@Research Paper <#LINE#>Provenance and Tectonic Setting of the late Paleoproterozoic Clastic Sedimentary Rocks of the Cuddapah Basin, South India<#LINE#>Gopal@Chakrabarti,Debasish@Shome,Chandra Sekhar@Reddy,Subhajit@Sinha <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2016-024.pdf<#LINE#>Department of Geological Sciences, Jadavpur University, Kolkata-700032, India@Education Directorate, Govt. of West Bengal, Kolkata-700091, India@Department of Geology, Loyola College, Pulivendla, Kadapa Dist, Andhra Pradesh, India@Department of Geology, Durgapur Govt. College, Durgapur-713214, India<#LINE#>21/2/2016<#LINE#>12/9/2016<#LINE#>A geochemical study on mudstone from sandstone-mudstone heterolith of Paleoproterozoic Gulcheru Formation of the Cuddapah Supergroup reveals two simultaneous sources, contributing sediments to the basin, one is a weathered source and the other is juvenile input as indicated by the CIA (average 67) values ranging from 53 to 90. A weak to moderate positive correlation between Fe2O3 + MgO and Al2O3 (r=0.4) contents indicate the dominance of mafic rock fragments, clay minerals and/or micas. The trace element ratios like Th/U of <4 are indicative of first cycle sediment input and >4 were recycled sediments with some degree of weathering. The REE patterns of the shales (normalized to chondrite) are LREE enriched with a flat HREE, lacking strong Eu deficiency while some of the samples show pronounced positive Eu anomaly indicating both felsic and mafic derivation. This mixed source is also indicated by a wide range in the La/Th ratios (avg., 3.4; range 0.9-7.1) and high positive correlation (r = 0.8) between Cr and Ni. These observations imply that sediments were mainly derived from dissected arc-systems and mixed with continental derived sediments. Thus the involvement of the arc systems place constraints on the nature of plate boundary in eastern part of the Cuddapah basin and relate it to the supercontinent episodes during the Proterozoic thus involving a more complex paleogeodynamic evolution of the Cuddapah basin.<#LINE#>Armstrong-Altrin J.S., Lee Y.I., Verma S.P. and Ramasamy S. (2004).@Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting.@Journal of Sedimentary Research, 74, 285-297.@Yes$Cullers R.L. (2000).@The geochemistry of shales, siltstones and sandstones of Pennsylvanian - Permian age, Colorado, U.S.A.: Implications for provenance and metamorphic studies.@Lithos, 51, 181-203.@Yes$Raza M., Ahmad A.H.M., Khan M.S. and Khan F. (2012).@Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering.@International Geology Review, 54(1), 111-129.@Yes$Fatima S. and Khan M.S. (2012).@Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution.@International Geology Review, 54(10), 1113-1144.@Yes$Chakrabarti G., Shome D., Bauluz B. and Sinha S. (2009).@Provenance and weathering history of Mesoproterozoic clastic sedimentary rocks from the basal Gulcheru Formation, Cuddapah Basin, India.@Journal of the Geological Society of India, 74(1), 119-130.@Yes$Chakrabarti G. and Shome D. (2010).@Interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time - An example from basal Gulcheru Formation, Cuddapah basin, India.@Sedimentary Geology, 226, 22-28.@Yes$Nagaraja Rao, Rajurkar B.K. Ramalingaswami S.T., Ravindra G. and Babu B. (1987).@Stratigraphy structure and evolution of Cuddapah Basin.@Radhakrishna, B.P ed: Purana Basins of peninsular India, Geological Society of India, 6, 33-86.@Yes$French J.E., Heaman L.M., Chacko T. and Srivastava R.K. (2008).@1891-1883 Ma Southern Bastar-Cuddapah Mafic Igneous Events, India: a newly recognized Large Igneous Province.@Precambrian Research, 160, 308-322.@Yes$Lucas-Tooth H. and Pyne C. (1964).@The accurate determination of major constituents by X-ray fluorescence analysis in the presence of large interelement effects.@Advances in X-Ray Analysis, 7, 523-541.@Yes$Cullers R.L., Chaudhuri S., Kilbane N. and Koch R. (1979).@Rare earths in size fractions and sedimentary rocks of Pennsylvanian–Permian age from the mid-continent of the USA.@Geochimica et Cosmochimica Acta, 43, 1285-1302.@Yes$McLennan S.M., Bock B., Hemming S.R, Hurowitz J.A., Lev S.M. and McDaniel D.K. (2003).@The role of Provenance and sedimentary processes in the geochemistry of Sedimentary rocks.@Lentz D.R., ed., Geochemistry of Sediments and Sedimentary rocks: Evolutionary considerationsto Mineral Deposits-forming Environments. Geol. Assoc. of Canada, Geo Text, 4, 7-38.@Yes$Garver J.I. and Scott T.J. (1995).@Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera.@Geological Society of America Bulletin, 107, 440-453.@Yes$McCann T. (1991).@Petrological and geochemical determination of provenance in the southern Welsh Basin.@Morton, A. C., Todd, S. P. and Haughton P. D. W. ed. Developments in Sedimentary Provenance. Geological Society Special Publication 57, 215-230.@Yes$Santosh M. (2000).@Paleoproterozoic accretion, Pan African reworking and fluid driven processes in the continental deep crust of southern India.@Srikantappa, C. ed: Deep crustal studies in granulite terranes from southern India. Indian Mineralogist Special, 34, 22-28.@Yes$Rao V.V. and Reddy P.R. (2002).@A Mesoproterozoic supercontinent: evidence from the Indian shield.@Gondwana Research, 5, 63-74.@Yes$Bhatia M.R. and Crook K.A.W. (1986).@Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.@Contribution Mineralogy and Petrology, 92, 181-193.@Yes$AMD. (2009).@Geological map of Cuddapah Basin.@AMD, India.@No$McLennan S.M., Bock B., Hemming S.R, Hurowitz J.A., Lev S.M. and McDaniel D.K. (2003).@The role of Provenance and sedimentary processes in the geochemistry of Sedimentary rocks.@in Lentz, D.R., ed., Geochemistry of Sediments and Sedimentary rocks: Evolutionary considerationsto Mineral Deposits-forming Environments. Geol. Assoc. of Canada, GeoText 4, 7-38.@Yes$Martin H., Smithies R.H., Rapp R., Moyen J.F. and Champion D. (2005).@An overview of adakite, tonalite trondhjemite granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution.@Lithos, 79, 1-24.@Yes <#LINE#>Mukaiyama Reagent: Novel One-Pot System for the Synthesis of 1,3-Oxathiolan-5-one<#LINE#>Manoj P.@Thakare,Rahimullah@Shaikh <#LINE#>8-12<#LINE#>2.ISCA-RJCS-2016-080.pdf<#LINE#>Department of Chemistry, Government Vidarbha Institute of Science and Humanities, Amravati, MS, India@Department of Chemistry, Government Vidarbha Institute of Science and Humanities, Amravati, MS, India<#LINE#>22/3/2016<#LINE#>9/10/2016<#LINE#>A new application of mukaiyama reagent for the simple conversion of aldehyde and mercaptoacetic acid into the corresponding 1,3-oxathiolan-5-one is described. The transformation can be achieved in DMF and the method provides rapid and easy access to 1,3-oxathiolan-5-one compounds in good to excellent yields without any chromatographic purification.<#LINE#>Popp A., Gilch A., Mersier A.L., Peterson H., Mechlem J.R. and Stohrer. (2004).@Enzymatic kinetic resolution of 1,3-dioxolan-4-one and 1,3-oxathiolan-4-one derivatives: Synthesis of key intermediate in the industrial synthesis of the nucleoside reverse transcriptase inhibitor AMDOXOVIOR.@J. Adv. Synth. Catal., 346(6), 682-690.@Yes$Choi W.S., Wilson L.J., Yeola S., Lotta D.C. and Schinazi R.F. (1991).@In situ complexation directs the stereochemistry of N-glycosylation in the synthesis of thialanyl and dioxolanyl nucleoside analogs.@J. Am. Chem. Soc., 113(24), 9377-9379.@Yes$Lotta D.C., Schinazi R.F. and Choi W.S. (1992).@Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane.@Emory University, USA, WO 9214743 A2.@Yes$Lotta D.C. and Choi W.S. (1991).@Method and compositions for the synthesis of BCH-189 and related compounds.@Emory University, USA, WO 9111186 A1.@Yes$Nguyen B.N., Lee N., Chan L. and Zacharie B. (2003).@Synthesis and antiviral activities of N-9-oxypurine 1,3-dioxolane and 1,3-oxathiolane nucleosides.@Biorg. Med. Chem. Lett., 10(19), 2223-2226.@Yes$Rajopadhye M. and Popp F.D. (1988).@Potential anticonvulsants. 