, conductive graphene electrodes for Dyesensitized solar cells.@Nano letters, 8, 323-327.@Yes$Dikin D.A., Stankovich S., Zimmey E.J. and Piner R.D. et al. (2007).@Preparation and characterization Ofgraphene oxide paper.@nature, 448, 457-460.@Yes$Park S., Mohanty N. and Sui D. et.al. (2010).@Flexible, magnetic and electrically conductive graphene /Fe3O4 Paper and its application for magneticcontrolled switches.@J. Phys. Chem. C, 114(41), 17465- 174771.@Yes$Bunch J.S., van der Zande A.M., Verbridge S.S. and Frank I.W. et.al. (2007).@Electromechanical Resonators from Graphene sheets.@Science, 315(5811), 490-493.@Yes$Eda G. and Chhowalla M. (2009).@Graphene-based Composite Thin Films for Electronics.@9:814-818.@Yes$Mohanty N. and Berry V. (2008).@Graphene-based singal-becterium resolution biodevice and DNA transistor: Interfacing graphene derivative with nanoscale and microscale Biocomponents.@Nano Letters, 8, 4469-4476.@Yes$Katsnelson Mikhail (2007).@Graphene: carbon in two dimensions.@Materials Today, 10(1-2), 20-27.@Yes$Geim A.K. and Novoselov K.S. (2007).@The rise of grapheme.@Nature materials, 3, 183-191.@Yes$Chae H.K., Siberio-Pérez D.Y. and Kim J. et.al. (2004).@A route to high surface area, porosity and Inclusion of large molecules in crystals.@Nature, (6974), 523-527.@Yes$Schadler L.S. and Giannaris S.C. et.al. (1998).@Load transfer in carbon nanotube epoxy composites.@Applied Physics Letters, 26, 3842-3484.@Yes$Cao KE and Zimao Y. (2008).@Outstanding Properties and Applications Potentials of grapheme(j).@Materials Review, China Academic Journal Electronic Publishing House,www.cnki.net@Yes$Liang-Xu DONG and Qiang CHEN (2010).@Properties, synthesis, and characterization of grapheme.@Sci.China, 1, 45–51.@Yes$Brodie B.C. (1859).@On the atomic weight of graphite.@Philos. Trans. R. Soc. Lond., 149, 249–259.@Yes$Young R.J, Kinloch I.A. and lgong et.al. (2012).@The mechanics of graphenenanocomposites: A Review.@Composites Science and Technology, 72(12), 1459–1476.@Yes$Staudenmaier L.V. (1898).@Verfahren zur darstellung der graphitsäure.@Ber.Dtsch. Chem. Ges., 31, 1481–1487.@Yes$Hummers W.S. and Offeman R.E. (1958).@Preparation of graphitic oxide.@J. Am. Chem. Soc., 80, 1339-1340.@Yes$Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A. and Sun Z. et.al. (2010).@Improved Syntesis of graphene oxide.@ACS Nano, 4, 4806–4814. Oxidenanoribbons from Multiwalled carbon nanotubes. ACS Nano, 4, 2059–2069.@Yes$Singh Randhir and kumar Dinesh et.al. (2015).@Grphene :potential material for nanoelectronics applications.@IJPAP, 53(8), 501-513@Yes$Li W., Xu Z., Chen L., Shan M. and xtian et al. (2014).@A facile method to produce grapheme Oxide-g-poly (L-lactic acid) as a promising reinforcement for PLLA nanocomposites.@Chem. Eng. J., 237, 291-299.@Yes$Das Tapan K and Prusty Smita (2013).@Graphene-Based Polymer Composites and Their Applications.@Polymer-Plastic Technology and Engineering, 52(4), 319-331.@Yes$Yong Y.C. and Dong X.C. et.al. (2012).@Macroporous and monolithic anode based on polyaniline Hybridizedthree-dimensional graphene for high-performance microbial fuel cells.@ACS Nano, 6, 2394-2400.@Yes$Park T.G, Jeong J.H and Kim S.W. (2006).@Current status of polymeric gene delivery Systems.@Adv. Drug Deliv. Rev, 58(4), 467-486.@Yes <#LINE#>Recent Advancement in the Graphene/Metal Oxide Based Photovoltaic Cell<#LINE#>S.M.@Butte,K.R.@Nemade,S.A.@Waghuley <#LINE#>51-54<#LINE#>10.ISCA-RJCS-2016-117.pdf<#LINE#>Department of Physics, Sant Gadge Baba Amravati University, Amravati -444 602, India@Department of Physics, Indira Mahavidyalaya, Kalamb-445 401, India@Department of Physics, Sant Gadge Baba Amravati University, Amravati -444 602, India<#LINE#>22/3/2016<#LINE#>15/10/2016<#LINE#>The photovoltaic (PV) is very rapidly developing branch of technology, as it is concerned with energy demand. As reported, outstanding properties of graphene with metal oxides in part of introduction we will make design to study the different properties of such an efficient materials for PV technology. By analysing data available in literature of materials science, we will plan to investigate PV properties of graphene/CuO and graphene/Cu2O composite.<#LINE#>Bu Y., Chen Z., Li W. and Hou B. (2013).@Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material.@ACS Appl. Mater. Interfaces, 5, 12361-12368.@Yes$Khurana G., Sahoo S., Barik S.K. and Katiyar R.S. (2013).