@Research Paper <#LINE#>Physico-Chemical and Mineralogical Characterization of some Clays from Coastal Sedimentary Basin of Benin used in Ceramic<#LINE#>E.@Sagbo,A.@Laibi,M.@Senou,R.@Josse,J.@Mensah,@BorschneckD.,Y.@Noack<#LINE#>1-19<#LINE#>1.ISCA-RJCS-2015-127.pdf<#LINE#><#LINE#>30/1/2015<#LINE#>24/9/2015<#LINE#>Three sites of Benin’s clays from Gbédji-Kotovi, Massi-Sèhouè and Zogbodomey were characterized in this study. Physico-chemical and mineralogical analysis were performed by X-Rays Diffraction, chemical analysis, thermal analyses ATD/ATG, infrared IR, specific surface area and granulometry. Density of clayey particles, capacity of cationic exchange (C.C.E.) and exchangeable bases were also done. It comes out from these analyses that clays of Zogbodomey are essentially kaolinitic while those of Gbédji-kotovi and of Massi-Sèhouè are with smectitic predominance. By its composition the sample of Zogbodomey is constituted by a natural mixture of the elements necessary for the production of ceramic (bricks, tiles, pottery etc). The two others series of samples from Gbédji-kotovi and Massi-Sèhouè will require some kaolinite and sand additions because of their strong proportion in smectite. Thus, they would be more useful in agronomy and environmental protection <#LINE#> @ @ Caillère S., Hénin S., Ratureau M., Minéralogie des Argiles, Tomes I, II, 2ème édition.Masson et Cie, (1982) @No $ @ @ Cases JM., Liétard O., Yvon J. and Delon JF., Etude des propriétés cristallochimiques,morphologiques, superficielles des kaolinites désordonnées. Bulletin de Minéralogie, 105, 439–455 (1982) @No $ @ @ Holtzapffel T., Les Minéraux argileux: préparation, analyse diffractiométrique et détermination, Société Géologique du Nord 12. (1985) @No $ @ @ Singh B. and Gilkes R.J., Properties of soil kaolinites from South-Western Australia, Journal of Soil Science, 43, 654–667 (1992) @No $ @ @ Decarreau A., Structures, Propriétés et Applications.Société Française de Minéralogie et de Cristallographie, (1994) @No $ @ @ Sigg J., Les Produits de Terre cuite. Septima Editeur Paris, (1995) @No $ @ @ Alliprandi G., Matériaux Réfractaires et Céramiques Techniques-I Eléments de Céramurgie et de Technologie, Editions Septima Paris, 132 (1996) @No $ @ @ Jouenne C.A., Traite de Céramiques et Matériaux Minéraux, Editions Septima Paris, (1990) @No $ @ @ Iheta B., Kirov M., Tsawlassou G. et and Houessou A., Rapport sur les recherches géologiques d’argiles dans la zone du bassin côtier: Secteur Gbédji Kotovi, Massi, Zogbodomè, (1983) @No $ @ @ Slansky M., Contribution à l’étude géologique du bassin sédimentaire côtier du Dahomey et du Togo (1962) @No $ @ @ IRB, Etude de la cartographie en géologique et prospection de reconnaissance au Sud du 9ème parallèle (1989) @No $ @ @ Aubert G., Méthodes d’Analyses des Sols, Centre régional de Documentation Pédagogique de Marseille (191) 2ème trimestre (1978) @No $ @ @ Sei J., Etude de matériaux de dimensionnalité réduite: Relation structure-propriété dans des kaolinites naturelles de Côte d’Ivoire. Thèse, Univ. Montpellier, France (1998) @No $ @ @ Robert M. and Tessier D., Annales Agronomiques 26, nº6, 859 (1974) @No $ @ @ Njopwouo D., Minéralogie et physicochimie des argiles de Bomkoul et de Balengou (Cameroun), Utilisation dans lapolymérisation du styrène et dans le renforcement du caoutchouc naturel. Thèse de Doctorat d’Etat, YAOUNDE, 300, (1984) @No $ @ @ Lahlou M., Badraoui M., Tessier D. and Elsass F., Quant Arg2: Un modèle linéaire de quantification des minéraux argileux des sols Partie1: Présentation du modèle Revue H.T.E. N, 126 (2003) @No $ @ @ Lucas J.T., Etude du comportement à haute température, Bull .Serv. Carte géol. Lorr.,18, 217-2428 (1965) @No $ @ @ Van Olphen H., Clay Colloïd Chermistry, Second Edition, A Wiley-Interscience-Publication, John Wiley and Sons (1964) @No $ @ @ Bouaziz R. and Rollet AP., l'analyse thermique tome 1: les changements de phase, Editions GAUTHIER-VILLARS, 410-411 (1972) @No $ @ @ Mackenzie et Bishui, Clay Minéral, Bulletin, 3, 276 (1958) @No $ @ @ Medard T., (Groupe Français des Argiles), Les argiles plastiques du bassin de Paris, Livret guide (1991) @No $ @ @ Grenne Kelly R., The montmorrillonite minérals. The différential thermal investigation of clays. in Mackenzie R.C., Minéral Soc, London, chap. V, 140-164 (1957) @No $ @ @ Chantret F., Desprairies A., Douillet P., Jacob C., Steinberg M. and Trauth N., Revison critique de l’utilisation des méthodes thermiques en sédimentologie: cas des montmorillonites Bull Gr, Fr. Argile, 23, 141-172 (1957) @No $ @ @ Weir A.H. et, Grenne-Kelly R., Beïdellite, Amer, Min, 37, 137-146 (1962) @No $ @ @ Keith et Tuttle, Am. J. Sci., Bowen, Pt., 1, 203 (1952) @No $ @ @ Schulze D.G., Schwertmann U., The influence of aluminium on iron oxides: X. Properties of Al-substituted goethite, Clay Minerals, 19, 521–539 (1984) @No $ @ @ Liétard O., Contribution à l’étude des propriétés physico-chimiques, cristallographiques et morphologiques des kaolins, These Nancy(1997) @No <#LINE#>Thermodynamics Analysis of Natural Gas Fuel Based Furnace/Boiler Integrated with Steam Power Plant: A Theoretical Approach<#LINE#>Umar@Shafiq,Ahmad@Mukhtar,AliFeroz@Khan,HafizM.@QuladuzAziz,Imran@Shamshad<#LINE#>20-24<#LINE#>2.ISCA-RJCS-2015-151.pdf<#LINE#> Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research Faisalabad, PAKISTAN @ Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, PAKISTAN<#LINE#>31/10/2015<#LINE#>14/11/2015<#LINE#>Energy and Environment both is the core for human comfort and global survival now days. Thermodynamic Analysis of Furnace/Boiler coupled with a steam power plant has been carried out in order to evaluate its performance and irreversibility’s by using the generalized mathematical formulation. This paper represents a detailed energy study and thermodynamic analysis for the calculation of ideal work of the whole plant while the work lost in Furnace/Boiler coupled with steam power plant. For this purpose an experiment is carried out in a miniature steam power plant using Methane and 30% Air in excess as a fuel of furnace the hot flue gases are used for steam generation which is further used to operate the steam power plant. After collecting useful data and by applying generalized mathematical formulation our results shows that ideal work of whole plant is (-266.758×10kW) while the work lost in Furnace/Boiler is (169.387×10kW) so the Furnace/Boiler efficiency is (63.50 %). <#LINE#> @ @ Anozie N. and Ayoola P.O., The influence of throughput on Thermodynamic efficiencies of a Thermal Power Plant, International Journal of Energy Engineering, 2(5), 266-272 (2012) @No $ @ @ Aljundi I.H., Energy and Exergy analysis of Steam Power Plants in Jordan, Applied Thermal Engineering, 29, 324-328 (2009) @No $ @ @ Bhatt M.S. and Rajkumar N., Performance Enhancement in Coal Fired Thermal Power Plants. Part II, Steam Turbines, International Journal of Energy Research, 23(6), 489-515, (1999) @No $ @ @ Oktay Z., Investigation of Coal-Fired Power Plants in turkey and a Case Study: Can Plant, Applied Thermal Engineering, 29, 550-557, (2009) @No $ @ @ Sengupta S., Datta A. and Duttagupta S., Exergy Analysis of Coal-Based 210MW Thermal Power Plant, International Journal of Energy Research, 31, 14-28, (2007) @No $ @ @ Tekin T. and Bayramoglu M., Exergy Analysis of the Sugar Production Process from the Sugar Beets, International Journal of Energy Research, 22, 591-601 (1998) @No $ @ @ Habib M.A., Said S.A.M. and Al-Bagawi, Thermodynamic Analysis of Ghazian Power Plant, Energy, 20(11), 1121-1130 (1995) @No $ @ @ Dunbar W.R., Moody S.C. and Lior N., Exergy Analysis of an operating Boiler-Water-Reactor Nuclear Power Station, Energy Conversion and Management, 36(3),149-159 (1995) @No $ @ @ Khodak E.A. and Romathova G.A., Thermodynamic Analysis of Air-Cooled gas Turbine Plants, Journal of Engineering for Gas Turbines and Power, 123, 265-270 (2001) @No $ @ @ Smith M.A. and Few P.C., Second Law Analysis of an Experimental Domestic Scale Co-generation plant incorporating a Hear Pump, Applied Thermal Engineering, 21, 93-110 (2001) @No $ @ @ Hammond G.P. and Stapleton A.J., Exergy Analysis of the United Kingdom Energy Systems, Proceeding of the Institution of Mechanical Engineers, 215(A), 141-162, (2001) @No $ @ @ Huang Y.C., Hung C.I. and Chen C.K., Exergy Analysis for a Combined System of Steam-Injected Gas Turbine Cogeneration and Multiple Effect Evaporation, Proceeding of the Institution of Mechanical Engineers, 214(A), 61-73 (2000) @No $ @ @ Richard A., Gaggioli and William J. Wepfer, Second Law Analysis of Building Systems, Energy Conversion and Management, 21, 65-75, (1981) @No $ @ @ Unal Camdali, Murat Tunc, Feridun Dikec, A Thermodynamic analysis of a Steel Production Step carried out in a Ladle Furnace, Applied