Research Journal of Chemical Vol. 5(9), 49-59, September (201 International Science Congress Association Vibrational Spectroscopic Studies of Schiff base compounds derived from 4 Amino Antipyrine by Quantum chemical investigations 1 Govt. Kamla Raja Girls 2 Department of Chemistry, Government Autonomous Post Available online at: Received 8th August AbstractIn this study 4-N- [Salicyledene]amino antipyrine (SAAPy), Dimethylamino)benzalidene] amino antipyrine ( experimental and theoretical study by using Semi The normal mode frequencies of vibration were analyzed. The theoretically obtained results with the experimental data reported. A good correlation has been observed between experimental and calculated values of vibration modes. Keywords: Semi- empirical methods, AM1, PM3, Introduction Schiff's bases are an important class of organic compounds. Schiff bases form a class of compounds with azomethine ( C=N- ) group which can be obtained by condensation of primary amine and carbonyl compounds by elimination of water molecule1-5 . In this present work three Schiff base are reported which were derived from 4- amino pyrine and Salicylaldehyde, Benzaldehyde and (I) Molecular structure of 4-N- [Salicyledene]amino antipyrine (SAAPy)(C 2) , 4-N-[( Dimethylamino)benzalidene] ami Chemical Sciences _________________________________ ______ (201 5) International Science Congress Association Vibrational Spectroscopic Studies of Schiff base compounds derived from 4 Amino Antipyrine by Quantum chemical investigations Parmar Anuand Arora Kishor Govt. Kamla Raja Girls Autonomous Post Graduate College, Gwalior, INDIA Department of Chemistry, Government Autonomous Post Graduate College, Datia, INDIA Available online at: www.isca.in, www.isca.me August 2015, revised 30th August 2015, accepted 15th September 201 5 [Salicyledene]amino antipyrine (SAAPy), 4-N- [Benzalidene] aminoantipyrine (BAAPy),4 Dimethylamino)benzalidene] amino antipyrine ( -DABAAPy) schiff base of 4- Amino Antipyrine has been subjected to experimental and theoretical study by using Semi - empirical AM1, PM3, MNDO and ZINDO1 quantum chemical methods. The normal mode frequencies of vibration were analyzed. The theoretically obtained results were found to be consistent with the experimental data reported. A good correlation has been observed between experimental and calculated values empirical methods, AM1, PM3, MNDO, ZINDO1, vibration modes, correlation coefficient. Schiff's bases are an important class of organic compounds. Schiff bases form a class of compounds with azomethine ( - ) group which can be obtained by condensation of amine and carbonyl compounds by elimination of . In this present work three Schiff base are amino pyrine and Salicylaldehyde, Benzaldehyde and - Dimethylaminobenzaldehyde. In this respect, we rep vibration modes of 4-N- [Salicyledene] (SAAPy),4-N- [Benzalidene]aminoantipyrine(BAAPy),4 Dimethylamino)benzalidene] amino antipyrine ( schiff base by using AM1, PM3, MNDO and ZINDO1 computational Semi- empirical m experimental data6-7. (II) (III) Figure-1 [Salicyledene]amino antipyrine (SAAPy)(C -1), 4-N- [Benzalidene]aminoantipyrine (BAAPy)(C Dimethylamino)benzalidene] ami no antipyrine (-DABAAPy)(C-3) schiff base of 4- Amino Antipyrine (I, II III, respectively) ______ _______ ISSN 2231-606X Res. J. Chem. Sci. 49 Vibrational Spectroscopic Studies of Schiff base compounds derived from 4 - Amino Antipyrine by Quantum chemical investigations INDIA 5 [Benzalidene] aminoantipyrine (BAAPy),4 -N-[( Amino Antipyrine has been subjected to empirical AM1, PM3, MNDO and ZINDO1 quantum chemical methods. were