11. Synthesis and anticonvulsant activity of spiro[1,3-dioxolane-2,3’-indolin]-2’-ones and structural analogs.@J. Med. Chem., 31(5), 1001-1005.@Yes$Aloup J.C., Bouchaudon J., Farge D., Deregnaucourt J. and Hardy M.H. (1987).@Synthesis and antisecretory and antiulcer activities of derivatives and analogs of 2-(2-pyridyl)tetrahydrothiophene-2-carbothioamide.@J. Med. Chem., 30(1), 24-29.@Yes$Miyauchi H., Tanio T. and Ohashi N. (1996).@Synthesis and antifungal activity of new azole derivatives containing an oxathiane ring.@Biorg. Med. Chem. Lett., 6(20), 2377-2380.@Yes$Nokami J., Ryokume K. and Inada J. (1995).@Synthesis of 1,3-oxathialane derivatives as novel precursors of 2’,3’-dideoxy-3’-oxa-4’-thioribonucleosides.@Tetrahedron Lett., 36(34), 6099-6100.@Yes$Fisher A., Brandeis R., Pittel Z., Karton I., Sapir M., Dachir S., Levy A. and Heldman E. (1989).@(±)-cis-2-methyl-spiro(1,3-oxathiolane-5,3’)quinuclidine (AF102B): A new M1 agonist attenuates cognitive dysfunctions in AF64A-treated rats.@Neurosci. Lett., 102(2-3), 325-331.@Yes$Dei S., Bellucci C., Muccioni M., Ferraroni M., Gundalini L., Manetti D., Marucci G., Maticci R., Nesi M., Romanelli M.N., Scapechi S. and Teodori E. (2008).@Muscarinic antagonists with multiple stereocenters: synthesis, affinity profile and functional activity of isomeric 1-methyl-2-(2,2-alkylaryl-1,3-oxthiolan-5-yl)pyrrolidine sulfoxide derivatives.@Bioorg. Med. Chem., 16(10), 5490-5500.@Yes$Angeli P., Brasili L., Gianella M., Gualtieri F., Picchio M.T. and Teodori E. (1988).@Chiral muscarinic agonists possessing 1 1,3-oxatholane nucleus: enantio- and tissue-selectivity on isolated preparations of guinea-pig ileum and atria and of rat urinary bladder.@Naunyn-Schmiedeberg’s Arch. Pharmacol., 337(3), 241-245.@Yes$Pilgram K.H.G. (1977).@Herbicidal heterocyclic compounds.@US Pat. Appl. US 4019892.@Yes$Krumkalna E.V. (1981).@Methods for plant growth regulation.@US Pat. Appl. US 4282030.@No$Higashiya S., Narizuka S., Konno A., Maeda T., Momota K. and Fuchigami T. (1999).@Electrolytic partial fluorination of organic compounds. Drastic improvement of anodic monofluorination of 2-substituted -1,3-oxathiolan-5-ones.@J. Org. Chem., 64(1), 133-137.@No$Uang B.J., Po S.Y., Hung S.C., Liu H.H., Hsu C.Y., Lin Y.S. and Chang J. (1997).@Asymetric-synthesis employing chiral ketones as templates.@W. Pure Appl. Chem., 69(3), 615-620.@Yes$Pustovit Y.M., Alekseenko A.N., Subota A.I. and Tolmachev A.A. (2006).@Convenient method for the synthesis of 2-trifluoromethyl-1,3-oxathiolan-5-ones.@Chem. Heterocycl. Compd., 42(2), 278-279.@Yes$Yadav L.D.S., Yadav S. and Rai V. K. (2005).@A highly efficient green catalytic system for one pot synthesis of 1,3-oxathiolan-5-ones.@Tetrahedron, 61(20), 10013.@No$Shibata I., Baba A., Iwaski H. and Matsuda H. (1986).@Cycloaddition reaction of heterocumulenes with oxiranes catalysed by organotin iodide-lewis base complex.@J. Org. Chem., 51(12), 2177-2184.@Yes$Dewan M., Kumar A., Saxena A., De A. and Mozumdar M. (2010).@Molecular iodine in [bmim][BF4]: a highly efficient green catalytic system for one pot synthesis of 1,3-oxathiolan-5-one.@Tetrahedron Lett., 51(47), 6108-6118.@Yes$Nagashoma T., Lu Y., Petro M.J. and Zhang W. (2005).@Fluorous 2-chloropyridinium salt (Mukaiyama condensation reagent) for amide formation reactions.@Tetrahedron letters, 46(38), 6585-6588.@Yes$Matsugi M., Hasegawa M., Sadachika D., Okamato S., Tomioka M., Ikeya Y., Masuyama A. and Mori Y. (2007).@Preparation and condensation reactions of a new light-fluorous Mukaiyama reagent: reliable purification with fluorous solid phase extraction for esters and amides.@Tetrahedron Lett., 48(23), 4147-4150.@Yes$Mukaiyama T. (1979).@New synthetic methods based on the onium satls of aza-arenes.@Angew. Chem. Int. Ed., 18, 707@Yes <#LINE#>Determination of Antioxidant Activity and Phytochemical Compounds in Natural Flavor Enhancer<#LINE#>G.M.S.W.@Silva,M.A.J.@Wansapala <#LINE#>13-18<#LINE#>3.ISCA-RJCS-2016-192.pdf<#LINE#>Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka@Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka<#LINE#>24/6/2016<#LINE#>6/9/2016<#LINE#>Flavor enhancer plays a major role in many cuisines. Development of flavor enhancer using natural ingredients may bring vast benefits to the humans’ nutrition. This study was carried out to examine the potentiality of antioxidant activity, phenolic content and bioactive components of newly developed flavor enhancer. The methanol extracts of three samples of flavor enhancer had significant DPPH activity (68.442 ± 0.20693 mg Gallic Acid Equivalent/100g) and Total phenolic content (137.646 ± 0.577 mg Gallic Acid Equivalent /100g). The bioactive components of newly developed flavor enhancer have been evaluated using GC/MS analysis carried out in three different extracts via Acetone, Methanol and Chloroform which revealed the existence of various phytocomponents. The study also highlighted the presence of some known biologically active phyto components like Antimicrobial compounds, antioxidant compounds, anti-inflammatory compounds, anti cancer and antitumor compound. Hence present study showed the medicinal potentiality of this newly developed natural flavor enhancer.<#LINE#>Diplock A.T., Charleux J.L. and Crozier-Willi G. (1998).@Functional food science and defence against reactive oxygen species.@British Journal of Nutrition, 80(1), 77-112.@Yes$Halliwell B. (1996).@Antioxidants in human health and disease.@Annual Review of Nutrition, 16, 33-50, doi:10.1146/annurev.nu.16.070196.000341.@Yes$Morrissey P.A. and O’Brien N.M. (1998).@Dietary antioxidants in health and disease.@International Dairy Journal, 8, 463-472.@Yes$Halliwell B. and Gutteridge J.M.C. (1984).@Oxygen toxicity, oxygen radicals, transition metals and disease.@Biochemical Journal, 219, 1-4.@Yes$Muramatsu H., Kogawa K., Tanaka M., Okumura K., Koike K. and Kuga T. (1995).@Superoxide dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility.@Cancer Research, 55, 6210–6214.@Yes$Steinberg D., Parthasarathy S., Carew T. E., Khoo J.C. and Witztum J.L. (1989).@Beyond cholesterol. Modification of low density lipoprotein that increase its artherogenicity.@New England Journal of Medicine, 320, 915-924.@No$Silva G.M.S.W. and Wansapala M.A.J. (2016).@Formulation of flavor enhancer using lacally available natural raw materials.@International journal of innovative research in technology, 2, 77-81.@No$Slinkard K. and Singleton V.L. (1977).@Total phenol analyses: automation and comparison with manual methods.@Am J Enol Viticult; 28, 49-55.@Yes$Brand Williams W., Cuvelier M.E. and Berset C. (1995).@Use of a free radical method to evaluate antioxidant activity.@Food Science and Technology, 28, 25-30.@Yes$Bejma J. and Ji L.L. (1999).@Aging and acute exercise enhance free radical generation in rat skeletal muscle.@Journal of Applied Physiology, (Bethesda, Md. : 1985), 87(1), 465-470.@Yes$Poon H.F., Calabrese V., Scapagnini G. and Butterfield D.A. (2004).@Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress.@The journals of gerontology. Series A, Biological sciences and medical sciences, 59(5), 478-493, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15123759.@Yes$Wei Y. and Lee H. (2013).@Oxidative Stress, Mitochondrial DNA Mutation, and Impairment of Antioxidant Enzymes in Aging.@Experimental Biology and Medicine, 227, 671-682.@Yes$Halliwell B. (1996).@Antioxidants in human health and disease.@Annual Reviews in Nutrition, 16, 33-49.@Yes$Memnune Sengul, Hilal Yildiz, Neva Gungor, Bulent Cetin, Zeynep Eser and Sezai Ercisli (2009).@Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants.@Pak. J. Pharm. Sci., 22(1), 102-106.@Yes$Lee K.G., Mitchell A.E. and Shibamoto T. (2000).@Determination of antioxidant properties of aroma extracts from various beans.@Journal of Agricultural and Food Chemistry, 48, 4817-4820.@Yes$Middleton E., Kandaswamy C. and Theoharides T.C. (2000).@The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer.@Pharmacological Reviews, 52, 673-751.@Yes$Pietta P., Simonetti P. and Mauri P. (1998).