Thermal Engineering, 21, 643-655, (2001) @No $ @ @ Aljundi H. Isam, Energy and Exergy Analysis of a Steam Power Plant, International Journal of Applied Thermal Engineering,29(2), 324-328, (2009) @No $ @ @ Vosough Amir, Improving Steam Power Plant Efficiency through Exergy Analysis: Ambient Temperature, ndinternational Conference on Mechanical, Production and Automobile Engineering (ICMPAE) Singapore, 209-212, (2012) @No $ @ @ Prof. Alpesh V. Mehta, Mr. Manish Maisuria, Mr. Mahashi Patel, Thermodynamic Analysis of Gandhinagar Thermal Power Station, International Journal of Advanced Engineering Technology, 1(3), 1-12, (2010) @No $ @ @ Dincer I. and Al-Muslim H., Thermodynamic Analysis of Reheat Cycle Steam Power Plants, International Journal of Energy Research, 25, 727-739, (2001) @No $ @ @ Dincer I. and Cengel Y. A., Energy, Entropy and Exergy Concepts and their Roles in Thermal Engineering, Entropy, 3(3), 116-149, (2001) @No $ @ @ Srinivas T., Gupta A.V.S.S.K.S. and Reddy B.V., Generalized Thermodynamic Analysis of Steam Power Cycles with “n” number of Feed Water Heaters, International Journal of Thermodynamics, 10(4), 177-185 (2007) @No $ @ @ Haywood R.W., A Generalized Analysis of Regenerative Steam Cycle for a Finite Number of Heaters, Proceeding of the Institution of Mechanical Engineers, 161, 157-164 (1949) @No $ @ @ Weir D., Optimization of Heater Enthalpy rises in Feed Heating Trains, Proceeding of the Institution of Mechanical Engineers, 174, 769-796 (1960) @No $ @ @ Horlock J.H., Simplified Analysis of some Vapor Power Cycles, Proceeding of the Institution of Mechanical Engineers, 210(3), 191-202 (1996) @No $ @ @ Angelino G., Invernizzi C. and Molteni G., The Potential Role of Organic Bottoming Rankine Cycles in Steam Power Stations, Proceeding of the Institution of Mechanical Engineers, 213(2), 75-81 (1999) @No $ @ @ Kostyuk and Frolov V., Steam and Gas Turbines, Mir Publishers, Moscow, Russia(1985) @No $ @ @ Rosen A. Marc. and Tang Raymond, Improving Steam Power Plant Efficiency through Exergy Analysis: Effects of Altering Excess Combustion Air and Stack Gas Temperature, International Journal of Exergy, 5(1), 31-58 (2008) @No $ @ @ Mali D. Sanjay and Mehta N.S., Easy Method of Exergy Analysis for Thermal Power Plant, International Journal of Advanced Engineering Research and Studies, 1(3),245-247 (2012) @No $ @ @ Kapooria R.K., Kumar S. and Kasana K.S., An Analysis of a Thermal Power Plant working on Rankine Cycle: A Theoratical Investigation, Journal of Energy in Southern Africa, 19(1), 77-83 (2008) @No $ @ @ Trinks W., Industrial Furnaces, John Wiley and Sons, 1, (2004) @No $ @ @ Smith J.M., Van Ness H.C. and Abbott M.M., Introduction to Chemical Engineering Thermodynamics, th Edition, McGraw Hill, Chemical Engineering Series(2014) @No <#LINE#>Synthesis and Study of Some Optical and Thermal Properties of (PVA-CuCl )Films <#LINE#>Salman@SabahA.,NabeelA.@Bakr,Jwameer@MarwaR.<#LINE#>25-32<#LINE#>3.ISCA-RJCS-2015-154.pdf<#LINE#>Department of Physics, College of Science, University of Diyala, Diyala, IRAQ <#LINE#>6/11/2015<#LINE#>12/11/2015<#LINE#>Films of pure and (CuCl) salt doped (with different concentrations; 2, 4, 6, 8 and 10 wt%) polymer (polyvinyl alcohol (PVA)) were prepared using casting technique. The optical and thermal properties of pure and doped films were studied. The transmission and absorption spectra have been recorded in the wavelength range of (300-1100) nm. The experimental results for (PVA-CuCl) films show that the transmittance decreases with increasing the filler content while the absorbance increases with increasing the filler content. The absorption coefficient, refractive index, extinction coefficient and real and imaginary parts of dielectric constant werefound to be increased as filler content concentration increases. Moreover, the results show that the electronic transition is allowed indirect transition, and the energy gap (E) decreases with increasing the filler content. The experimental results also show that the thermalconductivity decreases with increasing the filler content. <#LINE#> @ @ Gowariker V.R., Viswanathan N.V. and Sreedhar J., Polymer Science, New Age International (p) Ltd Publishers, New Delhi, (2005) @No $ @ @ Bula K., Jesionowski T. and Borysiak S., Effect of injection molding conditions on composite properties based on PBT with SiO and MMt Nanofillers, Proceedings of the Conference of Multiphase Polymers and Polymer Composites: From Nanoscale to Macro Composites, Paris-Est, Creteil Uniersity, France, June(2011) @No $ @ @ Singh V., Kulkarni A.R. and Rama T.R., Dielectric properties of alumium-epoxy composites, J. Appl. polymer Sci., 90(13), 3602-3608(2003) @No $ @ @ Mahsan M., Sheng C., Isa. M., Ghapur E., Ali E. and Razali M., Structural and physical properties of PVA / TiO composite, Malaysia Polymer International Conference, 486-495 (2009) @No $ @ @ Tawansi A., Migahed M.D. and El-Hamid M.I.A., Electrical conduction of poly (vinyl alcohol) films, J. Polym. Sci.Part B: Polymer physics, 24(12), 2631-2642 (1986) @No $ @ @ Salman S.A., Bakr N.A. and Mahmood. M.H., Preparation and study of some optical properties of (PVA-Ni(CHCOO)) composites, Int. J. Current. Res., 6(11), 9638-9643 (2014) @No $ @ @ Hashim A., Ali M. and Rabee B.H., Optical properties of (PVA- CaO) composites, Am. J. Sci. Res., (69), 5-9 (2012) @No $ @ @ Abdallh M., Hamood O. and Yousif E., Study the optical properties of Poly (vinyl alcohol) doped Copper Chloride, J. Al-Nahrain. Univ., 16(1), 17-20 (2013) @No $ @ @ El-Dahshan M. E., Introduction to Material Science and Engineering, 2nd Ed., King Saud University Press, Saudi Arabia, (2002) @No $ @ @ Abdul Munaim A. and Hashim A., Electronic transitions For (PS - LiF) composites, 6th Science Conference of College of Science University of Mustansiriah, (2010) @No $ @ @ Mwolfe C., Holouyak N. and Stillman G.B., Physical Properties of Semiconductor, Prentice Hall, New York, (1989) @No $ @ @ Chiad S., Optical and structural properties of (SnO) doped by fluorine irradiated by gamma rays, M.Sc. Thesis, College of Science for Women, Baghdad University, Iraq(2005) @No $ @ @ Sze S. M. and Kwok K. Ng., Physics of Semiconductor Devices, 3rd Ed., John Wiley and Sons Inc., Hoboken, New Jersey, (2006) @No $ @ @ Gabur K.,Preparation and study the electrical and optical properties of (PS-Ni) composites, M.Sc. Thesis, Babylon University, College of Science, Iraq (2010) @No $ @ @ Chopra K. L. and Kaur I., Thin film Device Applications, Plenum Press, New York, (1983) @No $ @ @ Berglund R., Graham P. and Miller R., Applications of In-situ FT-IR in pharmaceutical process R and D, Spectroscopy, 8(8), 31-38 (1993) @No $ @ @ Klingshirn C., Semiconductor Optics, Springer-Verlag Berlin Heidelberg, (1997) @No $ @ @ Nasar G., Khan M. and Khlil U., Study on structural, mechanical and thermal properties of polymer composites of poly(vinyl alcohol) with inorganic material, Mocromol. Symp., (298), 124-129 (2010) @No $ @ @ Majied H. A., Study of the mechanical and thermal behavior of mineral wool and carbon black, M.Sc. Thesis, University of Technology- Applied Sciences, Iraq (2005) @No <#LINE#>X-Ray Diffraction Study and Biological Analysis of Transition Metal Complexes of N-4-Disubstituted Thiosemicarbazone<#LINE#>V.S.@Gavhane,Rajbhoj@A.S.,S.T@Gaikwad<#LINE#>33-37<#LINE#>4.ISCA-RJCS-2015-157.pdf<#LINE#> Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS, 431 004, INDIA<#LINE#>7/11/2015<#LINE#>17/11/2015<#LINE#>Comparative studies on the X-ray diffraction parameters of some transition metal complexes like Fe (III), Cu (II), Zn (II) of ligand (L1) has been prepared by using N-4-Ethyl, phenyl-3-thiosemicarbazide and 2-hydroxybenzaldehyde in equimolar ratio. These complexes show various physicochemical properties. X-ray powder diffraction of Fe (III) complex has triclinic crystal system while Cu (II) and Zn (II) complex of ligand (L1) having monoclinic crystal systems with various unit cell parameters. These complexes also tested for biological analysis and shows considerable activity against bacteria and fungi in comparison with standard drug ciprofloxacin. <#LINE#> @ @ Sadler P. J., Gun Z., Pure Appl. Chem, 70, 863 (1998) @No $ @ @ Sadler P. J., Adv. Inorg. Chem, 1, 36 (1991) @No $ @ @ Abrams M. J., Murrer B. A., Science, 261, 725 (1993) @No $ @ @ Cameron B. R., Baird I. R., J. Inorg. Biochem, 83, 233 (2001) @No $ @ @ Bish D.L. and Post J. E., Editors, Modern Powder Diffraction, Reviews in Minerology, V, 20, Mineralogical Society of America(1990) @No $ @ @ Wall B., Driscoll C., Strong J. and Fisher E., The suitability of different preparations of thermoluminescent Lithium Borate for Medical Dosimetry, Physical Medical biology. 