found to be consistent with the experimental data reported. A good correlation has been observed between experimental and calculated values correlation coefficient. In this respect, we rep ort here the [Salicyledene] aminoantipyrine [Benzalidene]aminoantipyrine(BAAPy),4 -N-[( Dimethylamino)benzalidene] amino antipyrine ( -DABAAPy) schiff base by using AM1, PM3, MNDO and ZINDO1 empirical m ethods and compare with [Benzalidene]aminoantipyrine (BAAPy)(C - Amino Antipyrine (I, II and Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 50 Material and Methods All the chemicals used were of AR grade and were used with further purification where ever required. C , H , N analysis of the compound under the studies were carried out on CHNS-O Elemental Vario EL III Carlo Erba 1108 and Melting Point of the compound are noted by usual method in chemistry research laboratory which are listed in table 1. The FTIR spectra of the compounds were recorded on a Perkin Elmer Infrared Spectrophotometer in the range of 4000 to 400 cm-1. Computational details: Intel based Pentium core-2 Duo machine with configuration Intel (R) coreTM 2 Duo CPU, T5450 @ 1.66 GHZ, 2 GB RAM , 250 GB HDD was used to run all the calculations. Semi-empirical AM1, PM3, MNDO and ZINDO1 quantum chemical calculations were carried out by the computer software HYPERCHEM 8.0 version and calculated parameters such as normal modes frequencies of vibration8-9. Results and DiscussionThe experimental and calculated IR fundamental vibration modes for the 4-N-[Salicyledene]amino antipyrine (SAAPy), 4-N-[Benzalidene] aminoantipyrine (BAAPy),4-N-[(Dimethylamino) benzalidene] amino antipyrine (-DABAAPy) Schiff based on AM1, PM3, MNDO and ZINDO1 Semi-empirical methods are presented in Table 2, 3 and 4 respectively and molecular structure of these compounds are presented in figure-110-11. The correlation coefficients obtained for 4-N-[Salicyledene]amino antipyrine (SAAPy) are 0.999945, 0.999972, 0.999888 and 0.999941 by using AM1, PM3, MNDO and ZINDO1 Semi-empirical methods respectively16-18. It is evident that PM3 Semiempirical method gives the more satisfactory correlation (CC = 0.999972) between experimental and calculated vibration modes. In the case of 4-N-[Benzalidene] aminoantipyrine (BAAPy) Schiff base compound, the correlation coefficients obtained 0.999883, 0.999948, 0.999893 and 0.999815 by using AM1, PM3, MNDO and ZINDO1 Semi-empirical methods respectively. It is evident that PM3 Semiempirical method gives the more satisfactory correlation (CC = 0.999948) between experimental and calculated vibration modes12. In the case of 4-N-[(Dimethylamino)benzalidene] amino antipyrine (-DABAAPy) Schiff base compound, the correlation coefficients obtained 0.999072, 0.999643, 0.999935 and 0.999514 by using AM1, PM3, MNDO and ZINDO1 Semi-empirical methods respectively19-20. It is evident that MNDO Semiempirical method gives the more satisfactory correlation (CC = 0.999935) between experimental and calculated vibration modes. Graphical correlations between experimental and calculated fundamental vibrational modes are presented in figures-2, 3 and 4 for the title Schiff base compounds, respectively. The experimental IR spectra for title Schiff base compounds are given in figure-5, 6 and 7 respectively13. Table-1 Analytical data for Schiff base compounds CODE Melting Point C)Elemental Analysis C (In %) H (In %) N (In %) C-1 185-190 63.51 5.15 12.77 C-2 158-162 76.34 7.04 17.44 C-3 198-202 67.22 6.46 16.48 Conclusion Semi-empirical AM1, PM3, MNDO and ZINDO1 calculations have been carried out on the vibration mode frequencies. PM3 