@Antioxidant activity of selected medicinal plants.@Journal of Agricultural and Food Chemistry, 46, 4487-4490.@Yes$Prior R.L., Wu X. and Schaich K. (2005).@Standard methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements.@Journal of Agricultural and Food Chemistry, 53(10), 4290-4302.@Yes$Hossain M.A. and Nagooru M.R. (2011).@Biochemical profiling and total flavonoids contents of leaves crude extract of endemic medicinal plant Corydyline terminalis L. Kunth.@Phcog J, 3, 25-29.@Yes <#LINE#>Phytochemical and antioxidant properties of bark and stems extract of Strychnos camptoneura Gilg and Busse (Loganiaceae)<#LINE#>Morabandza Cyr@Jonas,Amboyi Gloria@Stéphanie Aurélia,Matini@laurent,Gouolali@Tsiba,Ongoka Pascal@Robin,Abena Ange@Antoine <#LINE#>19-23<#LINE#>4.ISCA-RJCS-2016-193.pdf<#LINE#>Department of Biochemistry and Pharmacology, Health Sciences Faculty, University Marien Ngouabi, P .O. Box 69, Brazzaville, CONGO@Department of Biochemistry and Pharmacology, Health Sciences Faculty, University Marien Ngouabi, P .O. Box 69, Brazzaville, CONGO@Departments of Exact Sciences, ENS, University Marien NgouabiI, P.O. Box 69 Brazzaville, CONGO@Vegetable Chemistry and life unity, Technogical and Sciences Faculty, University Marien NgouabiI, P.O. Box 69, Brazzaville, CONGO@Departments of Exact Sciences, ENS, University Marien NgouabiI, P.O. Box 69 Brazzaville, CONGO@Department of Biochemistry and Pharmacology, Health Sciences Faculty, University Marien Ngouabi, P .O. Box 69, Brazzaville, CONGO<#LINE#>27/6/2016<#LINE#>12/8/2016<#LINE#>Phytochemical and antioxidants properties of the barks and the stems extracts of Strychnos camptoneura (Loganiaceae) were studied using classic tests. The aqueous, hydroethanolic, ethanolic and chloroformic extract have been prepared. The most important yield was obtained with hydroethanolic extract of the barks. The qualitative analyses by colored reactions in tubes of the aqueous extract have emphasized respectively 13 and 11 chemical families in bark and stems. The thin layer chromatography of the chloroformic extract revealed the presence of sterols and terpenoids; the one of hydroethanolic extract, the presence of flavonoids and phenolic acid in the two organs. The quantitative evaluation showed more contents raised in alkaloids, total phenol (ethanolic extract) and flavonoids (hydroethanolic extract) in the bark that in the stems. Antioxidant properties according 1.1-diphényl-2-picrylhydrazyle (DPPH) method revealed more important effect with ethanolic extract of the bark and stem than with the aqueous and hydroethanolic extracts. These results certainly explain the important use of this plant in traditional medicine.<#LINE#>Bouquet A. (1969).@Féticheurs et Médecine Traditionnelle du Congo-Brazzaville, Mémoire ORSTOM.@Brazzaville, 36, 48-249.@No$Leeuwenberg A.J.M. (1969).@The Loganiaceae of Africa 8. Strychnos 3. Revision of the African species with notes on the extra-African.@Mededelingen Landbouwhoge school Wageningen, Netherlands, 69-1, 316.@No$Bouquet A. (1972).@Plantes médicinales du Congo-Brazzaville: Uvariopsis, Pauridiantha, Diospyros.@Travaux et Documents de l’ORSTOM, No 13. Office de la Recherche Scientifique et Technique Outre-Mer. Paris, France, 113.@No$Bamidele V.O., Olubunmi O.S., Dare K., Ogunbiy B.A. Elizabeth AdeolaAruboula and Ayodele Olufemi Soladoye. (2008).@Analgesic, anti-inflammatory and antipyretic activities from flavonoids fractions of Chromolaena odorata.@Journal of Medicinal Plants Research, 2(9), 219-225.@Yes$Ogbe A.O. and George G.A.L. (2012).@Nutritional and Anti-nutrient Composition of Melon Husks: Potential as Feed Ingredient in Poultry Diet.@Res.J.Chem.Sci., 2(2), 35-39.@Yes$Morabandza C.J, Ongoka R.P., Matini L., Epa C., Nkounkou L.C. and Abena A.A. (2013).@Chemical Composition of the Mesocarp of Garcinia kola Heckel (Clusiaceae) Fruit.@Res.J.Recent Sci., 2(1), 1-8.@Yes$Morabandza C.J., Okemy A.N., Ongoka R.P., Okiemy-Akieli M.G. and Attibayeba Abena A.A. (2014).@Effets antimicrobiens, anti-inflammatoires et antioxydants du mésocarpe de Garcinia kola Heckel (Clusiaceae).@Phytothérapie., 12, 164-169.@Yes$Elion Itou R.D.G., Sanogo R., EtouOssibi A.W., NsondeNtandou G.F., Ondele R. and Peneme B.M. et al. (2014).@Anti-inflammatory and analgesic effects of aqueous extract of stem bark of Ceiba petandra Gaertn.@Pharmacol. and Pharm, 5, 1113-1118.@Yes$Bouquet Α. (1967).@Inventaires des plantes médicinales et toxiques du Congo Mémoire O.R.S.T.O.M..@Brazzaville-Congo, 34.@No$Wagner H. and Bladt S. (2001).@Plant drug analysis.@A thin layer chromatography Atlas. 2nd Ed, Springer New-York, USA.@No$Zorha B. et al. (2012).@Toxicité aigüe des alcaloïdes totaux des graines de Datura Stramonium chez les souris femelle.@313-314.@Yes$Khacheba I. (2008).@Effet des extraits de quelques plantes médicinales locales sur l’alpha amylase.@75, http//www.memoire online.com/10/08/1554, 29/06/2016, 12 h 00@Yes$Huang D.B. and Prior R.L. (2005).@The chemistry behind antioxidant capacity assays.@Journal of Agricultural and Food Chemistry, 53, 1841-1856.@Yes$Eleyinmi A.F., Bressler D.C., Amoo I.A., Sporns P. and Oshodi A.A. (2006).@Chemical composition of bitter cola (Garcinia kola) seed and ulls.@Polish Journal of food and nutrition sciences, 15, 395-400.@Yes$Braide V.B. (1989).@Antispamodic extracts from seeds of Garcinia kola.@Fitoterapia, 60(2), 123-12910.@Yes$Bruneton J. (1999).@Pharmacognosie, Phytochimie, plantes médicinales.@Tec et Doc. 2èmeEd Lavoisier.@Yes$Braide V.B. (1993).@Anti inflammatory effect of kolaviron, a biflavonoid extract of Garcinia kola.@Fitoterapia, 64(5), 433-436.@Yes$Hennebelle T. (2006).@Investigation chimique, chimiotaxonomique et pharmacologique de Lamiales productrices d’antioxydants».@Université de sciences et technologiques de Lille-I, 304.@Yes$Hayashi T., Cottam H.B. and Chan M. et al. (2008).@Mast cell-dependent anorexia and hypothermia induced by mucosal activation of toll-like receptor 7.@Am J Physiol Regul Integr Comp Physiology, 295, 123-32.@Yes$Koudouvo K., Kavengue A., Agbonon A., Kodjo M., Aklikokou K., Kokou K., Essien K. and Gbeassor M. (2006).@Enquête ethnobotanique sur les plantes à activité antiplasmodiale, antioxydante et immunostimulante dans la région maritime du Togo.@Revue Togolaise des sciences, 1(2), 145-155.@No$Zhang J., Krugliak M. and Ginsburg H. (1999).@The fate of ferriprotoporphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs.@Molecular and Biochemical Parasitology, 99, 129-141.@Yes$Becker K., Tilley L., Vennerstrom J.L., Roberts D., Rogerson S. and Ginsburg H. (2004).@Oxydative stress in malaria parasite-infected erythrocytes: host-parasite interactions.@International Journal of Parasitology, 34, 163-189.@Yes$Urban B.C. and Roberts D.J. (2002).@Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches of host cells.@Current Opinion in immunology, 14, 458-465.@Yes <#LINE#>Comparison of Microwave Irradiation and Conventional Synthesis of 2-thiobarbituric acid Derivatives and in vitro Evaluation of Antimicrobial and Cytotoxic activity<#LINE#>Mst. Khodeza@Khatun,Sharif M.@Al-Reza,M.A.@Sattar <#LINE#>24-34<#LINE#>5.ISCA-RJCS-2016-195.pdf<#LINE#>Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia-7003, Bangladesh@Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia-7003, Bangladesh@Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia-7003, Bangladesh and Jessore Science and Technology University, Jessore-7408, Bangladesh<#LINE#>30/6/2016<#LINE#>18/9/2016<#LINE#>The research work was involved in rapid and efficient procedure for the attachment of 2-thiobarbituric acid with arylidene acetophenone under microwave irradiation (MWI) and conventional heating. We found that the preparation time for the compounds was reduced from 24 hours to 5-10 minutes duing microwave heating. The yield also very poor (78-80%) for the compounds during conventional heating, but in MWI methods the yields were observed 96.68-98.50% which was comparatively too high. By using FT-IR, 1H-NMR spectral data, the synthesized compounds were characterized. The cytotoxic and antimicrobial activities of the compounds were also investigated. Staphylococcus aureus, Bacillus megaterium, Pseudomonas aeruginosa and Escherichia coli revealed the inhibition zone were 8-14 mm where sample concentration was 100 μg/disc. However, cytotoxic analysis, the mortality 49-89% were appeared when sample concentration were 0.78-6.25(μg/ml) and more than 12.5 (μg/ml) concentration showed 100% mortality. The presence of a reactive and unsaturated ketone function in synthesized compounds may be responsible for their potential antimicrobial and cytotoxic activity.