1023-1034 (1982) @No $ @ @ Azaroff and Burger, the powder method, Mc Graw Hill London (1958) @No $ @ @ Klop E. A. and Lammers M., Polymers,39, 5987 (1998) @No $ @ @ Sleema B. and Parameshwaran G., Asian J. Chem., 14, 961 (2002) @No $ @ @ Scovil J. P., Klayman C. F., Franchino, J. Med. Chem. 25,1261 (1982) @No $ @ @ Saxena N., Juneja H. D and Munshi K. N., J. Indian Chem. Soc.,70, 943 (1993) @No $ @ @ Suryawanshi D. D., Gaikwad S. T. and Rajbhoj A. S., Chemical Science Tranction, 3(1), 117-122 (2014) @No $ @ @ Bhattacharya K. C., An elementary Physics for Indian School, the Indian` Press Ltd. Allahabad, 105 (1934) @No $ @ @ Kizileikli J., Kurti Y. D., Akkurt B., Genel A. Y., Birteksoz S., Otut G. and Ulkuseven B., Folia Microbial, 52, 15 (2007) @No <#LINE#>Removal of Malachite green dye from Aqueous solution using Magnetic Activated Carbon<#LINE#>Rinku@Jaiswal,Shripal@Singh,Hemant@Pande<#LINE#>38-43<#LINE#>5.ISCA-RJCS-2015-158.pdf<#LINE#>CIMFR Nagpur Unit-II, 17/C-Telenkhedi area, Civil Lines, Nagpur, 440001, INDIA Hislop college, Civil lines, Nagpur-440001, INDIA<#LINE#>9/11/2015<#LINE#>26/11/2015<#LINE#>Magnetic activated carbon (MAC) was synthesized by combining aqueous solution of prepared activated carbon (AC) and iron oxide nanoparticles by co-precipitation method. A variety of techniques such as N-BET surface area, X ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Vibrating Sample Magnetometer (VSM) were used to characterize the structure,morphology and magnetic performance of MAC. The N-BET surface area of the MAC (721 m-1) is found lesser than the prepared AC (1900 m-1). The saturation magnetization for MAC was 22.80emu/g it shows super magnetic behaviour. SEM of the MAC shows the presence of different size pores, cracks and crevices. TEM of MAC produce nanoparticles with size in the range of 5-25nm. XRD of MAC indicates the presence of crystalline structure for iron oxide nanopartcles. The adsorption data show that the adsorption capacity was investigated by absorbing Malachite Green (MG) from aqueous solution, which demonstrated an excellent adsorption capacity of MAC (333 mg g-). A Langmuir kinetic model is fitted well for malachite green adsorption on MAC. <#LINE#> @ @ Akar S.T., Ozcan A.S., Akar T., Ozcan A. and KaynakZ., Bio sorption of a reactive textile dye from aqueoussolutions utilizing an agro-waste, J Desalination, (249),757–61 (2009) @No $ @ @ Aksu Z., Application of bio sorption for the removal oforganic pollutants: A review, J Process Biochem, (40),997–1026 (2005) @No $ @ @ Peruzzo L.C. and De Souza A.A.U., Numerical Study ofthe Adsorption of Dyes from Effluents, Applied Mathematical Modelling, 32(9), 1711-1718 (2008) @No $ @ @ Kumar K.V., Sivanesan S. and Ramamurthi V.,Adsorption of Malachite Green onto Pithopora sp., aFresh Water Algal, Equilibrium and Kinetic Modelling,Process Biochemistry, 40(48), 2865-2872 (2005) @No $ @ @ Gupta V.K., Mittal A, Krishnan L and Gajbe V,Adsorption Kinetics and Column Operations for theRemoval and Recovery of Malachite Green from Wastewater Using Bottom Ash, Separation and Purification Technology, 40(1), 87-96 (2004) @No $ @ @ Chiou M.S. and Li H.Y., Equilibrium and Kinetic Modelling of Adsorption of Reactive Dyes on CrossLinkedchitosan Beads, Journal of Hazardous Materials,93(2), 233-248 (2002) @No $ @ @ Hameed B.H. and Khaiary M.I. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2, J. Hazard. Mater,(157),344-351(2008) @No $ @ @ Shabudeen Syed P.S., Study of the Removal of Malachite Green from Aqueous Solution by using SolidAgricultural Waste, Res. J. Chem. Sci., 1(1) (2011) @No $ @ @ Hachem C., Bocquillon F., Zahraa O., and Bouncy M.,Decolourization of textile industry wastewater by thephoto catalytic degradation process, Dyes Pigments,(49),117-125(2001) @No $ @ @ Crini G., Non-conventional low-cost adsorbents for dyeremoval, A review, Bioresource Technol, (97), 1061-1085 (2006) @No $ @ @ Chandra T.C., Mirna M.M., Sudaryanto Y. and Ismadji S,Adsorption of basic dye onto activated carbon prepared from durian shell, Studies of adsorption equilibrium and kinetics, Chem. Eng. J., 127-129 (2007) @No $ @ @ Hameed B.H. , Grass waste: A novel sorbent for the removal of basic dye from aqueous solution, J. Hazard. Mater, (166), 233-238 (2009) @No $ @ @ Indira T.K and Lakshmi P.K.,Magnetic Nanoparticles, A review, Int. J. Pharm. Sci. and Nanotechnol, 3(3), 1035-1042 (2010) @No $ @ @ Yavuz C.T., Mayo J.T., Yu W.W. and Prakash A. et al.,Low field magnetic separation of monodispese Fe3O4 nanocrystals , Science, (314), 964-967 (2006) @No $ @ @ Liu Q., Wang L., Xiao A. et .al., Marten Ericson,Templated preparation of porous magnetic microspheres and their application in removal of cationic dyes from wastewater, J. Hazard Mater,(181), 568-592 (2010) @No $ @ @ Harris P.J.F., Liu Z. and Suenaga K.., Imaging the atomicstructure of activated carbon, Journal of Physics,Condensed Matter, (20), 362201–362206 (2008) @No $ @ @ Jiles D., Introduction to Magnetism and Magnetic Materials, Chapman and Hall, (1991) @No $ @ @ Langmuir L., The adsorption of gases on plane surface of glass, mica, and platinum, J. Am. Chem. Soc., (40), 1361-1402 (1918) @No $ @ @ Freundlich H.M.F.,Ober die adsorption in Losungen,Phys. Chem, (57), 385-470 (1906) @No <#LINE#>Phytoremediation: Investigation and Valorization of purifying power of Thalia geniculatain for Domestic Wastewater treatment<#LINE#>Franck@YOVO,Biaou@DIMON,Eni@AZANDEGBECoffi,Fidèle@SUANON,Etienne@SAGBO,Daouda@MAMA,Martin@AINA<#LINE#>44-53<#LINE#>6.ISCA-RJCS-2015-159.pdf<#LINE#>Laboratory of Physical Chemistry (LCP), Faculty of Sciences and Technics (FAST), University of Abomey-Calavi, 01 BP 526 Cotonou, BENIN @ Laboratory of Inorganic Chemistry and Environment (LACIE), Faculty of Sciences and Technics (FAST), University of Abomey-Calavi, 01 BP @ 526 Cotonou, BENIN @ Laboratory of Applied Hydrology(LHA), Faculty of Sciences and Technics (FAST), University of Abomey-Calavi , 01 BP 526 Cotonou, BENIN @ Laboratory of Water Sciences and Techniques (LSTE), Polytechnique School of Abomey-Calavi (EPAC), University of Abomey-Calavi,Cotonou, BENIN@ Beninese Center for Scientifics Research and Tehnologies (CBRST), Cotonou, BENIN<#LINE#>8/11/2015<#LINE#>16/11/2015<#LINE#>Thalia geniculata is a widespread plant in the republic of Benin which could be valorized in domestic wastewater purification. It might help to remediate and preserve environmental pollution in Africa. Unfortunately, sufficient information’s about this plant, precisely its potential power to absorb pollutants are not available. More investigation on this plant is still needed to feel the gap of knowledge. In the present work, we have investigated Thalia geniculata’s absorption and purification power of nutrients including nitrates (NO), orthophosphates (PO3-) and Azote Kejedhal (NTK) in domestic wastewaters. We have compared it absorption capacity with Eichhornia crassipes (water hyacinth). The physicochemical characterization of the treated domestic wastewater is as follow: pH (~ 8), EC (1596 - 6515 µS/cm), nutrimental elements: NO (0.3 - 25 mg/L), PO3- (72.5 - 152.5 mg/L) and NTK (7.7 - 43.4 mg/L). By the end of 15 days treatment process, nutrients were considerably removed from the wastewater. The optimum removal efficiency of NO(93.33%) was achieved with the senior shoots (SS); while for PO3- (76.16%) and NTK (100%) were achieved with the young shoots (YS). With Eichhornia crassipes, the uptimal removal efficiencies were: NO (50%), PO3- (86.92%) and NTK (77.11%). As a consequence, Thalia geniculata plants possess a strong purifying power and can thus be used to purify polluted water and domestic wastewater. It was also noted that Thalia geniculata was more efficient when treating grey wastewater with high concentration of PO3-, compared to water valve with high concentration of NO and NTK. <#LINE#> @ @ Koechlin J., Marantaceae aCameroun,Volume , Muséum National d’Histoire Naturelle, Paris, France, 99-157, @No $ @ @ Andersson L., Revision of the (Marantaceae), Nordic Journal of Botany (1981) Rodier J., L’analyse de l’eau, (Livre) Dunod, Paris, 1984) @No $ @ @ Beuffe H., Bournaud M., Broutin., Géoffray Ch., Kovacsik G., Laporte J., Pattee E., Plissier M., Rodi L., Vial J., L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer, 7ème édition Dunod, (1984) @No $ @ @ Davis M.A., The role of flower visitors in the explosive pollination of Thalia geniculata (Marantaceae), a Costa Rican marsh plant, Bulletin of the Torrey Botanical Club, 114 (), 134-138 (1987) @No $ @ @ Adjanohoun E.J., Adjakidjè V., Ahyi M.R.A.., Akeassi L., Akoegninou A., d'Almeida J., Apovo F., Boukef K., Chadare M., Dramane K., Eyme J., Gassita J.N., Gbaguidi N., Goudoté E., Guinko S., Houngnon P., Issa Lo., Keita A., Kiniffo H.V., Koné-Bamba D., Musampa Nseyya A., Saadou M., Sodogandji Th., de Souza S., Tchabi A., Zinsou Dossa