Semi-empirical method can be considered as the most appropriate quantum chemical method to facilitate the vibrational frequencies identification of such compounds, since the IR frequencies simulated by this method best linearity between the calculated and experimental frequencies data (CC = 0.999972, 0.999948 respectively) used in 4-N-[Salicyledene]amino antipyrine (SAAPy), 4-N-[Benzalidene] aminoantipyrine (BAAPy) Schiff base compounds. But MNDO Semi-empirical method gives most satisfactory correlation (0.999935) in the case of 4-N-[(-Dimethylamino)benzalidene] amino antipyrine (-DABAAPy) compound14. Thus, Quantum chemical Semiempirical calculation can be successfully used for the prediction of vibration modes of making more active ligands and other molecules. References 1.Fessenden R J and Fessenden J S, Spectrophotometric studies on some Schiff bases derived from benzidine, Organic Chemistry, 542-543 (1989) 2.Abdullah Hussein kshash, FT-IR and UV/Vis Spectroscopic Study of Some Schiff bases Derived From amino Benzoic acid and Bromo benzaldehyde, Journal of chemistry, 2(1), 1-5 (2011) 3.Desai S.B., Desai P.B. and Desai K.R., Synthesis and Spectroscopic Studies of New Schiff Bases, Heterocyclic Communications, , 83-90 (2001) 4.Mohanambal D and Arul Antony S., Synthesis, Characterization and Antimicrobial activity of some novel schiff Base 3d Transition Metal Complexes Derived from Dihydropyrimidinone and 4- Aminoantipyrine, Res. J. Chem. Sci., 4(7), 11-17 (2014) 5.Nagajothi A., Kiruthika A., Chitra S. and Parameswari K., Fe(III) Complexes with Schiff base Ligands: Synthesis, Characterization, Antimicrobial Studies, Res. J. Chem. Sci., 3(2), 35-43 (2013) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 51 50010001500200025003000350001000200030004000ExperimentalCalculatedAM1 (CC-0.999945) 5001000150020002500300035000500100015002000250030003500ExperimentalCalculatedPM3(CC-0.999972) 500100015002000250030003500400001000200030004000ExperimentalCalculatedMNDO (CC-0.999888) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 52 Figure-2 Graphical correlation between experimental and calculated fundamental vibration modes obtained by AM1, PM3, MNDO and ZINDO1 Semi-empirical methods for 4-N-[Salicyledene]amino antipyrine (SAAPy) (CC-Correlation coefficient) 50010001500200025003000050010001500200025003000ExperimentalCalculatedZINDO1 (CC-0.999941) 500100015002000250030003500400001000200030004000ExperimentalCalculatedAM1 (CC-0.999883) 5001000150020002500300035000500100015002000250030003500ExperimentalCalculatedPM3 (CC-0.999948) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 53 Figure-3 Graphical correlation between experimental and calculated fundamental vibration modes obtained by AM1, PM3, MNDO and ZINDO1 Semi-empirical methods for 4-N-[Benzalidene]amino antipyrine (BAAPy)(CC-Correlation coefficient) 500100015002000250030003500400005001000150020002500300035004000xperimentalCalculatedMNDO (CC-0.999893) 200400600800100012001400160018000500100015002000ExperimentalCalculatedZINDO1 (CC-0.999815) 5001000150020002500300035000500100015002000250030003500ExperimentalCalculatedAM1 (CC-0.999072) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 54 Figure-4 Graphical correlation between experimental and calculated fundamental vibration modes obtained by AM1, PM3, MNDO and ZINDO1 Semi-empirical methods for 4-N-[(-Dimethylamino)benzalidene]aminoantipyrene (-DABAAPy) (CC-Correlation coefficient) 5001000150020002500300035000500100015002000250030003500ExperimentalCalculatedPM3 (CC-0.999643) 500100015002000250030003500400001000200030004000ExperimentalCalculatedMNDO (CC-0.999935) 