<#LINE#>Thierney J.P. and Lidstrm P. (2009).@Microwave Assisted Organic Synthesis.@Blackwell Publishing Ltd., 296.@Yes$Loupy A. (2006).@Microwaves in Organic Synthesis.@Wiley-VCH, Weinheim.@Yes$Hayes B.L. (2002).@Microwave Synthesis: Chemistry at the Speed of Light.@CEM Publishing, Matthews, NC.@Yes$Kappe C.O., Stadler A. and Dallinger D. (2005).@Microwaves in Organic and Medicinal Chemistry.@Wiley-VCH, Weinheim.@Yes$Tanka K., Cheng X. and Yoneda F. (1988).@Oxidation of thiol with 5-arylidene-1,3 dimethylbarbituric acid: application to synthesis of unsymmetrical disulfide.@Tetrahed., 44, 3241-3249.@Yes$Sokmen B.B., Ugras S., Sarikaya H.Y., Ugras H.I. and Yanardag R. (2013).@Antibacterial, Antiurease, and Antioxidant Activities of Some Arylidene Barbiturates.@App. Biochem. Biotech., 171(8), 2030-2039.@Yes$Jones G. (1967).@The Knoevenagel condensation.@Organic Reactions, Wiley: New York, 204-599.@Yes$Khajuria R.K., Jain S.M. and Dhar K.L. (1996).@Studies on cycloaddition reactions of 2, 4-dihydroxy -3 undecyl -1, 4- benzoquinone ( embelin ) and 2, 3-dimethyl buta-1,3-diene.@Indian J. Chem., 35B, 860.@Yes$Ahluwalia V.K., Sahay R. and Das U. (1999).@One-pot facile synthesis of some new 9,10 dihydroacridine derivatives.@Indian J. Chem., 38 (9), 1136-1138.@Yes$Ahmed M.G., Romman U.K.R., Ahmed S.M., Akhter K., Halim M.E. and Salauddin M. (2006).@A Study on the Synthesis of 5, 7-Diaryl-1,2,3,4-tetrahydro-2,4-dioxo-5H-pyrano [2,3-d] pyrimidines.@Bangladesh J. Sci. Ind. Res., 41(3-4), 119-128.@Yes$Nasrin D., Islam N., Hoque F., Ferdous T. and Farhana F.Z. (2012).@Microwave Assisted Synthesis of Pyrano [2, 3-d] Pyrimidinone Derivatives.@Intern. J. Basic App. Sci., 12(05), 50-53.@Yes$Vogel A.I. (1978).@A Text Book of Practical Organic Chemistry.@Forth Ed., Longman Group Ltd., London, 796.@No$Veeriah T. and Sondu S. (1996).@Interactive free-energy relationships in the os(viii) catalyzed oxidation of chalcones by acid bromate - A kinetic-study.@Indian J. Chem., 35(12), 1073-1078.@Yes$Ahmed M.G., Romman U.K.R., Akhter K., Halim M.E., Rahman M.M. and Ahmed S.M. (2011).@A one-pot synthesis of 5,7-diaryl-1,5- dihydro (or 1,2,3,5-tetra-hydro)-pyrano [2,3-d] pyrimidin-2,4- diones ( or 2-thioxo-4-ones).@Indian J. Chem., 5B, 946-948.@Yes$Siddiqui S.A., Islam R., Islam R., Jamal A.H.M., Parvin T. and Rahman A. (2013).@Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd.@Arabia J. Chem.@Yes$Al-Reza S.M., Rahman A., Lee J. and Kang S.C. (2010).@Potential roles of essential oil and organic extracts of Zizyphus jujuba in inhibiting food-borne pathogens.@Food Chem., 119, 981-986.@Yes$Bauer A.W., Kirby W.M.M., Sherris J.C. and Turck M. (1960).@Antibiotic susceptibility testing by a standard single disc method.@American J. Clin. Pathol., 45, 493-496.@Yes$Meyer B.N., Ferrigni N.R., Putnam J.E., Jacobsen L.B., Nichols D.E. and Malaughlin J.L. (1982).@Brine Shrimp: A Convenient General Biossay for Active Plant Constituents.@Plant Med., 45, 31-32.@Yes$Habibi A. and Tarameshloo Z. (2011).@A new and convenient method for synthesis of barbituric acid derivatives.@J. Iranian Chem. Soc., 8(1), 287-291.@Yes$Hosseini Y., Rastgar S., Heren Z., Büyükgüngörc O. and Pesyan N.N. (2011).@One-pot New Barbituric Acid Derivatives Derived from the Reaction of Barbituric Acids with BrCN and Ketones.@J. Chinese Chem. Soc., 58 (3) 309-318.@Yes <#LINE#>Bioactive Compounds and Medicinal Value of two Spices-Zingiber officinale Rosc. and Curcuma longa Linn<#LINE#>Andzouana@Marcel,Makomo@Hubert <#LINE#>35-40<#LINE#>6.ISCA-RJCS-2016-215.pdf<#LINE#>Department of Chemistry, faculty of Sciences and technics, Marien NGOUABI, University, Brazzaville, Congo@Department of Chemistry, faculty of Sciences and technics, Marien NGOUABI, University, Brazzaville, Congo<#LINE#>23/8/2016<#LINE#>29/9/2016<#LINE#>Zingiber officinale Rosc. and Curcuma longa Linn are two medicinal plants widely used as spices and are known in folk medicine for their various uses. Qualitative and quantitative analyses of the two spices were undertaken in various solvents using different methods to determine the medicinal value of these spices. The spices were assessed for the following phytochemicals: glycosides, flavonoids, saponins, alkaloids, terpenoids, tannins, tannins, phenols, carotenoids, anthocyanins and steroids. The test compounds were present in most of the screened plant extracts. Morever phytochemicals were highly present in ethanol extracts of both plants than in ethyl acetat extracts. Anthocyanins, phenols and tannins were the most common phytochemicals present in the extracts. Quantitative analysis showed that the plants contained various concentrations of phytochemicals. The results also indicated that C.longa contained appreciable amounts (0.02±0.01-15.07±0.04%) of phytoconstituents other than ginger (0.02±0.03-22.41%). The spices contained different bioactive compounds with biological properties leading us to conclude that consumption of the two varieties of capsicum spices may be important in health care and could be recommended in nutritional supplementation either as source of drugs in folk medicine.<#LINE#>Kim J.K., Kim Y., Na K.M., Surh Y.J. and Kim T.Y. (2007).@[6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo.@Free Radical Res., 41, 603-614.@Yes$Maizura M., Aminah A. and Wan Aida W.M. (2011).@Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract.@Int. Food Res. J., 18, 529-534.@Yes$Medoua G.N., Egal A.A. and Oldewage-Theron H.W. (2009).@Nutritional value and antioxidant capacity of lunch meals consumed by elderly people of Sharpeville, South Africa.@Food Chem., 115(1), 260-264.@Yes$Kalaivani K., Senthil-Nathan S. and Murugesan A.G. (2012).@Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae).@Parasitology Res., 110(3), 1261-1268.@Yes$Karna P., Chagani S., Gundala S.R., Rida P.C.G., Asif G., Sharma V., Gupta M.V. and Aneja R. (2011).@Benefits of whole ginger extract in prostate cancer.@British J. Nutri., 107 (4), 473-484.@Yes$El-Ghorab A.H., Nauman M., Anjum F.M., Hussain S. and Nadeem M. (2010).@A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum).@J. Agric. Food Chem., 58(14), 8231-8237.@Yes$Trinidad P.T., Sagum R.S., de Leon M.P., Mallillin A.C. and Borlagdan M.P. (2012).@Zingiber Officinale and Curcuma Longa as Potential Functional Foods/Ingredients.@Food and Public Health, 2(2), 1-4.@Yes$Jothivenkata K. and Moscow S. (2013).@Validated method for estimation of Curcumin from different varieties of curcuma longa.@Int. J. Pharm. Biol. Sci., 4(1),1004-1010.@Yes$Singh R., Mehta A., Mehta P. and Shukla K. (2011).@Anthalmintic activity of rhizome extracts of curcuma longa and Zingiber officcinale (Zingiberaceae).@Int.J. pharm. Pharm. Sci., 3, 236-237.@Yes$Kuttan G. and Kumar K.B., Guruvayoorappan C. and Kuttan R. (2007).@Anti-tumor, anti-invarion and antimetastatic effects of curcumin.@Adv.Exp. Med. Biol., 595, 173-184.@Yes$Gantait A., Barrman T. and Mukherjee P. (2011).@Validated method for determination of Curcumin in turmeric Powder.@Indian J.Traditional Knowledge, 10(2), 247-250.@Yes$Maiti K., Mukherjee K., Gantait A., Saha B.P. and Mukherjee P.K. (2007).@Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats.@Int. J. Pharm., 330 ,155-163.@Yes$Tangkanakul P., Auttaviboonkul P., Niyomwit B., Lowvitoon N., Charoenthamawat P. and Trakoontivakorn G. (2009).