C., Zohoun Th., Médecine traditionnelle et pharmacopée, Contribution aux études ethnobotaniques et floristiques en République du Bénin, Agence de Coopération, (1989) @No $ @ @ Abbiw D.K., Useful plants of Ghana: West African uses of wild and cultivated plants, Intermediate Technology Publications, London and Royal Botanic Gardens, Kew, Richmond, United Kingdom, 337, (1990) @No $ @ @ Armstrong J., Armstrong W., Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of phragmites australis (Cav.), Trin ex steud. New phytol, 114, 121-128 (1990) @No $ @ @ Montoroi J.P., Conductivité électrique de la solution du sol et d’extraits aqueux de sol, Application à un sol sulfaté acide de Basse-Casamance (Sénégal), Centre ORSTOM d’Ile-de-France-Laboratoire des Formations Superficielles, (1997) @No $ @ @ Mama D., Eutrophisation des lacs de Yamoussoukro, Thèse de doctorat de 3ème Cycle, spécialité : Génie de l’environnement, 1-175 (1998) @No $ @ @ Abissy M., Mandi L., Utilisation des plantes aquatiques enracinées pour le traitement des eaux usées urbaines : Cas du roseau, Rev. Sci. Eau, 285-315 (1999) @No $ @ @ Monchalin G., Aviron-Violet J., Réutilisation des eaux usées après traitement, (2000) @No $ @ @ Food and Agriculture Organization (FAO), Le secteur forestier en 2020 (2001) @No $ @ @ Chaib J., Thorez J-P.,L’épuration des eaux usées par les plantes, « Connaître pour agir (2002) @No $ @ @ Nana C., Brouwer P., Inge D., Consommation alimentaire des enfants de 6 à 36 mois en milieu rural en fonction de la disponibilité des aliments riches en vitamine A, 2ème Atelier international, Voies alimentaires d’amélioration des situations nutritionnelles, Ouagadougo, (2003) @No $ @ @ Seidl M. and Mouchel J.M., Valorisation des eaux usées par lagunage dans les pays en voie de développement, Programme de gestion durable des déchets et de l’assainissement urbain, rapport final, 40, (2003) @No $ @ @ Hermans M., Akoègninou A. and Van der Maesen J., Medicinal plants used to treat malaria in southern Benin, Economic Botany 58 (supplement), S239-S252, (2004) @No $ @ @ Lagnika L., Etude phytochimique et activité biologique de substances naturelles isolées de plantes béninoises, Thèse de doctorat en Sciences, Université Louis Pasteur, 280 pp, (2005) @No $ @ @ Akoègninou A., Van der Burg, W.J. and Van der Maesen L.J.G., Flore analytique du Bénin, Backhuys Publishers, Leiden, Netherlands, 1034 pp, (2006) @No $ @ @ PNLP/MS., Plan Stratégique de lutte contre le paludisme au Bénin/Ministère de la Santé (2006-2010) (2007) @No $ @ @ Polomski R.F., Douglas G. B., Whitwell T.,Differential Nitrogen and Phosphorus Recovery by Five Aquatic Garden Species in Laboratory-scale Subsurface-constructed Wetlands Department of Horticulture, Clemson University, 254 Poole Agricultural Center, Clemson, SC 29634-0319, Hort. Science, 43 (), 868-874 (2008) @No $ @ @ Programme National de l’Eau, Livre bleu du Bénin « l’eau, l’assainissement, la vie et le développement humain durable ». 130pp (2009) @No $ @ @ Percy E. H.,” Phytoremediation of irrigation water using Timnocharis flava, Typha latifolia and Thalia geniculata in a constructed wetland” , Bsc. Biological sciences (hons.), A thesis submitted to the Department of theoretical and applied biology, Kwame Nkrumah University of Science and Technology in partial fulfillment of the requirements for the award of the degree of Master of Philosophy, Faculty of Biosciences, College of Science, (2011) @No $ @ @ Akowanou A.V.O., Phytoépuration des eaux usées domestiques : Evaluation des paramètres de performances par combinaison de trois macrophytes flottants, (2012) @No $ @ @ Aina M.P., Kpondjo N.M., Adounkpe J., Chougourou D., Moudachirou M., Study of the Purification Efficiencies of three Floating Macrophytes in Wastewater Treatment, International Research Journal of Environment Sciences, Laboratoire des Sciences et Techniques de l’Eau de l’Ecole Polytechnique d’Abomey Calavi, Université d’Abomey-Calavi, ), 37-43 (2012) @No $ @ @ Medona M.R., Nirmala T. and Delphine Rose M.R., Evaluation of Physical and Chemical characteristics of Water at Sothuparaireservoir, Theni District, Tamilnadu, India, Int. Res. J. Environment Sci,3(8), 36-39 (2014) @No $ Bitié H.E., Etude comparative des performances épuratoires de pilotes de traitement des eaux grises par « bac incliné » en zone sahélienne, Mémoire pour l’obtention du master d’ingénierie de l’envirronnement Option : Eau et Assainissement, (2014) @No $ @ @ Dedjiho C. A., Akpo Ar. B., Noumon Co.J., Agbahoungbata M.Y., Hounsinou P., Mama D., Boukari.M., Sohounhloue Do.C. K., Evaluation of the state of pollution of complex Aheme Lake -lagoon of Ouidah by trace metals Zn, Cu, Cd, Pb and Cu speciation in sediment, Int. Res. J. Environment Sci, 4(8), 33-41 (2014) @No $ @ @ Rahul A.,Shubhangi S. and Sunita Sh.,Phytoremediation of Commonly used Metals (Cu and Zn) from Soil by Calendula officinalis (I),International Research Journal of Environment Sciences Department of Biotechnology, Madhav Institute of Technology and Science Gwalior, M.P., 474005, INDIA, 4(1), Int. Res. J. Environment Sci, 52-58 (2015) @No $ @ @ Poulomi S., Susanta K.C., and Phani B., Phytoremediation of Sewage-Fed Wetlands of East-Kolkata, India - A Case Study, Int. Res. J. Environment Sci, 4(1), 80-89 (2015) @No $ @ @ eDecree 2001-109 du 04 April 2001(Benin), fBeuffler et al., 1989 @No <#LINE#>Chlorination of Aromatic Compounds in Aqueous Media using N-Chlorosuccinimide<#LINE#>SushilKumar@Sharma<#LINE#>54-73<#LINE#>7.ISCA-RJCS-2015-160.pdf<#LINE#> Department of Chemistry, JJTU Rajasthan, INDIA<#LINE#>30/7/2015<#LINE#>12/10/2015<#LINE#>A proficient/effective method for the synthesis of chlorinated arenes is revealed. The system involves the use of N-Chlorosuccinimide (NCS) as chlorinating and oxidizing agent in aqueous medium under mild conditions to chlorinate the aromatic compounds in virtuous to excellent yields (75-96 percent). The reagent system is efficient, organic solvent-free and easy to handle. N-Chlorosuccinimide is an advantageous reagent for aromatic halogenation, while at the same time, circumventing electrophilic addition of chlorine to a pi bond. <#LINE#> @ @ Adimurthy et al., An alternative method for the regio- and stereoselective bromination of alkenes, alkynes, toluene derivatives and ketones using a bromide/bromate couple, Green Chemistry, 10, 232–237 2007)@No $ @ @ Adimurthy et al., Eco-friendly and versatile brominating reagent prepared from a liquid bromine precursor, Green Chem., 8, 916-922 (2006) @No $ @ @ Adimurthy S., Ramachandraiah G., Bedekar A.V., Ghosh S., Ranu B.C., and Ghosh P.K., Eco-friendly and versatile brominating reagent prepared from a liquid bromine precursor, Green Chemistry, 8, 916–922 (2006) @No $ @ @ Adimurthy S., Ghosh S., Patoliya P.U., Ramachandraiah G., Agrawal M., Gandhi M.R., Upadhyay S.C., Ghosh P.K., and Ranu B.C., An alternative method for the regio- and stereoselective bromination of alkenes, alkynes, toluene derivatives and ketones using a bromide/bromate couple, Green Chemistry. 10, 232–237 (2007) @No $ @ @ Aghapour G., Afzali A., and Salek, F., Facile high-region and chemoselective conversion of epoxides to chlohydrins using chlorodiphenylphosphine (C1210ClP)under solvent-free conditions/aqueous media, Indian Journal of Chemistry. 48B, 231-236(2009) @No $ @ @ AI-Zoubi R.M. and Hall D., Organic Letters, 12, 2480 Aldrich Handbook of fine chemicals, Aldrich Chemical Company, Inc., Wisconsin, USA, (1990) @No $ @ @ Alimenia B., Kumar A., Jamir L., Sinha D. and Sinha U.B., Microwave-induced reactions an alternative route for chemical synthesis, Rad. Eff. Def. Sol., 161, 687-693 (2006) @No $ @ @ Anastas P.T. and Williamson T.C., Green chemistry, ACS Symposium Series626, American Chemical Society, Washington DC, (1996) @No $ @ @ Anderson R.J.L. and Chapman S.K., Molecular mechanisms of enzyme-catalysed halogenation, Molecular Bio Systems, 2, 350-357 (2006) @No $ @ @ Armesto et al., Intracellular oxidation of dipeptides.Very fast halogenation of the amino-terminal residue, J. Chem. Soc., Perkin Trans.,2, 608–612 (2001) @No $ @ @ Armesto X.L., Moisés C.L., Fernández M.I., García M.V., Rodríguez S., and Santaballa J.A., Intracellular oxidation of di-peptides.Very fast halogenation of the amino-terminal residue, Journal of the Chemical Society, Perkin Transactions, 2, 608-612 (2001) @No $ @ @ Ashworth P., Chetland L., J. Ind. Chem. Libr., (Adv. Organobromine Chem., 1), 263 (1991) @No $ @ @ Baichwal R. S., Baichwal M. R., Khorana M. L., J. Am. Pharma. Assoc., 46, 603 (2006) @No $ @ @ Ban-Daniel et al., Electrophilic aromatic chlorination and haloperoxidation of chloride catalyzed by polyfluorinated alcohols: A new manifestation of template catalysis, J. Ame. Chem. Soc., 125, 12116 (2003) @No $ @ @ Bandgar B.P. and Nigal