50010001500200025003000050010001500200025003000ExperimentalCalculatedZINDO1(CC-0.999514) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 55 Table-2 Normal Mode Frequency of Vibration (cm-1) for 4-N-[Salicyledene]amino antipyrine (SAAPy)Experimental Group Frequency (cm-1) AM1 Computed Group Frequency (cm-1) PM3 Computed Group Frequency (cm-1) MNDO Computed Group Frequency (cm-1) ZINDO1 Computed Group Frequency (cm-1) Assignment 3434 - - 3429 - as (N-H) in NH 3296 3291 - - - s (N-CH) 3241 - - - - s (N-CH) 3059 - 3058 - - (C-H) 3017 - - - - (C-H) 2868 - - - - (=C-H) Aldehyde 2632 - - - 2673 as (C-NH) 1653 - - 1634 - (C=O) 1594 - 1594 - - (NH) Sci 1490 1498 - 1485 1489 (C=C) 1455 1465 1457 1454 1449 (C=C) 1413 1423 - 1425 - as(C-CH) 1366 1368 1368 1367 - (N-C) 1349 1345 - - 1353 (C-N) 1305 - 1304 1309 - (C-C) 1268 1278 1265 1272 1272 (C-H) 1204 1212 1215 1203 - (C-H) 1139 - - - - (C=O) 1075 - 1078 1071 - (C-H) 1045 1038 - 1040 - (NH) Twi 964 959 959 - 965 (C-H) 934 - - - - (C-H) 903 - 905 907 914 (C-H) 853 861 847 862 856 (C-H) 765 774 765 763 765 (C-H) 753 - - - - (C-H) 708 - 711 - 708 (N-N) 631 642 629 642 632 (CCC) 550 553 - - 557 (CCC) 475 470 470 470 - (CCC) 433 438 439 - 438 (NH) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 56 Table-3 Normal Mode Frequency of Vibration (cm-1) for 4-N-[Benzalidene]amino antipyrine (BAAPy)Experimental Group Frequency (cm-1) AM1 Computed Group Frequency (cm-1) PM3 Computed Group Frequency (cm-1) MNDO Computed Group Frequency (cm-1) ZINDO1 Computed Group Frequency (cm-1) Assignment 3432 3480 - 3443 - as (N-H) in NH 3289 3268 - - - s (N-CH) 3038 3025 3035 - - s (C-H) 2992 - 2986 - - (C-H) 1650 - - 1627 1668 (C=O) 1594 - 1586 1594 1587 (NH) Sci 1566 1562 - - 1572 (NH) Sci 1493 - - 1496 - (C=C) 1483 1480 - - - (C=C) 1454 - - 1452 1462 (C=C) 1416 1417 1408 - - as (C-CH) 1379 1383 1378 1368 1375 (C-C) 1357 1353 1363 1361 1355 (C-C) 1338 1346 1322 1347 1334 (C-N) 1306 1307 1308 - 1300 (C-C) 1212 1207 - 1217 1203 (C-H) 1169 1159 1166 1169 - (C-H) 1130 - 1140 - 1123 (C-H) 1068 1067 - 1068 - (C-H) 1019 1007 1017 - 1015 (C-H) 985 982 988 985 - (C-N) 929 928 - 925 933 (C-H) 905 912 911 915 900 (C-H) 875 876 876 - 880 (C-H) 831 839 - 835 832 (CCC) rb 758 756 750 - 751 (C-H) 742 - - 734 - (C-H) 704 717 714 716 712 (N-N) 693 - 685 687 686 (NH) 617 625 610 619 623 (CCC) 593 - - - 586 (CCC) 557 552 557 533 557 (CCC) 503 - 509 - - (CNN) 448 443 450 450 440 (CCN) 429 434 432 - - (NH) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 57 Table-4 Normal Mode Frequency of Vibration (cm-1) for 4-N-[(-Dimethylamino)benzalidene]aminoantipyrene(-DABAAPy)Experimental Group Frequency (cm-1) AM1 Computed Group Frequency (cm-1) PM3 Computed Group Frequency (cm-1) MNDO Computed Group Frequency (cm-1) ZINDO1 Computed Group Frequency (cm-1) Assignment 3435 - - 3444 - as (N-H) in NH 3184 3185 3124 - - s (N-CH) 3045 3066 3047 - - s (C-H) 2922 2990 2982 - - (C-H) 2863 - - - - as(C-H) in CH 2804 - - - - (=C-H) Aldehyde 2630 - - - 2614 (C-H) in CH 1647 1637 1628 1659 1664 (C=O) 1610 - - - - (C=O) 1591 1590 1586 1582 - (NH) Sci 1488 1483 1483 1495 1480 (C=C) 1454 1463 - 1450 - (C=C) 1444 - - 1444 1444 (C=C) 1430 1432 1434 1431 1427 as(C-CH) 1407 1402 - - - (C-CH) 1370 1370 1373 1369 1369 (N-C) 1311 1319 1305 - 1325 (C-C) 1291 - 1297 1285 1288 (C-N) 1229 1219 1224 1232 1227 (C-H) 1175 1185 1173 1168 1165 (C-H) 1147 1158 1146 1145 - (C-H) 1135 1127 - - - (C-H) 1071 - 1070 1068 - (C-H) 1044 - 1041 1038 1048 (NH) Twi 1022 1016 1018 - - (C-N) 1002 - - - - (CCC) Tri 973 978 978 980 968 (C-H) 929 936 938 929 - (C-H) 876 872 870 870 869 (C-H) 819 - 809 