@Improved photovoltaic performance of dye sensitized solar cell using ZnO–graphene nano-composites.@Journal of Alloys and Compounds, 578, 257-260.@Yes$Peining Z., Nair A.S., Shengjie P., Shengyuan Y. and Ramakrishna S. (2012).@Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning.@ACS Appl. Mater. Interfaces, 4, 581-585.@Yes$Zhang H., Wang W., Liu H., Wang R., Chen Y. and Wang Z. (2014).@Effects of TiO 2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination.@Materials Research Bulletin, 49, 126-131.@Yes$Hu A., Wang Q., Chen L., Hu X., Zhang Y., Wu Y. and Chen Y. (2015).@In Situ Formation of ZnO in Graphene: A Facile Way To Produce a Smooth and Highly Conductive Electron Transport Layer for Polymer Solar Cells..@ACS Appl. Mater. Interfaces, 7, 16078-85.@Yes$Wang R., Wu Q., Lu Y., Liu H., Xia Y., Liu J., Yang D., Huo Z. and Yao X. (2014).@Preparation of nitrogen-doped TiO2/graphene nanohybrids and application as counter electrode for dye-sensitized solar cells.@ACS Appl. Mater. Interfaces, 6, 2118−2124.@Yes$Yang H., Guai G.H., Guo C., Song Q., Jiang S.P., Wang Y., Zhang W. and Li C.M. (2011).@NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell.@J. Phys. Chem., C, 115, 12209-12215.@Yes$Park H., Chang S., Jean J., Cheng J.J., Araujo P.T., Wang M., Bawendi M.G., Dresselhaus M.S., Bulovic V., Kong J. and Gradecak S. (2012).@Graphene cathode-based ZnO nanowire hybrid solar cells.@Nano Letters, 13, 233-239.@Yes$Tang Y.B., Lee C.S., Xu J., Liu Z.T., Chen Z.H., He Z., Cao Y.L., Yuan G., Song H., Chen L., Luo L., Cheng H.M., Zhang W.J., Bello I. and Lee S.T. (2010).@Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application.@ACS Nano, 4, 3482–3488.@Yes$Kim H.N., Yoo H. and Moon J.H. (2013).@Graphene-embedded 3D TiO 2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.@Nanoscale, 5, 4200–4204.@Yes$Chen L., Zhou Y., Tu W., Li Z., Bao C., Dai H., Yu T., Liu J. and Zou Z. (2013).@Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO 2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique.@Nanoscale, 5, 3481-3485.@Yes$Beliatis M.J., Gandhi K.K., Rozanski L.J., Rhodes R., McCafferty L., Alenezi M.R., Alshammari A.S., Mills C.A, Jayawardena K.D.G.I., Henley S.J. and Silva S.R.P. (2014).@ybrid Graphene‐Metal Oxide Solution Processed Electron Transport Layers for Large Area High‐Performance Organic Photovoltaics.@Adv. Mater., 26, 2078–2083.@Yes$Akhtar M.S., Kwon S., Stadler F.J. and Yang O.B. (2013).@High efficiency solid state dye sensitized solar cells with graphene–polyethylene oxide composite electrolytes.@Nanoscale, 5, 5403-5411.@Yes$Chuang M., Chen F. and Hsu C. (2014).@Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices.@Journal of Nanomaterials, 6, 1573-1579.@Yes$Barpuzary D. and Qureshi M. (2013).@Enhanced photovoltaic performance of semiconductor-sensitized ZnO–CdS coupled with graphene oxide as a novel photoactive material.@ACS Appl. Mater. Interfaces, 5, 11673−11682.@Yes$Ramadoss A. and Kim S.J. (2013).@Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications.@Materials Chemistry and Physics, 140, 405-411.@Yes$Imamura G. and Saiki K. (2015).@Modification of Graphene/SiO2 Interface by UV-Irradiation: Effect on Electrical Characteristics.@ACS Appl. Mater. Interfaces, 7, 2439-2443.@Yes$Ryu M.S. and Jang J. (2011).@Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic.@Solar Energy Materials & Solar Cells, 95, 2893-2896.@Yes$Li Q., Zhang P.X.B., Tsai H., Wang J., Wang H.L. and Wu G. (2013).@One-step synthesis of Mn 3 O 4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li–O 2 batteries.@Chem. Commun., 49, 10838-10840.@Yes$Zhu C., Guo S., Fang Y., Han L., Wang E. and Dong S. (2011).@One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids.@Nano Res., 4, 648–657.@Yes$Zhou W., Liu J., Chen T., Tan K.S., Jia X., Luo Z., Cong C., Yang H., Li C.M. and Yu T. (2011).@Fabrication of Co 3 O 4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes.@Phys. Chem. Chem. Phys., 13, 14462–14465.@Yes$Kwon C., Ham J., Kim S., Lee J.L. and Kim S.Y. (2014).@Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants.@Scientific Reports, 4, 4830.@Yes$Wang T.W., Ball J.M., Barea E.M., Abate A., Webber J.A.A, Huang J., Saliba M., Sero I.M., Bisquert J., Snaith H.J. and Nicholas R.J. (2014).@Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.@Nano Lett., 14, 724-730.@Yes