N.J., Synth. Commun, 28, 3225 (1998) @No $ @ @ Barhate N.B., Gajare A.S., Wakharkar R.D. and Bedekar A.V., Somple and practical halogenation of arenes, alkenes with hydrohalic acid/hydrogen peroxide(or TBHP), Tetrahedron, 55, 11127 (1999) @No $ @ @ Beckmann J., Bolsinger J., Duthie A. and Finke P., Diarylhalotelluronium (IV) cations [(8-Me2NC10H6)2TeX] (X = Cl, Br, I) stabilized by intramolecularly coordinating N-donor substituents, Dalton Transactions, 10, 1039 (2013) @No $ @ @ Bedekar A.V., Gadde R. and Ghosh P.K., Process for preparing 2,4,4,6- tetrabromo-2, 5-cycloyhexadienone, U.S. Patent 6,838,582, (2005) (b) De La Mare P. B. D., Electrophilic Halogenation: Reaction Pathway Inoving Attack by Electrophilic Halogens on Unsaturated Compounds, Cambridge University Press: London(2013) @No $ @ @ Bedekar A.V., Gadde R. and Ghosh P.K., Process for preparing 2,4,4,6-tetrabromo-2, 5-cycloyhexadienone, U.S. Patent, 6, 838,582, (2005) @No $ @ @ Bedford R.B., Engelhart J.U., Haddow M.F., MitchellC.J. and Webster R.L., Solvent-free aromatic C-H functionalisation/halogenation reactions, Dalton Transaction, 39, 10464–10472 (2010) @No $ @ @ Beletskaya I.P., Cheprakov A.V., Chem. Rev., 100,(2009) (b) Yin L., Liebscher J., Chem. Rev., 107, 133 2007) (c) Chinchila R., Najera C., Chem. Rev., 107, 874 2007) (d) Felpin F. X., Ayad T., Mitra S., Eur. J. Chem., 2679 (2006) (e) Miyaura N., Suzuki A., Chem. Rev., 95, 2457 (1995) @No $ @ @ Benitez F.J., Acero J.L., Real F.J., Roldan G. and Casas F., Bromination of selected pharmaceuticals in water matrices, Chemosphere, 85, 1430–1437 (2011) @No $ @ @ Bernard A., Kumar A., Jamir L., Sinha D. and Sinha U.B., An efficient microwave induced solvent-free organic bromination using tetrabutylammonium tribromide, Acta Chimica Slovenica, 56, 457-461 (2009) @No $ @ @ Berube D. and Lessard J., The mechanism of electrochemical reduction of N- haloamides in acetonitrile: trapping of intermediate amide ions and father-son protonation, Canadian Journal of Chemistry, 60, 1127 (1982) @No $ @ @ Bodal D., Lukasiewicz M. and Pielichowasi J., Halogenation of carbazole and other aromatic compounds with hydrohalic acids and hydrogen peroxide under microwave irradiation, Green Chemistry, 6, 110 (2004) @No $ @ @ Bora U., Chaudhary M.K.., Day D. and Dhar S.S., CetPyTB- An environmentally benign reagent for organic brominations, Pure and Applied Chemistry, 73, 93-102 (2001) @No $ @ @ Borikar S.P., Daniel T. and Paul V., An efficient regioselective bromination of anilines and phenols with 1-butyl-3-methylpyridinium tribromide as a new reagent, Tetrahendron Letters, 50, 1007-1009 (2009) @No $ @ @ Bovonsombat et al., Facile p-toluenesulfonic acid-promoted para-selective monobromination and chlorination of phenol and analogues, Tetrahedron, 66,6928 (2010) @No $ @ @ Braendlin H.P. and Mcbee E.T., Friedal-Crafts and related reactions., Edited by Oiah G. A., John Wiley and Sons., New York Chap., 46. Vol. III, Part 2. Bromine chloride in electrophillic aromatic substitution reactions with p-xylene in water, Environ. Sci. Technol.,22, 1049 (1988) @No $ @ @ Butler A. and Franklin J.N., Nat. Prod. Rep., 21, 180 2004) @No $ @ @ Butler A. and Walker J.V., Chem. Rev., 93, 1937 (1993) @No $ @ @ Cerichelli G., Luchetti L. and Mancini G., Surfactant control of the OrthoPara ratio in the bromination of anilines, Colloids and Surfaces A: Physicochem. Eng. Aspects, 289, 226–228 (2006) @No $ @ @ Ceska G.W., Aqueous bromine emulsions, U.S. Patent 3,886,081, (1975) Chaudhuri M. K.., Khan A. T., Patel B. K., Tetrahedron Letters, 39, 8163 (1998) @No $ @ @ Upasna et al., Development of synthetic protocols for quarternary ammonium tribromides, J. App. Chem., 02,1073-1079 (2013) @No $ @ @ Chiappe C., Leandri E. and Pieraccini D., Highly efficient bromination of aromatic compounds using 3methylimidazolium tribromide as reagent/solvent, J. Chem. Soc. Chem. Comm., 2536-2537 (2004) @No $ @ @ Chinnagolla R.K., Pimparkar S. and Jeganmohan M., Ruthenium-catalyzed intramolecular selective halogenation of O-methylbenzohydroximoyl halides: anew route to halogenated aromatic nitriles, Chemical Communication, 49, 3146-3148 (2013) @No $ @ @ Chiu Y., (Denville, NJ); Cottrell S.A., (Baton Rouge, LA); Tung H. S., (Getzville, NY); Kopkalli H., (Staten Island, NY) and Cerri G., (Parsippany, NJ)., Process for the Manufacture of Fluorinated Olefins, U.S. Class:570/175; Serial No.: 402, 372 (2011) @No $ @ @ Choudary B.M., Someshwar T., Reddy C.V., Kantam M.L., Jeevaratnam K. and Sivaji L.V., Appl. Catal., A: General, 251, 397 (2003) @No $ @ @ Chung K.H., Kim H.J., Kim H.R. and Ryu E.K.., Oxidative chlorination of phenols with HCl/m-chloroperbenzoic acid/N,N-dimethylformamide system, Synthetic Communications, 20, 2991 (1990) @No $ @ @ Clark J.H., Chemistry of Waste Minimization, Chapman and Hall; London (1995) @No $ @ @ Clark J.H., Ross J.C., Macquarrie D.J., Barlow S.J. and Bastock T.W., Chem. Commun., 13, 1203 (1997) @No $ @ @ Das B., Venkateswarlu K., Mahji A., Siddaiah V. andReddy K.R., J. Molecular Catalysis A: Chemical, 267, 30 2007) Del Valle C. J., Method of producing calcium bromide. U.S. Patent, 4, 234, 556 (1980) @No $ @ @ Davis C.M., Chlorination of aniline and methyl carbanilate by N-chlorosuccinimide and synthesis of 1, 3, 5-trichlorobenzene, Synthetic Communications, 39, 1100 (2009) @No $ @ @ De la Mare P.B., Electrophilic Halogenation: Reaction Pathway Involving Attack by Electrophilic Halogens on Unsaturated Compounds,Cambridge University Press, Cambridge, UK, (1976), Chapter 5. (b) Taylor, R. Electrophilic Aromatic Substitution, Wiley, Chichester, UK (1990) @No $ @ @ Deirmenbai N. and Özgün B., Quinoxalinium Bromochromate-A New and Efficient Reagent for Oxidation of Alcohols and Bromination of Aromatic Compounds, G.U. Journal of Science, 19(1), 9-13 (2006) @No $ @ @ Deshmukh A.P., Pandiya K.J., Jadhav V.K. and Salunkhe M.M., Halogenation of Aromatic Compounds by using Sodium Perborate as an Oxidant, Journal of Chemical Research (S), 828-829 (1998) @No $ @ @ Dey R.R. and Dhar S.S., Ammonium persulphate promoted synthesis of polyethylene glycol entrappedpotassium tribromide and its application in acylation and bromination of some selective organic compounds, Chinese Chemical Letters, 05.036 (2013) @No $ @ @ Do H.Q., Daugulis O., A Simple Base-Mediated Halogenationof Acidic sp C-H Bonds under Noncryogenic Conditions, Organic Letters,11(2), 421-423 (2008) @No $ @ @ Dwars T., Schmidt U., Fischer C., Grassert I., Kempe R., FrOnlich R., Drauz k. and Oehme G., Angrew. Chem. Int.Ed., 37, 2851 (1998) @No $ @ @ Eberlin A. and Williams D.L.H., Halogenation of enol tautomers of 2- cyanoacetamide and malonamic acid, Journal of Chem. Soc., Perkin Transactions, 1316–1319 (2002) @No $ @ @ Edwards., Jeffrey D., Palermo., John., Analgesic and anti-inflammatory composition, U.S. Patent, 7, 510, 732 (2009) @No $ @ @ Elnagar H.Y., Process for Producing N-Halogenated Hydantoins, Current U.S. Class: 424/405; Serial No.: 176877 (2011) @No $ @ @ Fauvargue J., The chlorine industry, Pure Appl. Chem.,68, 1713 (1996) @No $ @ @ Fendler J.H. and Fendler E.J., Catalysis in Micellar and Macromolecular Systems, Academic Press, London, (2006) @No $ @ @ M. N. Khan., Micellar Catalysis, CRC Press, Taylor and francis group, Boca Raton, USA, (1975) @No $ @ @ Figueira V.B.C., Tetra-n-butylammonium tribromide, Synlett, 2681-2682 (2006) @No $ @ @ Firouzabadi H., Iranpoor N. and Kazemi S., Direct Halogenation of Organic Compounds with Oalides using Oxone in water-A Green Protocol, Canadian Journal of Chemistry, 87(12), 1675-1681 (2009) @No $ @ @ Firouzabadi H., Iranpoor N. and Kazemi S., Direct Halogenation of Organic Compounds with Oalides using Oxone in water: A Green Protocol, Canadian Journal of Chemistry, 87(12), 1675-1681 (2009) @No $ @ @ Firouzabadi H., Iranpoor N. and Amani K.J., Mol. Catl. A: Chem.,195 (2003) @No $ @ @ Firouzabadi H., Iranpoor N., Kazemi S., Ghaderi A. and Garzan A., Highly Efficient Halogenation of Organic Compounds with Halides Catalyzed by Cerium (III) Chloride Heptahydrate Using Hydrogen Peroxide as the Terminal Oxidant in Water, Advanced Synthesis Catalysis, 351: 1925–1932. doi: 10.1002/adsc.200900124 (2009) @No $ @ @ Firouzabadi H., Iranpoor N. and Kazemi S., Direct Halogenation of Organic Compounds with Oalides using Oxone in water-A Green Protocol, Canadian Journal of Chemistry, 87(12), 1675-1681, 10.1139/V09-125 (2009) @No $ @ @ Fong H.L. (Sugar Land TX)., Johnson T.H.(Houston TX ) and Semple T.C.