814 805 (CCC) rb 680 686 693 693 - (CCC) 632 - 628 639 635 (CCC) 591 - - - 587 (CCC) 465 455 454 474 457 (CCC) Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 58 Figure-5 Experimental spectra of 4-N-[Salicyledene]amino antipyrine (SAAPy) Figure-6 Experimental spectra of 4-N-[Benzalidene]amino antipyrine(BAAPy) 4000.0 3600 3200 2800 24002000 180016001400 1200 1000 800 600 400.0-4.0 5 10152025303540455055606569.4cm-1 %T 3432,61 3289,62 3131,63 3038,51 2992,56 2940,54 1964,64 1917,65 1888,66 1824,66 1650,2 1594,28 1566,10 1493,14 1483,15 1454,30 1416,28 1379,32 1357,38 1338,40 1306,13 1212,52 1169,54 1130,33 1068,45 1019,49 985,57 960,42 929,60 905,60 875,54 831,60 758,29 742,34 704,31 693,26 617,49 593,44 557,42 514,51 503,52 448,57 429,58 4000.0 3600 320028002400 2000 180016001400 1200 1000 800 600400.0 0 .0 5 101520253035404550556067.1cm-1 %T 3434,58 3241,59 3059,46 3017,47 2934,45 2868,51 2790,50 2632,51 1988,61 1923,60 1886,61 1816,63 1770,64 1653,4 1594,9 1490,11 1455,22 1413,19 1366,28 1349,27 1305, 14 12 68, 16 1204,39 1139, 18 1075,47 1045,48 964,50 934,51 903,57 853,44 819,34 765,26 753,25 708,43 631,45 594,45 550,48 507,59 475,59 433,56 Research Journal of Chemical Sciences ___________________________________________________________ ISSN 2231-606XVol. 5(9), 49-59, September (2015) Res. J. Chem. Sci. International Science Congress Association 59 Figure-7 Experimental spectra of 4-N-[(-Dimethylamino)benzalidene]aminoantipyrene (-DABAAPy) 6.Singh Rajeev, Kumar D., Singh Bhoop, Singh V.K. and Sharma Ranjana, Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of S-2-picolyl-N-(2-acetylpyrrole) dithiocarbazate Schiff base by Quantum Chemical investigations, Res. J. Chem. Sci., 3(2), 79-84 (2013) 7.Kumar D., Agrawal M.C. and Rajeev Singh, Computational Study of Benzaldehyde Thiosemicarbazone, Mat. Sci. Res. Ind., 3(1A), 37 (2006) 8.Hyper ChemTM Professional Release 8.0 for Window Molecular Modeling System, Dealer: Copyright ©, Hypercube, Inc (2002) 9.Stewart J.J.P., Lipkowinz K.B., Boyal D.B., (Eds.); Reviews in Computational Chemistry, V.C.H., 1, 45 (1990)10.Bingham Richard C., Dewar M. J.S. and Lo D.H., Ground state of molecules. XXV. MINDO/3, Improved version of the MINDO Semi-empirical SCF-MO method, J. Am. Chem. Soc., 97(6), 1285 (1975) 11.Arora K, Kumar D., Burman K , Agnihotri S and Singh B, Theoretical studies of 2-nitrobenzaldehyde and furan-2-carbaldehyde Schiff base of 2-amino pyridine, J. Saudi Chem. Soc., 15, 161 (2011)12.Singh R, Goswami Y.C., Goswami R, Semiempirical and Experimental Investigation on Coordination behavior of S-methyl – -N-(4-methoxyphenylmethyl) methylenedithiocarbazate Schiff base towards Co(II), Ni(II) and Cu(II) metal ions, Journal of Chemistry, , 1 (2011)13.Kumar D., Agrawal M.C. and Rajeev Singh, Theoretical Investigation of IR and Geometry of the S-benzyl--N-(2-furylmethylketone)dithiocarbazate Schiff base by Semiempirical Methods, Asian J. Chem., 19(5), 3703 (2007)14.Kumar D., Agrawal M.C. and Rajeev Singh, Theoretical Study of Pyridine-2-Amidoxime by Semi-empirical Methods, Oriental J. Chem., 22(1), 67 (2006) 4000. 0 360 0 320 0 280 0 240 0 200 0 180 0 160 0 140 0 120 0 100 0 80 0 60 0 400. 0 10. 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 73. 7 cm- 1 % T 3435,68 3184,70 3045,68 2922,60 2863,61 2804,62 2630,69 1964,71 1647,12 1610,17 1591,25 1580,23 1547,35 1527,25 1488,37 1454,44 1444,46 1430,43 1407,38 1370,23 1311,42 1291,41 1229,48 1175,28 1147,38 1135,31 1071,54 1044,59 1022,60 1002,62 973,58 946,58 929,63 876,65 819,47 798,60 774,48 754,59 734,66 700,50 680,63 632,59 606,65 525,54 505,59 465,66 442,64