@Antioxidant capacity, total phenolic content and nutritional composition of Asian foods after thermal processing.@Int. Food Res. J., 16, 571-580.@Yes$Fapohunda S.O., Mnom J.U. and Fakeye F. (2012).@Proximate analysis, phytochemical screening and antibacterial potentials of bitter cola Cinnamon,Ginger and banana peels.@Academia Arena, 4(8),8-15.@Yes$Otunola G.A., Oloyede O.B., Oladiji A.T. and Afolayan A.J. (2010).@Comparative analysis of the chemical composition of three spices – Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria.@Afr.J. Biotech., 9, 6927-6931.@Yes$Kang C. and Kim E. (2010).@Synergistic effect of curcumin and insulin on muscle cell glucose metabolism.@Food Chem.Toxicol., 48(8-9), 2366-2373.@Yes$Trease G.E. and Evans W.C. (1989).@A textbook of pharmacognosy.@London: Bailliere, Tindall, 12th edn, 388, 480, 502, 535, 546.@Yes$Sofowara A. (1993).@Medicinal plants and Traditional the leaves of Ocimum gratissimum.@Sci. Res. Essay, Medicine in Africa, Ibadan: Spectrum Books Ltd., 2, 163-166.@No$Harborne J.B. (1984).@Phytochemical methods, A guide to modern techniques of plant analysis.@London: Chapman and Hall) 2nd edn.@Yes$Harborne J.B. (1998).@Phytoch jmemical methods, A guide to modern techniques of plant analysis.@New York: Chapman and Hall, 3rd edn.@Yes$Kokate C.K. et. al. (2001).@Pharmacognosy.@India: Mumbai, Nirali Prakasham, 16th edn.@Yes$Aguzue O.C., Temilola A.F., Abubakar T.M., Jamal K.M. and Habibu A.S. (2012).@Comparative chemical constituents of some desert fruits in Northern Nigeria.@Arch.Appl.Sci.Res., 4(2), 1061-1064.@Yes$Boham A.B. and Kocipai A.C. (1994).@Flavonoid and condensed tannins from Leaves of Hawaiian vaccininum vaticulum and vicalycinium.@Pacific Sci., 48, 458-463.@Yes$Harborne J.B. (1973).@Phytochemical Methods, A guide to modern techniques of plant analysis.@London, New York:Chapman and Hall, 49-88.@Yes$Obadoni B.O. and Ochuko P.O. (2001).@Phytochemical studies and Comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta States of Nigeria.@Global J. Pure Appl. Sci., 8, 203-208.@Yes$Onyeka E.U. and Nwambekwe I.O. (2007).@Phytochemical profile of some green leafy vegetables in South East, Nigeria.@Nig. Food J., 25(1), 67-76.@Yes$Iqbal H., Ullah R., Ullah R., Khurram M., Ulla N., Baseer A., Khan F.A., Rehman M., Khattak UR., Zahoor M. Khan J. and khan N. (2011).@Phytochemical analysis of selected medicinal plants.@Afr.J. Biotech., 10(38), 7487-7492.@Yes$Venkata K.S.N., Santhosh D., Narasimba R.D., Sanjeeva K.A. and Charles M.A. (2011).@Preliminary phytochemical screening & anti diabetic activity of Z.officinale.@Int.J.Pharm.Life Sci., 2(12), 1287-1292.@Yes$Bhargava Shipra, dhabhai Kshipra, batra Amla, Sharma Asha and malhotra Bharti (2012).@Z. officinale: Chemical and phytochemical screening and evaluation of its antimicrobial activities.@J.Chem.Pharm.Res., 4(1), 360-364.@Yes$Harsha N., Sridevi V., Lakshmi M.V.V.C., Lakshmi C. and Sataya D. (2013).@Phytochemical analysis of some selected spices.@Int. J. Innov. Res. Sci. Eng. Technol., 2(11), 6618-6621.@Yes$Saxena J. and Sahu R. (2012).@Evaluation of phytochemical constituent in conventional & non conventional species of curcuma.@Int.Res.J.Pharm., 3(8), 203-204.@No$Zehra M., Banerjee S., Naqvi A.A. and Kumar S. (1998).@Variation in the growth and alkaloid production capability of the hairy roots of Hyoscyamus albus, H. muticus and their somatic hybrid.@Plant Sci., 136, 93-99.@Yes$Liu Y.H, Liang Z.S., Chen B., Yang D.F. and Liu J.L. (2010).@Elicitation of alkaloids in in vitro PLB (protocorm-like body) cultures of Pinella ternate.@Enzyme Microb. Tech., 46, 28-31.@Yes$Adesuyi A.O., Elumm I.K., Adaramola F.B. and Nwokocha A.G.M. (2012).@Nutritional and Phytochemical Screening of Garcinia kola.@Adv. J.Food Sci. and Technol., 4(1), 9-14.@Yes$Shaik S., Singh N. and Nicolas A. (2011).@Comparison of the Selected Secondary Metabolite Content Present in the Cancer-Bush Lessertia (Sutherlandia) Frutescens L. Extracts.@Afr. J. Tradit. Complement. Altern. Med., 8(4), 429-434.@Yes$Price K.R., Johnson L.J. and Fenwick G.R. (1987).@The chemical and biological significance of saponins in foods and feeding stuffs, C.R.C. Crit.@Rev. Food Sci. Nutri., 26, 27-135.@Yes$Pazmino-Duran A.E., Giusti M.M., Wrostad R.E. and Gloria B.A. (2001).@Anthocyanins from Oxalis triangularis as potential food colorants.@Food Chem.,75, 211-216.@Yes$Jang Y.P., Zhou J., Nakanishi K. and Spanfow J.R. (2005).@Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment,epithelial cells.@Photochem. & Photobiol., 81, 529-536.@Yes$Mazza G. (2005).@Anthocyanins and hearth health.@Ann. Ist. Super. Sanita, 45, 369-374.@Yes$Vera-Guzmán A.M., Chávez-Servia J.L., Carrillo- Rodriguez J.C. and López M.G. (2011).@Phytochemical Evaluation of Wild and Cultivated Pepper(Capsicum annum L. and C.pubescens Ruiz &Pav. from Oaxaca, Mexico, Chilean.@J.Agric.Res., 71(4), 578-585.@Yes$Santos-Gomes P.C., Seabra R.M., Andrade P.B. and Fernandes-Ferreira M. (2002).@Phenolic antioxidant compounds produced by in vitro shoots of sage ( Salvia officinalis L.).@Plant Sci., 162, 981-987.@Yes$Biglari F., AlKarkhi A.F.M. and Easa A.M. (2008).@Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera ) fruits from Iran.@Food Chem., 107, 1636-1641.@Yes$Jiang P., Burczynski F., Campbell C., Pierce G., Austria J.A. and Briggs C.J. (2007).@Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum , F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation.@Food Res. Int., 40, 356-364.@Yes$Tijjani M.A., Abdurahaman F.I., Abba Y.S., Idris M., Baburo B.S.I., Mala G.A., Dungus M.H.N., Aji B.M. and Abubakar K.I. (2013).@Evaluation of proximate and phytochemical Composition of leaves of Annona Senegalensis Pers.@J.Pharm. Sci. Innovat., 2(1), 7-9.@Yes <#LINE#>Cyclic Voltammetric Investigation of Iron In Ore at 1,10-Phenanthroline Modified Carbon Paste Electroactive Electrode<#LINE#>Diédhiou Moussa @Bagha,Koïta@Démo,Diaw@Mahy,Ndoye@Mouhamed,Kane@Cheikhou,Mar-Diop@Codou Guèye <#LINE#>41-47<#LINE#>7.ISCA-RJCS-2016-218.docx<#LINE#>Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal@Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal@Département de chimie, faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal@Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal@Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal@Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, BP : 5085 Dakar-fann, Senegal<#LINE#>31/8/2016<#LINE#>30/9/2016<#LINE#>An electrochemical method based on cyclic voltammetry (CV) and employing a 1,10-phenanthroline (phen) modified carbon paste electroactive electrode (OMCPEE) has been proposed for the determinationof iron on solid substratum. The OMCPEE was calibrated with standard iron sulfate FeSO4 in 2 M HCl as a supporting electrolyte. Under optimized conditions, the proposed method has shown acceptable analytical performances. Two couples of well-defined redox peaks, which are corresponded to the oxidation of iron(II) and ferroin complex are recorded. The scan rate effect suggested thatthe electrode reaction corresponds to anadsorption-controlled process. Using the proposed method, iron was successfully determined in ore samples, suggesting that this method can be applied to the determination of iron in geological matrices.<#LINE#>Alafara A.B., Adekola F.A. and Lawal A.J. (2007).@Investigation of Chemical and Microbial Leaching of Iron ore in Sulphuric acid.@J. Appl. Sci. Environ. Manage., 11(1), 39-44.@Yes$Wildermuth E., Stark H., Friedrich G., Ebenhöch F.L., Kühborth B., Silver J. and Rituper R. (2000).@Iron compounds.@Ullmann@Yes$Amyn S.T. and Pei-Yoong K. (2009).@Synthesis, properties, and applications of magnetic iron oxide nanoparticles.@Progress in Crystal Growth and Characterization of Materials, 55, 22-45.@Yes$Nagajothi A., Kiruthika A., Chitra S. and Parameswari K. (2013).@Fe(III) Complexes with Schiff base Ligands : Synthesis, Characterization, Antimicrobial Studies.@Res. J. Chem. Sci., 3(2), 35-43.@Yes$Laurent S., Forge D., Port M., Roch A., Robic C., Elst L.V. and Muller R.N. (2008).@Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications.@Chem. Rev., 108(6), 2064-2110.@Yes$AminiMashhadi A., Rastgoo A.R. and Vahdati Khaki J. (2008).@An Investigation on the Reduction of Iron Ore Pellets in Fixed Bed of Domestic Non–Coking Coals.@International Journal of ISSI., 5(1), 8-14.@Yes$Chang X., Jiang N., Zheng H., He Q., Hu Z., Zhai Y. and Cui Y. (2007).@Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique.@Talanta, 77(1), 38-43.@Yes$Saracoglu S., Soylak M., KacarPeker D.S., Elci L., Dos Santos W.N.L., Lemos V.A. and Ferreira S.L.C. (2006).@A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry.@Analytica Chemica Acta, 575(1), 133-137.@Yes$Lunvongsa S., Tsuboi T. and Motomizu S. (2006).@Sequential determination of trace amounts of iron and copper in water samples by flow injection analysis with catalytic spectrophotometric detection.@Analytical Sciences, 22(1), 169-172.@Yes$Teixeira L.S.G. and Rocha F.R.P. (2007).@A green analytical procedure for sensitive and selective determination of iron in water samples by flow-injection solid-phase spectrophotometry.@Talanta, 71(4), 1507-1511.@Yes$Zamboni C.B., Metairon S., Kovacs L., Macedo D.V. and Rizzutto M.A. (2016).@Determination of Fe in blood using portable X-ray fluorescence spectrometry: an alternative for sports medicine.@Journal of Radioanalytical and Nuclear Chemistry, 307(3), 1641-1643.@Yes$Liu Y., Dang Z., Wu P., Lu J., Shu X. and Zheng L. (2011).@Influence of ferric iron on the electrochemical behavior of pyrite.@Ionics, 17(2) 169-176.@Yes$Tao D.P., Richardson P.E., Luttrell G.H. and Yoon R.H. (2003).@Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes@ElectrochemicaActa, 48(24), 3615-3623.@Yes$Liu R.,Wolfe A.L., Dzombak D.A., Horwitz C.P., Stewart B.W. and Capo R.C. (2008).@Electrochemical study of hydrothermal and sedimentary pyrite dissolution.@Applied Geochemistry, 23(9), 2724-2734.@Yes$Bobrowski A., Nowak K. and Zarebski J. (2005).@Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO3− catalytic system.@Analytical and Bioanalytical Chemistry, 382(7), 1691-1697.@Yes$Almeida C.M.V.B. and Giannetti B.F. (2002).@A new and practical carbon paste electrode for insoluble and ground samples.@Electrochemistry Communication, 4, 985-988.@Yes$Grygar T., Marken F., Schröder U. and Scholz F. (2002).@Electrochemical Analysis of Solide. A Review.@Collect. Czech. Chem. Commun., 67,163-208.@Yes$Bauer D. and Gaillochet M.Ph. (1974).@Etude du comportement de la pâte de carbone à compose electroactif incorpore.@Electrochimica Acta, 19(10), 597-606.@Yes$Švancara I., Vytřas K., Kalcher K., Walcarius A. and Wang J. (2009).@Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis.@Electroanalysis, 21(1), 7-28.@Yes$Baghbamidi S.E., HadiBeitollahi, Karimi-Maleh H., Soltani-Nejad S., Soltani-Nejad V. and Roodsaz S. (2012).@Modified Carbon Nanotube Paste Electrode for Voltammetric Determination of Carbidopa, Folic Acid, and Tryptophan.@Journal of Analytical Methods in Chemistry, Article ID 305872, 8.@Yes$Gadhari N.S., Sanghavi B.J. and Srivastava A.K. (2011).@Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk.@Analytica Chemica Acta, 703, 31-40.@Yes$Vytřas K., Švancara I. and Metelka R. (2009).@Carbon paste electrodes in electroanalytical chemistry.@J. Serb. Chem. Soc., 74(10), 1021-1033.@Yes$Mersal G.A.M. and Ibrahim M.M. (2013).@Voltammetric Studies of Lead at a New Carbon PasteMicroelectrode Modified with N(2-isopropylphenyl)-2-thioimidazole and its Trace Determination inWater by Square Wave Voltammetry.@Int. J. Electrochem. Sci., 8, 5944-5960.@Yes$Mojica E.R.E., Santos J.H. and Micor J.R.L. (2007).@Determination of lead using a feather-modified carbon paste electrode by anodic stripping voltammetry.@World Applied Sciences Journal, 2(5), 512-518.@Yes$Rajawat D.S., Kumar N., Satsangee S.P. (2014).@Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder.@Journal of Analytical Science and Technology, 5, 19.@Yes$Mojica E.R.E., Vidal J.M., Pelegrina A.B. and Micor J.R.L. (2007).@Voltammetric determination of lead (II) ions at carbon paste electrode modified with banana tissue.@Journal of Applied Sciences, 7(9), 1286-1292.@Yes$Anguiano D.I., García M.G., Ruíz C., Torres J., Alonso-Lemus I., Alvarez-Contreras L., Verde-Gómez Y. and Bustos E. (2012).@Electrochemical Detection of Iron in a Lixiviant Solution of Polluted Soil Using a Modified Glassy Carbon Electrode.@International Journal of Electrochemistry, Article ID 739408, 6.@Yes$Mahamane A.A., Guel B. and Fabre P.L. (2015).@Electrochemical behaviour of iron(II) at a Nafion-1,10-phenanthroline-modified carbon paste electrode: assessing the correlation between preconcentration potential, surface morphology and impedance measurements.@J. Soc. Ouest-Afr. Chim., 039, 41-56.@Yes$Kamel A.H., Moreira F.T.C., Silva T.I. and Sales M.G.F. (2011).@A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements.@International Journal of Electrochemistry, Article ID 643683, 10.@Yes$Sharara Z.Z., Vittori O. and Durand B. (1984).@Electrochemical Oxidation of Divalent Iron Mixed Oxides Using Carbon Paste Electrodes.@ElectrochemicaActa., 29(12) 1689-1693.@Yes$Hamilton I.C. and Woods R. (1981).@An Investigation of Surface Oxidation of Pyrite and Pyrrhotite by Linear Potential Sweep Voltammetry.@J. Electroanal. Chem., 118, 327-343.@Yes$Chen Y.W.D., Santhanam K.S.V. and Bard A.J. (1981).@Solution Redox Couples for Electrochemical Energy Storage: Iron (III)-Iron (II) Complexes with O-Phenanthroline and Related Ligands.@J. Electrochem. Soc., 128(7), 1460-1467.@Yes$Diédhiou M.B., Diaw M., Koita D., Kane C. and Mar-Diop C.G. (2016).@Étude comparative du comportement électrochimique de l’or et du fer par voltammétrie cyclique sur électrode de pâte de carbone en vue de l’analyse d’un minerai.@Afrique Science, 12(4), 36-44.@No @Short Communication <#LINE#>TMSI-mediated Prins-type Reaction of Epoxides with Homoallylic Alcohols: Synthesis of Iodo-Substituted Tetrahydropyrans<#LINE#>N. Maruthi@Raju,K.@Rajasekhar,J. Moses@Babu,B. Venkateswara@Rao <#LINE#>48-50<#LINE#>8.ISCA-RJCS-2016-169.pdf<#LINE#>Custom Pharmaceutical Services, Dr Reddy\'s Laboratories Limited, Bollaram Road, Miyapur, Hyderabad, 500049, India and Department of Organic Chemistry, Foods, Drugs and Water, Andhra University, Visakhapatnam, 530003, India@Ragas Pharmaceuticals Private Limited (OPC), IDA Cherlapally, Hyderabad, 500051, India@Custom Pharmaceutical Services, Dr Reddy\'s Laboratories Limited, Bollaram Road, Miyapur, Hyderabad, 500049, India@Department of Organic Chemistry, Foods, Drugs and Water, Andhra University, Visakhapatnam, 530003, India<#LINE#>24/4/2016<#LINE#>29/8/2016<#LINE#>The cyclization of epoxides with homoallylic alcohols in the presence of Trimethylsilyliodide generates the 4-iodo-tetrahydropyran derivatives in excellent yield.<#LINE#>Clarke P.A. and Santos S. (2006).@Strategies for the Formation of Tetrahydropyran Rings in the Synthesis of Natural Products.@Eur. J. Org. Chem., 2006 (9), 2045-2053.@Yes$Miranda P.O., Carballo R.M., Martín V.S. and Padrón J.I. (2009).@A New Catalytic Prins Cyclization Leading to Oxa- and Azacycles.@Org. Lett., 11(2), 357-360.@Yes$Liu F. and Loh T.P. (2007).@Highly Stereoselective Prins Cyclization of (Z)- and (E)-γ-Brominated Homoallylic Alcohols to 2,4,5,6-Tetrasubstituted Tetrahydropyrans.@Org. Lett., 9(11), 2063-2066.@Yes$Hu X.H., Liu F. and Loh T.P. (2009).@Stereoelectronic versus Steric Tuning in the Prins Cyclization Reaction: Synthesis of 2,6-trans Pyranyl Motifs.@Org. Lett., 11(8), 1741-1743.@Yes$Meilert K. and Brimble M.A. (2005).@Synthesis of the Bis-spiroacetal Moiety of Spirolides B and D.@Org. Lett., 7(16), 3497-3500.@Yes$Dziedzic M. and Furman B. (2008).@An efficient approach to the stereoselective synthesis of 2,6-disubstituted dihydropyrans via stannyl-Prins cyclization.@Tetrahedron Lett., 49(4), 678-681.@Yes$Lian Y. and Hinkle R.J. (2006).@BiBr3-Initiated Tandem Addition/Silyl-Prins Reactions to 2,6-Disubstituted Dihydropyrans.