(Friendswood, TX).,Conversion of Alkylhalide’s Into Alcohol Alkoxylates, Current U.S. Class, 568/671. Serial No.: 887194 (2009) @No $ @ @ Forsyth Adam B., Pryor Ernest D., McGarry James E. and Harney Gerald D.W., Compositions containing certain 2,4-halo-6nitrophenols or derivatives thereof and methods for using same to eradicate internal parasites in warm- blooded animals, U.S. Patent 4,031,249 (1977) @No $ @ @ Friedlender P., Chem. Ber., 55, 267 (1922) @No $ @ @ Furchey O.S., Process for the synthesis of 3-chloro-4-hydroxyacetanilide, U.S Patent; 4999457, (1991) @No $ @ @ Ganchegui B. and Leitner w., Green Chemistry, 9, 26 (2007) (b) Podgorsek A.., Stavber S., Zupan, M., Iskra Journal Tetrahendron, 65, 4429 (2009) @No $ @ @ Gavara L., Boisse T., Riogo B. and Henichart J.P., Tetrahedron-SD, 64, 4999.III, D. W., Eaves Jr., C. C., Haynes Jr., J. F., Annals of Emergency Medicine,18, 778 (2008) @No $ @ @ Georgi A., Reichl A., Trommler U. and Kopinke F.D., Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of Polycyclic Aromatic Hydrocarbons (PAHs), Environmental Science and Technology, 41, 7003 (2007) @No $ @ @ Gerhard et al., Substituted thiazoles and their uses as fungicides, U.S. Patent 5, 045, 554 (1991) @No $ @ @ Gerhard H., Phillips Gray W., Pratt John K. and Srouji Gabriel H., Substituted thiazoles and their use as fungicides, U.S. Patent, 5,045,554 (1991) @No $ @ @ Gershin H., Parmegiani R. and Godfrey P.K., Antimic, Agents Chemotherapy, 1, 373 (1972) @No $ @ @ Gershon H., McNeil M. W., Parmegiani R., Godfrey P.K., Applied Microbiology,22, 438 (1971) @No $ @ @ Gershon H., McNeil M.W., Parmegiani R. and Godfrey P.K., App. Micro., 22, 438 (1971) @No $ @ @ Gershon H., Parmegiani R. and Godfrey P.K., Antimic. Agents Chemotherapy, 1, 373 (1972) @No $ @ @ Gnaim J.M. and Sheldon R.A., Tetrahedron Letters, 46,4465 (2005) @No $ @ @ Gnaima J.M. and Sheldonb R.A., Regioselective bromination of aromatic compounds with Br/SOClover microporous catalysts, Tetrahedron Letters, 46, 4465–4468 (2005) @No $ @ @ Gopinath R., Haque S.J. and Patel B.K., Tetrabutylammonium Tribromide (TBATB) as an efficient generator of HBr for an Efficient Chemoselective Reagent for Acetalization of carbonyl compounds, J. Org. Chem., 67, 5842-5845 (2002) @No $ @ @ Gosain J. and Sharma P.K., Kinetics and mechanism of the oxidation of some vicinal and non-vicinal diols by tetrabutylammoniumtribromide, Proc. Ind. Acad. Sci. (Chem. Sci.), 115, 135-145 (2003) @No $ @ @ Gribble G.W. and Verh K., Ned. Akad, Wet. Afd Natuurkd, Tweede Reeks 1997, 1, 98; Chem. Abstr., 128, 267 (1993) @No $ @ @ Gupta S., Agarwal D.D. and Banerjee S., Synergistic Combination of Metal Stearates and -diketones with hydrotalcites in Poly (Vinyl Chloride) Stabilization, J. Appl. Polym. Sci., 112, 1056-1062 (2009) @No $ @ @ Gupta S., Agarwal D.D. and Banerjee S., Thermal Stabilization of Poly (Vinyl Chloride) by hydrotalcites, zeolites and conventional stabilizers, J. Vinyl and Additive Technol., 15, 164-170 (2009) @No $ @ @ Gnaima J.M. and Sheldonb R.A., Regioselective bromination of aromatic compounds with Br2/SO2Cl2 over microporous catalysts, Tetrahedron Letters,46, 4465–4468 (2005) @No $ @ @ Goedheijit M.M., Hanson B.E., Reek J.N.H., Kamer P.C.J. and van Leeuwen P.W.N.M., J. Am. Chem. Soc., 122, 1650 (2000) @No $ @ @ Hai T.T. and Nelson D.J., Pharmaceutical grade 3, 5dibromosalicylic acid and method for synthesizing same, U.S. Patent, 5, 013, 866 (1991) @No $ @ @ Hajipour A.R., Pourmousavi S.A. and Ruoho A.E., 1-Benzyl 4-aza - 1-azoniabicyclo [2.2.2] octane tribromide as a Regenerable and Useful Reagent for Bromination of Phenols under Mild Conditions, Indian Journal of Chemistry, 45B (March),796-800(2006) @No $ @ @ Hayashi S., Inagi S. and Fuchigami T., Efficient electrochemical polymer halogenation using a thin-layered cell, Polymer Chemistry, 2, 1632-1637 (2011) @No $ @ @ Heravi M.M., Abdolhosseini N. and Oskooie H.A., Tetrahedron Letters, 46, 8959 (2005) @No $ @ @ Heravi M.M., Abdolhosseini N. and Oskooie H.A., Regioselective and high-yielding bromination of aromatic compounds using hexamethylenetetramine- bromine, Tetrahedron Letters, 46, 8959–8963 (2005) @No $ @ @ Heropoulos G.A., Cravotto G., Screttasa C.G. and Steelea B.R., Contrasting chemoselectivities in the ultrasound and microwave assisted bromination reactions of substituted alkylaromatics with N-bromosuccinimide, Tetrahedron Letters, 48, 3247–3250 2007) @No $ @ @ Hintermann L Perseghini and Togni M.A., Development of the titanium-TADDOLate-catalyzed asymmetric fluorination of -ketoesters, Beilstein Journal of Organic Chemistry, 7, 1421–1435 (2011) @No $ @ @ Horvath et al., Solvents from nature, Green Chemistry,10, 1024 (2008) @No $ @ @ Hosseinzadeh R., Tajbakhsh M., Mohadjerani March and Lasemi Zheng., Synthesis Communnications, 40, 868 (2010) @No $ @ @ Huang T., Wang X., Malmgren T. and Mays J.W., Enhancing stability of poly (1, 3-cyclohexadiene)-based materials by bromination and dehydrobromination, European Polymer Journal, 48(2012) 632–636 (2012) @No $ @ @ Ibrahim H., Togni A., Enantioselective halogenation reactions, Chemical Communications, , 147-1155 (2004) @No $ @ @ Ingham T., Bauer D., Landgraf J. and Crowley J.N., Journal of Physical Chemistry A.,102, 3293 (1998) @No $ @ @ Izumisawa Y. and Togo H., Preparation of Bromoketones and Thiazoles from Ketones with NBS and Thioamides in Ionic Liquids, Green and Sustainable Chemistry, 1(August), 54-62 (2011) @No $ @ @ Jacquesy J., Jouannetaud M. and Makani S., Journal of Chemical Society, Chemical Communications, 110 (1980) @No $ @ @ Jagdale A.R., Chouthaiwale P.V. and Sudalai A.,Cu(OTf)2- catalyzed α-halogenation of ketones with 1,3-dichloro-5,5‘-dimethylhydantoin and Nbromosuccinimide,Indian Journal of Chemistry, 48B,1424-1430 (2009)@No $ @ @ Jagdale A.R., Chouthaiwale P.V. and Sudalai A., Copper (II) trifluoromethanesulfonate-catalyzed α-halogenation of ketones with 1, 3-dichloro-5, 5’-dimethylhydantoin and N-bromosuccinimide, Indian Journal of Chemistry, 48B,1424-1430(2009) @No $ @ @ Jamir L., Alimenla B., Kumar A. and Sinha D., Synthesis and Reactivity Studies of a New Reagent Ethyltriphenylphosphonium Tribromide (ETPPTB), Synth. Comm., DOI: 10.1080/00397910903531912 2010) @No $ @ @ Jayachandran B., Phukan P., Daniel T. and Sudalai A., Natural kaolinitic clay: a remarkable catalyst for highly regioselective chlorination of arenes with Cl2 or SOCl, Indian Journal of Chemistry, 45B, 972 (2006) @No $ @ @ Jerzy G. and Slawomir Z., Oxidative chlorination of acetanilides by metal chlorides-hydrogen peroxide in acid-aqueous medium systems, Synthetic Communications,27, 3291 (1997) @No $ @ @ Johnson R.C., (Lancaster, NY); Tung H.S., (Getzville, NY) and Merkel D.C., (West Seneca, NY)., Method forProducing Fluorinated Organic Compounds, U.S. Class: 570/155; 8,071,825 (2011) @No $ @ @ Johnson Burnett H. and Johnson Edward F., Flame retardant polymer composition, U.S. Patent 3, 901, 847 (1975) @No $ @ @ Jones G. and Baeckstrom SJ., American Chemical Society, 56, 1417 (1934) @No $ @ @ Jordan A.D., Luo C. and Reitz A.B., Efficient conversion of substituted aryl thioureas to 2-aminobenzothiazoles using benzyltrimethylammonium tribromide, J. Org. Chemistry, 68(22), 8693-8696 (2003) @No $ @ @ Kajigashi S., Shimizu M., Moriwaki M., Fujisaki S. and Kakinami T., Chlorination of some aromatic compounds with [CH(CHNCl, Technology Reports of Yamaguchi University, 237 (1989) @No $ @ @ Kar et al., Synthesis of Cetyltrimethylammonium tribromide (CTMATB) and its Application in Selective Oxidation of Sulphides to Sulphoxides, Tetrahedron Letters, 44, 4503-4505 (2003) @No $ @ @.Kaushik M.P. and Polshettiwar V., N-octylquinolinium tribromide: A task Specific specific quinoline based ionic liquid as a new brominating agent, Indian Journal of Chemistry, 45B,2542-2545 (2006) @No <#LINE#>Intermolecular Hydrogen Bonding effect on Excited state properties of 3- and 4-Aminocoumarins: A theoretical study<#LINE#>Ramegowda@Mariyappa,Archana@BoodanuruP,Athar@Farzeen,Dudda@JRanjitha,Sultana@Shabreen<#LINE#>74-87<#LINE#>8.ISCA-RJCS-2015-162.pdf<#LINE#> Department of Physics, Govt. College (Autonomous), Mandya, 571401, INDIA <#LINE#>27/11/2015<#LINE#>13/12/2015<#LINE#>Intermolecular hydrogen bonds, including their structure, energy in the ground state (S) and energy change upon electronic first excitation state (S) of 3- and 4-aminocoumarin molecules (nAC, n=3,4) in water are investigated theoretically using density functional theory (DFT) and time dependent DFT (TDDFT) interfaced with the effective fragment potential (EFP)/ polarizable continuum model (PCM) method of salvation. The ground and excited state properties of nAC with five water molecules (nAC-(HO) complex) have been carried out using TDDFT/B3LYP/EFP/PCM/6-31G(d,p) method. Upon photoexcitation of 3AC-(HO) complex, A type (NH-O) hydrogen bond (HB) is weakened, B and C type (C=OH-O and N-HO) HBs are strengthened. In the S state of 4AC-(HO) complex, A and B type HBs are weakned, and C type HB is strengthned. The weakening of B type HBs in 4AC water complex shows the uncommon behavior of aminocoumarin molecules, resolved by NBO analysis. <#LINE#> @ @ March N.H. and Tosi M.P., Coulomb Liquids, Academic Press, New York (1984) @No $ @ @ Biczok L., Brces T. and Linschitz H., Quenching Processes in Hydrogen-Bonded Pairs: Interactions of Excited Fluorenone with Alcohols and Phenols, J. Am. Chem. Soc., 11911071 (1997) @No $ @ @ Moog R.S., Burozski N.A., Desai M.M., Good W.R., Silvers C.D., Thomson P.A. and Simon J.D., Solution photophysics of 1- and 3-aminofluorenone: the role of inter- and intramolecular hydrogen bonding in radiationless deactivation, J. Phys. Chem., 95, 8466 1991) @No $ @ @ Palit D.K., Zhang T., Kumazaki S. and Yoshihara K., The Role of the Amino Protecting Group during Parahydrogenation of Protected Dehydroamino Acids, J. Phys. Chem. A, 107, 10789 (2003) @No $ @ @ Nibbering E.T.J., Fidder H. and Pines E., Ultrafast Chemistry: Using Time-resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics, Annu. Rev. Phys. Chem., 56, 337 (2005) @No $ @ @ Demeter A., Barasz L. and Berces T., Influence of Hydrogen Bond Formation on the Photophysics of (2,6-Dimethylphenyl)-2,3-naphthalimide, J. Phys. Chem. A,108, 4357 (2004) @No $ @ @ Liu Y., Ding J., Liu R., Shi D. and Sun J., Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments, J. Photochem. Photobiol. A, 201, 203 (2009) @No $ @ @ Zhou P., Song P., Liu J., Han K. and He G., Experimental and theoretical study of the rotational reorientation dynamics of 7-aminocoumarin derivatives in polar solvents: hydrogen-bonding effects, Phys. Chem. Chem. Phys., 11, 9440 (2009) @No $ @ @ Liu Y., Ding J., Shi D. and Sun J., Time-dependent density functional theory study on electronically excited states of coumarin 102 chromophore in aniline solvent: reconsideration of the electronic excited-state hydrogen-bonding dynamics, J. Phy.s Chem. A, 112, 6244 (2008) @No $ @ @ Miao M. and Shi Y., Reconsideration on hydrogen bond strengthening or cleavage of photoexcited coumarin 102 in aqueous solvent: a DFT/TDDFT study, J. Comput. Chem., 32, 3058 (2011) @No $ @ @ Liu Y-H. and Li P., Excited-state hydrogen bonding effect on dynamic fluorescence of coumarin 102 chromophore in solution: A time-resolved fluorescence and theoretical study, J. Lumin., 131, 2116 (2011) @No $ @ @ Pines E., Pines D., Ma Y-Z. and Fleming G.R., Femtosecond pump-probe measurements of solvation by hydrogen-bonding interactions, Chem. Phys. Chem., 5(9), 1315 (2004) @No $ @ @ Nibbering E.T.J., Fidder H. and Pines E., Ultrafast Chemistry: Using Time-resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics, Annu. Rev. Phys. Chem., 56, 337 (2005) @No $ @ @ Zhao G-J. and Han K-L., Hydrogen bonding in the electronic excited state, Acc. Chem. Res., 45, 404 (2012) ; Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching, J. Phys. Chem. A, 111, 9218 2007) @No $ @ @ Zhao W., Pan L., Bian W. and Wang J., Influence of solvent polarity and hydrogen bonding on the electronic transition of coumarin 120: a TDDFT study, Chem. Phys. Chem., , 1593 (2008) @No $ @ @ Zhao G-J., Liu J-Y., Zhou L-C. and Han K-L., Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism, J. Phy.s Chem. B, 111, 8940 (2007) @No $ @ @ Zhang M., Ren B., Wang Y., Zhao C., A DFT/TDDFT study on the excited-state hydrogen bonding dynamics of 6-aminocoumarin in water solution, Spectrochimica Acta Part A,101, 191 (2013) @No $ @ @ Ramegowda M., Change in energy of hydrogen bonds upon excitation of 6-aminocoumarin: TDDFT/EFP1 study, New J. Chem.,37, 2648 (2013) ; Change in Energy of Hydrogen Bonds upon Excitation of Coumarin 1: TDDFT/EFP1 Method, Res. J. Chem. Sci., 3(7), 1 2013); A TDDFT/EFP1 study on hydrogen bonding dynamics of coumarin 151 in water, Spectrochimica Acta Part A, 137, 99 (2015) @No $ @ @ Zhao G-J. and Han K-L., Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening, Chem.Phys.Chem., , 1842 2008); Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study, J. Phys. Chem. A, 111, 2469, 2007) @No $ @ @ Zhao G-J. and Han K-L., Hydrogen Bonding and Transfer in the Excited State, John Wiley & Sons Ltd2011) @No $ @ @ Liu Y.H. and Lan S.C,Questionable Excited-State H-Atoms Transfer Mechanism for 7-Hydroxyquinoline (NH Cluster, Commun. Comput. Chem., , 1 (2013) @No $ @ @ Li G.Y., Li Y.H., Zhang H. and Cui G.H,Time-Dependent Density Functional Theory Study on a Fluorescent Chemosensor Based on C–H•••F Hydrogen-Bond Interaction, Commun. Comput. Chem.,, 88 (2013) @No $ @ @ Morimoito A., Yatsuhashi T., Shimada T., Biczok L., Tryk D.A. and Inoue H., Radiationless deactivation of an intramolecular charge transfer excited state through hydrogen bonding: Effect of molecular structure and hard-soft anionic character in the excited state, J. Phys. Chem. A, 105, 10488 (2001) @No $ @ @ Biczok L., Berces T. and Linschitz H., Quenching Processes in Hydrogen-Bonded Pairs: Interactions of Excited Fluorenone with Alcohols and Phenols, J. Am. Chem. Soc., 119, 11071 (1997) @No $ @ @ Vetokhina V., Kijak M., Wiosna-Salyga G., Thummel R.P., Herbich J. and Waluk J., On the origin of fluorescence quenching of pyridylindoles by hydroxylic solvents, Photochem. Photobiol. Sci., , 923 (2010) @No $ @ @ Kyrychenko A. and Waluk J., Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study, J. Phys. Chem. A, 110, 11958 (2006) @No $ @ @ Waluk J., Hydrogen-Bonding-Induced Phenomena in Bifunctional Heteroazaaromatics, Acc. Chem. Res., 36, 832 (2003) @No $ @ @ Krystkowiak E. and Maciejewski A., Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments, Phys. Chem. Chem. Phys., 13, 11317 (2011) @No $ @ @ Jones II G., Jackson W.R. and Halpern A.M., Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes, Chem. Phys. Lett., 72, 391 (1980) @No $ @ @ Kamlet M.J., Dickinson C. and Taft R.W., Linear solvation energy relationships Solvent effects on some fluorescence probes , Chem. Phys. Lett., 77, 69 (1981) @No $ @ @ 3Masilamani V. and Sivaram B.M., Solvent effects on the spectral and gain characteristics of a DAMC dye laser, J. Lumin., 27, 147 (1982) @No $ @ @ Arbeloa T.L., Arbeloa F.L., Tapia M.J. and Arbeloa I.L., Hydrogen-bonding effect on the photophysical properties of 7-aminocoumarin derivatives, J. Phys. Chem., 97, 4704 (1993) @No $ @ @ Arbeloa T.L., Arbeloa F.L., Tapia Estevez M.J. and Arbeloa I.L., Binary solvent effects on the absorption and emission of 7-aminocoumarins, J. Lumin., 59, 369 (1994) @No $ @ @ Krystkowiak E., Dobek K. and Maciejewski A., Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide: Role of hydrogen bonds in deactivation of S-4-aminophthalimide, J. Photochem. Photobiol. A,184, 250 (2006) @No $ @ @ Matsubayashi K.and Kubo Y., Control of Photophysical Properties and Photoreactions of Aromatic Imides by Use of Intermolecular Hydrogen Bonding, J. Org. Chem.,73, 4915 (2008) @No $ @ @ Samant V., Singh A.K., Ramakrishna G., Ghosh H.N., Ghanty T.K. and Palit D.K., Ultrafast Intermolecular Hydrogen Bond Dynamics in the Excited State of Fluorenone, J. Phys. Chem. A, 109, 8693 (2005) @No $ @ @ Munoz M.A., Galan M., Gomez L., Carmona C., Guardado P. and Balon M., The pyrrole ring as hydrogen-bonding -donor base: an experimental and theoretical study of the interactions of N-methylpyrrole with alcohols, J.Chem. Phys., 290, 69 (2003) @No $ @ @ Carmona C., Balon M., Galan M., Guardado P. and Munoz M.A., Dynamic Study of Excited State Hydrogenbonded Complexes of Harmane in Cyclohexane–Toluene Mixtures, Photochem. Photobiol., 76, 239 (2002) @No $ @ @ Carmona C., Balon M., Galan M., Guardado P. and Munoz M.A., Kinetic Study of Hydrogen Bonded Exciplex Formation of N-methyl Harmane, J. Phys. Chem. A, 105, 10334 (2001) @No $ @ @ Day P.N., Jensen J.H., Gordon M.S., Webb S.P., Stevens W.J., Krauss M., Garmer D., Basch H. and Cohen D., An effective fragment method for modeling solvent effects in quantum mechanical calculations, J. Chem. Phys. 105, 1968 (1996) @No $ @ @ Gordon M.S., Freitag M.A., Bandyopadhyay P., Jensen J.H., Kairys V. and Stevens W.J., The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry, J. Phys. Chem. A,105, 293 (2001) @No $ @ @ Adamovic I., Freitag M.A. and Gordon M.S., Density functional theory based effective fragment potential method, J. Chem. Phys., 118, 6725 (2003) @No $ @ @ Jensen J.H. and Gordon M.S., An Approximate Formula for the Intermolecular Pauli Repulsion Between Closed Shell Molecules. II. Application to the Effective Fragment Potential Method, J. Chem. Phys.,108, 4772 1998) @No $ @ @ Arora P., Slipchenko L.V., Webb S.P., DeFusco A. and Gordon M.S., Diffusion of atomic oxygen on the Si(100) surface, J. Phys. Chem. A,114, 6742 (2010) @No $ @ @ Minizawa N., De Silva N., Zahariev F. and Gordon M.S., Implementation of the analytic energy gradient for the combined time-dependent density functional theory/effective fragment potential method: Application to excited-state