@J. Org. Chem., 71(18), 7071-7074.@Yes$Miranda P.O., Díaz D.D., Padrón J.I., Ramírez M.A. and Martín V. S. (2005).@Fe (III) Halides as Effective Catalysts in Carbon−Carbon Bond Formation:  Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers.@J. Org. Chem., 70(1), 57-62.@Yes$Miranda P.O., Ramírez M.A., Martín V.S. and Padrón J.I. (2006).@The Silylalkyne-Prins Cyclization:  Stereoselective Synthesis of Tetra- and Pentasubstituted Halodihydropyrans.@Org. Lett., 8(8), 1633-1636.@Yes$Dobbs A.P., Parker R.J. and Skidmore J. (2008).@Rapid access to CF3-containing heterocycles.@Tetrahedron Lett., 49 (5), 827-831.@Yes$Overman L.E. and Velthuisen E.J. (2006).@Scope and Facial Selectivity of the Prins-Pinacol Synthesis of Attached Rings.@J. Org. Chem., 71(4), 1581-1587.@Yes$Jasti R., Anderson C.D. and Rychnovsky S.D. (2005).@Utilization of an Oxonia-Cope Rearrangement as a Mechanistic Probe for Prins Cyclizations.@J. Am. Chem. Soc., 127(27), 9939-9945.@Yes$Jasti R. and Rychnovsky S.D. (2006).@Racemization in Prins Cyclization Reactions.@J. Am. Chem. Soc., 128(41), 13640-13648.@Yes$Arundale E. and Mikeska L.A. (1952).@The Olefin-Aldehyde Condensation. The Prins Reaction.@Chem. Rev., 51(3), 505-555.@Yes$Adams D.R. and Bhatnagar S.P. (1977).@The Prins Reaction.@Synthesis, 10, 661-672.@Yes$Trost B.M., Fleming I. and Heathcock C.H. (1991).@In The Prins Reaction and Carbonyl Ene Reactions.@Pergamon Press, New York, 527-561.@No$Overman L.E. and Pennington L.D. (2003).@Strategic Use of Pinacol-Terminated Prins Cyclizations in Target-Oriented Total Synthesis.@J. Org. Chem., 68 (19), 7143-7157.@Yes$Pastor I. M. and Yus M. (2007).@The Prins Reaction: Advances and Applications.@Curr. Org. Chem., 11 (10), 925-957.@Yes$Dobbs A.P., Guesné S.J.J., Martinović S., Coles S.J. and Hursthouse M.B. (2003).@A Versatile Indium Trichloride Mediated Prins-Type Reaction to Unsaturated Heterocycles.@J. Org. Chem., 68(20), 7880-7883.@Yes$Dobbs A.P., Guesné S.J.J., Parker R.J., Skidmore J., Stephenson R.A. and Hursthouse M.B. (2010).@A detailed investigation of the aza-Prins reaction.@Org. Biomol. Chem., 5(8), 1064-1080.@Yes$Murty M.S.R., Rajasekhar K., Harikrishna V. and Yadav J.S. (2008).@Bismuth Triflate Catalyzed Prins-Type Cyclization in Ionic Liquid: Synthesis of 4-Tetrahydropyranol Derivatives.@Heteroatom Chemistry, 19(1), 104-106.@Yes$Murty M.S.R., Rajasekhar K. and Yadav J.S. (2006).@ZrCl4 mediated cyclization between epoxides and homopropargylic alcohols: synthesis of 4-chloro-5,6-dihydro-2H-pyran derivatives.@Tetrahedron Lett., 47 (34), 6149-6151.@Yes$Yadav J.S., Subba Reddy B.V., Ramesh K., Narayana Kumar G.G.K.S. and René Grée. (2010).@An expeditious synthesis of 4-fluoropiperidines via aza-Prins cyclization.@Tetrahedron Lett., 51 (12), 1578-1581.@Yes$Chavre S.N., Choo H., Lee J.K., Pae A.N., Kim Y. and Cho Y.S. (2008).@5- and 6-Exocyclic Products, cis-2,3,5-Trisubstituted Tetrahydrofurans, and cis-2,3,6-Trisubstituted Tetrahydropyrans via Prins-Type Cyclization.@J. Org. Chem., 73(19), 7467-7471.@Yes$Tian G.-Q. and Shi M. (2007).@Brønsted Acid-Mediated Stereoselective Cascade Construction of Functionalized Tetrahydropyrans from 2-(Arylmethylene) cyclopropylcarbinols and Aldehydes.@Org. Lett., 9(12), 2405-2408.@Yes$Jianke Li. and Chao-Jun Li. (2001).@Synthesis of tetrahydropyran derivatives via a novel indium trichloride mediated cross-cyclization between epoxides and homoallyl alcohols.@Tetrahedron Lett., 42(5), 793-796.@Yes$Murty M.S.R., Rajasekhar K. and Yadav J.S. (2005).@ZrCl4 mediated cross-cyclization between epoxides and homoallylic alcohols: synthesis of 4-chlorotetrahydropyran derivatives.@Tetrahedron Lett., 46(13), 2311–2314.@Yes$Murty M.S.R., Rajasekhar K. and Yadav J.S. (2005).@Mild and Efficient Method for the Synthesis of Tetrahydropyran Derivatives via Cross-Cyclization between Epoxides and Homoallylic Alcohols Mediated by Bismuth(III) Chloride.@Synlett., 12, 1945-1947.@Yes$Sabitha Gowravaram, Bhaskar Reddy K., Bhikshapathi M. and Yadav J.S. (2006).@TMSI mediated Prins-type cyclization of ketones with homoallylic and homopropargylic alcohol: synthesis of 2,2-disubstituted-, spirocyclic-4-iodo-tetrahydropyrans and 5,6-dihydro-2H-pyrans.@Tetrahedron Lett., 47(16), 2807-2810.@Yes$Ollevier T. and Lavie-Compin G. (2004).@Bismuth triflate-catalyzed mild and efficient epoxide opening by aromatic amines under aqueous conditions.@Tetrahedron Lett., 45(1), 49-52.@Yes$Baltork M. and Aliyan H. (1998).@Bismuth(III) Chloride; A Mild and Efficient Catalyst for Synthesis of Thiiranes from Oxiranes.@Synth. Commun., 28(21), 3943-3948.@Yes$Baltork M., Tangestaninejad S., Aliyan H. and Mirkhani V. (2000).@Bismuth (III) Chloride (BiCl3); An Efficient Catalyst for Mild, Regio- and Stereoselective Cleavage of Epoxides with Alcohols, Acetic Acid and Water.@Synth. Commun., 30(13), 2365-2374.@Yes$Baltork M., Khosropour A.R. and Aliyan H. (2001).@Efficient conversion of epoxides to 1,3-dioxolanes catalyzed by Bismuth (III) salts.@Synth. Commun., 31(22), 3411-3416.@Yes$Swamy N.R., Kondaji G. and Nagaiah K. (2002).@Bi3+ Catalyzed Regioselective ring opening of epoxides with aromatic amines.@Synth. Commun., 32(15), 2307-2312.@Yes$Ollevier T. and Lavie-Compin G. (2002).@An efficient method for the ring opening of epoxides with aromatic amines catalyzed by bismuth trichloride.@Tetrahedron Lett., 43(44), 7891-7893.@Yes$Paquette L.A. and Barrett J.H. (1969).@2,7-Dimethyloxepin.@Org. Synth., 49, 62.@Yes$Madhukar J. and Nagavani S. (2010).@Iodine mediated mild and efficient method for the synthesis of tatrahydropyrans via cross-cyclization between epoxides and homoallylic alcohols.@Orient. J. Chem., 26(3), 1151-1154.@Yes <#LINE#>Thermodynamics of Complexation of Mn (II) Metal Ion with Amoxicillin<#LINE#>Archana@Shukla,M.K.@Singh <#LINE#>51-53<#LINE#>9.ISCA-RJCS-2016-212.pdf<#LINE#>LCIT College of C and S, Bodri, Bilaspur, CG, India@Govt Agrasen College, Bilha, Bilaspur, CG, India<#LINE#>11/8/2016<#LINE#>29/9/2016<#LINE#>In recent time study of metal complexes are used immensely in medicine in the design of slow release and long acting drugs. Now a day the study of chemistry of metal-drug interaction has become more popular in the design of more biologically active drugs. The present work comprises Potentiometric studies of complexation of amoxicillin with Mn (II) ions in 50% aqueous ethanol medium at three different temperatures (30, 35 and 40oC) and at 0.1 M (NaNO3) ionic strength. Calvin-Bjerrum pH titration process as used by Irving and Rossotti is used for the calculation of stability constants of the metal complexes. It is observed that Mn (II) ions form 1:1 and 1:2 complexes. Various thermodynamic parameters eg. Gibbs free energy change (ΔG), enthalpy changes (ΔH) and entropy changes (ΔS) have also been calculated, which shows formation of metal complexes to be spontaneous, exothermic and stability of complexes at lower temperature.<#LINE#>Waksman S.A. (1947).@What Is an Antibiotic or an Antibiotic substance?.@Mycologia, 39(5), 565-569.@Yes$Janjic Dalhoff A. and Echols R.N. (2006).@Redefining penems.@Biochem Pharmacol E pub., 71(7), 1085-1095.@No$McEvoy G.K. (2016).@AHFS Drug Information, American Society of Health-system Pharmacists.@Inc., Bethesda, MD.@Yes$Pitzer K.S. (1937).@The Heats of Ionization of Water, Ammonium Hydroxide, Cabonic, Phosphoric, and Sulfuric Acids. The Variation of Ionization constants with Temperature and the entropy Change with Ionization.@J.Am.Chem Soc., 59(11), 2365-2371.@Yes$Martell A.E. (1971).@Co-ordination chemistry.@1, Von Nostrand Reinhold Company, London, 577.@No$Mendoza-Diaz G., Perez-Alanso R. and Moreno-Esparza R. (1996).@Stability constants of copper (II) mixed complexes with some 4-quinolone antibiotics and (NN) donors.@J. Inorg, Biochem., 64(3), 207-214.@Yes$Obaleye J.A., Nde-aga J.B. and Balogun J.BE.A. (1997).@Some Antimalaria Drug Metal Complexes: Synthesis characterization and their in-vivo Evaluation against malaria parasite.@Afr.J.Sci, 1,10-12.@Yes$Jaffery G.H., Basset J., Mendham J. and Denny R.C. (1978).@Vogel’s Textbook of Quantitative Chemical Analysis.@5th edition, Longman group UK Limited, ISBN-0-470-21517-8.@Yes$Bjerrum J. et. al. (1941).@Metal Ammine formation in Aqueous Solution.@P. Haase and Son, Copenhagen Denmark, 296.@Yes$Calvin M. and Wilson K.W. (1945).@Stability of Chelate Compounds.@J. Am. Chem. soc., 67(11), 2003-2007.@Yes$Franaeous S. (1948).@Komplexsystem Hos Kopper.@Gleerupska Univ. Bokhandeln, Lund, 139.@No$Schwarzenbach G. and Ackermann H. (1947).@Metal Chelates of EDTA and related substances.@Helv. Chim. Acta, 30, 1798-1804.@No$El-Sherbiny M.F. (2005).@Potentiometric and thermodynamic studies of 2-Thioxothiazolidin-4-one and its metal complexes.@Chem. Pap., 59(5), 332-335.@Yes$Irving H.M. and Rossotti H.S. (1954).@The calculation of formation curves of metal complexes from pH titration curves in mixed solvents.@J.Chem.Soc, 2904-2910.@Yes @Review Paper <#LINE#>Biological Oxidation for Treatment of VOCs –A Review<#LINE#>Reena @Saxena,Rahul@. <#LINE#>54-62<#LINE#>10.ISCA-RJCS-2016-189.pdf<#LINE#>Department of Chemical Engineering, Dr. K. N. Modi University, Newai, Rajasthan, India @Chemical Engineering Department, Lakshmi Narain College of Technology, Bhopal, MP, India<#LINE#>19/6/2016<#LINE#>8/10/2016<#LINE#>Presence of volatile organic compounds (VOCs) in our atmosphere is a major environmental concern. There are several methods available for the treatment of VOCs exists in the atmosphere. Biological oxidation methods which are adopted for controlling gaseous VOCs have been found as simple techniques to control contaminated gases present in air due to its simple operating conditions, normal design and low cost. This review includes an overview of the various biological oxidation methods which have been used for VOC removal from air. The methods discussed in this review also include details information of their configuration and design, operating mechanism, internal activities of microbial biodegradation process and requirement of future R&D in this area.<#LINE#>Kamal M.S., Razzak, S.A. and Hossain M.M. (2016).@Catalytic oxidation of volatile organic compounds (VOCs) – A review.@Atmospheric Evion. doi: 10.1016/j. atmosenv.2016.05.031.@Yes$Priya V.S. and Philip L. (2015).@Treatment of volatile organic compounds in pharmaceutical wastewater using submerged aerated biological filter.@Chem. Engg. J. 266, 309-319.@Yes$Álvarez-Hornos F.J., Lafita C., Martínez-Soria V., Penya-Roja J.M., Pérez M.C. and Gabaldón C. (2011).@Evaluation of a pilot-scale biotrickling filter as a VOC control technology for the plastic coating sector.@J. Biochem. Engg. 58-59, 154-161.@Yes$Datta A. and Philip L. (2014).@Performance of a rotating biological contactor treating VOC emissions from paint industry.@Chem. Engg. J. 251, 269-28.@Yes$Wu H., Yin Z., Quan Y., Fang Y. and Yin C. (2016).@Removal of methyl acrylate by ceramic-packed biotrickling filter and their response to bacterial community.@Bioresource Technol. 209, 237-245.@Yes$Chan W.C. and Lai T.Y. (2010).@Compounds interaction on the biodegradation of acetone and methyl ethyl ketone mixture in a composite bead biofilter.@Bioresource Technol., 101, 126-130.@Yes$Padhi S.K. and Gokhale S. (2016).@Benzene control from waste gas streams with a sponge-medium based rotating biological contactor.@Int. Biodet. & Biodeg. 109, 96-103.@Yes$Datta A., Philip L. and Bhallamudi S.M. (2014).@Modeling the biodegradation kinetics of aromatic and aliphatic volatile pollutant mixture in liquid phase.@Chem. Engg. J. 241, 288-300.@Yes$Padhi S.K. and Gokhale S. (2014).@Biological oxidation of gaseous VOCs - rotating biological contactor a promising and eco-friendly technique.@J. Environ. Chem. Engg. 2, 2085-2102.@Yes$Mathur A.K. Rahul and Balomajumder C. (2013).@Biological treatment and modeling aspect of BTEX abatement process in a biofilter.@Bioresource Technol. 142, 9-17.@Yes$Gallastegui G., Ramirez A.A., Elias A., Jones J.P. and Heitz M. (2011).@Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inter materials.@Bioresource. Technol., 102, 7657-7665.@Yes$Zare H., Najafpour G., Rahimnejad M., Tardast A. and Gilani S. (2012).@Biofiltration of ethyl acetate by Pseudomonas putida immobilized on walnut shell.@Bioresource Technol. 123, 419-423.@Yes$Filho J.L.R.P., Sader L.T., Damianovic M.H.R.Z, Foresti E. and Silva E.L. (2010).@Performance evaluation of packing materials in the removal of hydrogen sulphide in gas-phase biofilters: Polyurethane foam, sugarcane bagasse, and coconut fibre.@Chem. Engg. J. 158, 441-450.@Yes$Ramirez-Lopez E.M., Corona-Hernandez J., Avelar-Gonzalez F.J., Omil F. and Thalasso F. (2010).@Biofiltration of methanol in an organic biofilter using peanut shells as medium.@Bioresource Technol. 101, 87-91.@Yes$Balasubramanian P., Philip L. and Bhallamudi S.M. (2012).@Biotrickling filtration of VOC emissions from pharmaceutical industries.@Chem. Engg. J., 209, 102-112.@Yes$López M.E., Rene E.R., Malhautier L., Rocher J., Bayle S., Veiga M.C. and Kennes C. (2013).@One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis.@Bioresource Technol. 138, 245-252.@Yes$Lebrero R., Rodríguez E., Estrada J.M., García-Encina P.A. and Muñoz R. (2012).@Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal.@Bioresource Technol. 109, 38-45.@Yes$Mudliar S., Giri B., Padoley K., Satpute D., Dixit R., Bhatt P., Pandey R., Juwarkar A. and Vaidya A. (2010).@Bioreactors for treatment of VOCs and odours-A review.@J. Environ. Management 91, 1039-1054.@Yes$Groenestijn Van J.W. and Hesselink P.G.M. (1993).@Biotechniques for air pollution control.@Biodegradation, 4, 283-301, doi:http://dx.doi.org/10.1007/ BF00695975.@Yes$Lebrero R., Volckaert D., Perez R., Munoz R. and Langenhove H.V. (2013).@A membrane bioreactor for the simultaneous treatment of acetone, toluene, limonene and hexane at trace level concentrations.@Water research., 47, 2199-2212.@Yes$Songa J., Namgunga H.K. and Ahmedb Z. (2012).@Biodegradation of toluene using Candida tropicalis immobilized on polymer matrices in fluidized bed bioreactors.@J. Hazard. Mater., 241-242, 316-322.@Yes$Hassan A.A. and Sorial G.A. (2010).@A comparative study for destruction of n-hexane in Trickle Bed Air Biofilters.@Chem. Engg. J., 162, 227-233.@Yes$Mathur A.K. Rahul and Balomajumder C. (2011).@Biodegradation of waste gas containing mixture of BTEX by B. Sphaericus.@Res. J. Chem. Sci., 1, 52-60.@Yes$Jianjun L., Guangyun Y., Duanfang S., Taicheng A., Guoping S. and Shizhong L. (2012).@Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant.@Biodegradation, DOI 10.1007/s10532-011-9497-6@Yes$Kauselya K., Narendiran R. and Ravi R. (2015).@Biofiltration Emerging Technology for Removal of Volatile Organic Compounds (VOC’s) - A Review.@J. Environ. and Bioenergy, 10(1), 1-8.@No$Gopinath M., Mohanapriya C., Sivakumar K., Baskar G., Muthukumaran C. and Dhanasekar R. (2015).@Microbial abatement of toluene using Aspergillus niger in upflow bioreactor.@Ecotoxicology and Environmental Safety, http://dx.doi.org/10.1016/j.ecoenv.2015.09.015.@Yes$Singh K., Singh R.S., Rai B.N. and Upadhyay S.N. (2010).@Biofiltration of toluene using wood charcoal as the biofilter media.@Bioresource Technol., 101, 3947-3951.@Yes$Mathur A.K. Rahul and Balomajumder C. (2011).@Biodegradation of Waste Gas containing Mixture of BTEX by B. Sphaericus.@Research j. Chem. Sci., 1(5), 52-60.@Yes$Rene E.R., Mohammad B.T., Veiga M.C. and Kennes C. (2012).@Biodegradation of BTEX in a fungal biofilter: influence of operational parameters, effect of shock loads and substrate stratification.@Bioresource Technol., 116, 204-213.@Yes$Fulazzaky M.A., Talaiekhozani A., Ponraj M. and AbdMajid Z.M. (2014).@Removal of formaldehyde from polluted air in a biotrickling filter reactor.@Desalination Water Treat., 19, 3663-3671.@Yes$Rene E.R., Kar S., Krishnan J., Pakshirajan K., Lopez M.E., Murthy D.V.S. and Swaminathan T. (2015).@Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.@Bioresource Technol., 190, 529-535.@Yes