molecular dynamics simulations, J. Chem. Phys., 134, 54111 (2011) @No $ @ @ Yoo S., Zahariev F., Sok S. and Gordon M.S., Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach, J. Chem. Phys., 129, 144112 (2008) @No $ @ @ Parmer S. and Kumar R., 6H-Indeno[2,1-g]quinolines, J. Med. Chem.,11, 635 (1968) @No $ @ @ Rohini K. and Srikumar P., Therapeutic Role of Coumarins and Coumarin-Related Compounds, Thermodynamics & Catalysis, 5(2), 1000130 (1981) @No $ @ @ Tianzhi Y., Yuling Z. and Duowang F., Synthesis, crystal structure and photoluminescence of 3-(1-benzotriazole)-4-methyl-coumarin, J. Mol. Struct., 791, 18 (2006) @No $ @ @ Yu T.Z., Zhao Y.L., Ding X.S., Fan D.W., Qian L. and Dong W.K., Synthesis, crystal structure and photoluminescent behaviors of 3-(1H-benzotriazol-1-yl)-4-methyl-benzo[7,8]coumarin, J. Photochem. Photobiol. , 188, 245 (2007) @No $ @ @ Ray D. and Bharadwaj P.K., A Coumarin-Derived Fluorescence Probe Selective for Magnesium, Inorg. Chem., , 2252 (2008) @No $ @ @ Trenor S.R., Shultz A.R., Love B.J. and Long T.E., Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds, Chem. Rev.104, 3059 (2004) @No $ @ @ Tianzhi Y., Peng Z., Yuling Z., Hui Z., Jing M., and Duowang F., Synthesis and photoluminescent properties of two novel tripodal compounds containing coumarin moieties, Spectrochim. Acta Part A, 73, 168 (2009) @No $ @ @ Ruikui C., Xichuan Y., Haining T. and Licheng S., J. Photochem. Photobiol. A, 189, 295 (2007) @No $ @ @ Singer K.D., Lalama S.L., Sohn J.E. and Small R.D., Non-linear optical properties of Organic molecules Crystals, Academic Press, Orlo, FL (1987) ch. II-8. @No $ @ @ Nicoud J.F. and Twieg R.J., Non-linear optical properties of Organic molecules Crystals, Academic, Orlo, FL2002) ch. II-3. @No $ @ @ Moerner W.E. and Silence S.M., Polymeric Photorefractive Materials, Chem. Rev., 94, 127-155 1994) @No $ @ @ O’Kennedy R., Coumarins Biology, Applications Mode of Action, Wiley, Chichester (1997) @No $ @ @ Yu T.Z., Zhang P., Zhao Y.L., Zhang H., Meng J., Fan D.W. and Dong W.K., Photoluminiscence and electroluminescence of a tripodal compound containing 7-diethyl amino-coumarin moiety, J. Phys. D: Appl. Phys., 41, 235406 (2008) @No $ @ @ Tianzhi Y., Peng Z., Yuling Z., Hui Z., Jing M. and Duowang F., Synthesis, characterization and high-efficiency blue electroluminescence based on coumarin derivatives of 7-diethylamino-coumarin-3-carboxamide, Org. Electron.10, 653 (2009) @No $ @ @ Asish R., Arunima M. and Raghunath S., Synthesis of biologically potent new 3-(heteroaryl)aminocoumarin derivatives via Buchwald–Hartwig C–N coupling, Tetrahedron Lett.51, 1099 (2010) @No $ @ @ Amit A., Jamie K., Chad C., Natasha D. and Graham J., Hydrolysis-free synthesis of 3-aminocoumarins, Tetrahedron Lett., 48, 5077 (2007) @No $ @ @ Yadav L.D.S., Singh S. and Rai V.K., A one-pot [Bmim]OH-mediated synthesis of 3-benzamidocoumarins, Tetrahedron Lett., 50, 2208 (2009) @No $ @ @ Di Braccio M., Grossi G., Roma G., Marzano C., Bacccichetti F., Simonato M. and Bordin F., Pyran derivatives: Part XXI. Antiproliferative and cytotoxic properties of novel -substituted 4-aminocoumarins, their benzo-fused derivatives, and some related 2-aminochromones, Farmaco 58, 1083 (2003) @No $ @ @ G. Roma, M. Di Braccio, A. Carrieri, G. Grossi, G. Leoncini, M.G. Signorello and A. Carotti, Coumarin, chromone, and 4(3)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: synthesis, biological evaluation, and comparative molecular field analysis, Biorg. Med. Chem., 11, 123 (2003) @No $ @ @ Parr R.G. and Yang W., Density-Functional Theory of Atoms, Molecules (New York: Oxford University Press. 1989) @No $ @ @ Kim K. and Jordan K.D., Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer, J. Phy. Chem., 98 (40), 10089-10094 (1994) @No $ @ @ Stephens P.J., Devlin F.J., Chabalowski C.F. and Frisch M.J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phy. Chem., 98 (45), 11623-11627 1994) @No $ @ @ Stevens W.H., Basch H., Krauss M. and Jasien P., Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, Can. J. Chem., 70, 612-630 (1992) @No $ @ @ Cundari T.R. and Stevens W.J., Effective core potential methods for the lanthanides, J. Chem. Phys., 98, 5555-5565 (1993) @No $ @ @ Hay P.J. and Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 82, 270-283, (1985) @No $ @ @ Becke A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98, 5648 1993); Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38, 3098 (1988) @No $ @ @Lee C., Yang W. and Parr R.G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev., B37, 785 (1988) Dreuw A. and Gordon M.H., Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, Chem. Rev., 105, 4009-4037 (2005) @No $ @ @ Dreuw A. and Gordon M.H., Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, Chem. Rev., 105, 4009-4037 (2005) @No $ @ @ Elliott P., Furche F. and Burke K., Excited states from time-dependent density functional Theory, Rev. Comp. Chem. 26, 91-166 (2009) @No $ @ @ Hirata S. and Gordon M.H., Time-dependent density functional theory within the Tamm Dancoff approximation, Chem. Phy. Lett., 314, 291-299 (1999) @No $ @ @ Runge E. and Gross E.K.U., Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett.,52, 997 1984) 78.Casida M., Recent Advances in Density Functional Methods; Chong D.P., Ed., (World Scientific: Singapore, 1995) , Vol. 1, pp 155-192.@No $ @ @ Bauernschmitt R. and Ahlrichs R., Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett., 256, 454 (1996) @No $ @ @ Stratmann R.E., Scuseria G.E. and Frisch M.J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 109, 8218 1998) @No $ @ @ Furche F. and Ahlrichs R., Time-dependent density functional methods for excited state properties, J. Chem. Phys., 117, 7433 (2002) ; 121, 12772 (2004) @No $ @ @ Li H., Pomelli C.S. and Jensen J.H., Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface, Theoret.Chim.Acta,109, 71 (2003) @No $ @ @ Li H., Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients, J. Chem. Phys., 131, 184103 (2009) @No $ @ @ Wang Y. and Li H., Excited state geometry of photoactive yellow protein chromophore: a combined conductorlike polarizable continuum model and time-dependent density functional study, J. Chem. Phys., 133, 034108 (2010) @No $ @ @ Adamovic I., Freitag M.A. and Gordon M.S., Density functional theory based effective fragment potential method, J. Chem. Phys., 118, 6725 (2003) @No $ @ @ NBO 6.0. Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J. E., Bohmann J. A., Morales C. M., Landis C. R. and Weinhold F., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, (2013);http://nbo6.chem.wisc.edu @No $ @ @ Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M. and Montgomery J.A., General atomic and molecular electronic structure system, J. Comput. Chem. 14, 1347-1363 (1993) @No $ @ @ Gordon M.S., Schmidt M.W., Advances in electronic structure theory: GAMESS a decade later, Chapter 41, pp 1167-1189, in Theory and Applications of Computational Chemistry, the first forty years, Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E., Editors Elsevier, Amsterdam, 2005) @No $ @ @ Nagata T., Fedorov D.G., Sawada T., Kitaura K. and Gordon M.S., A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin, J. Chem. Phys., 134, 034110 2011) @No $ @ @ Subba rao R.V., krishnamurthy M. and Dogra S.K., Fluorescence spectra of 3-aminocoumarin and its acid-base behaviour in the excited singlet state, J. Photochem., 34, 55 (1986) @No $ @ @ Stamboliyska B.,Janevska V., Shivachev B., Nikolova R.P., Stojkovic G., Mikhova B. and Popovski E.,Experimental and theoretical investigation of the structure and nucleophilic properties of 4-aminocoumarin, ARKIVOC 62 x (2010) @No <#LINE#>Development of Electrochemical Biosensor for the Detection of Klebsiella pneumoniae as Biological Weapon<#LINE#>Harish@Kumar,Bhawana@<#LINE#>88-97<#LINE#>9.ISCA-RJCS-2015-165.pdf<#LINE#>Material Science and Electrochemistry Lab., Dept. of Chemistry, Ch. Devi Lal University, Sirsa, Haryana, 125 055, INDIA<#LINE#>7/12/2015<#LINE#>11/12/2015<#LINE#>Rapid, explicit detection and identification of Biological Warfare Agents (BWAs) with early warning signals for detecting possible biological attack is a main challenge for health, military and other government defence agencies. The current research is focussed on development of electrochemical biosensors for the detection of biological warfare agent. For this purpose, a carbon based (Graphene) working electrode containing enzyme alkaline phosphatase, cellulose acetate and Poly Vinyl Pyrolidone (PVP), Ferrocene, Horseradish peroxidase, aq. KOH was fabricated. It is then combined with Ag/AgCl reference and a platinum electrode (auxiliary) to form a three electrode based electrochemical biosensor for the electrochemical detection of Klebsiella pneumoniae as biological warfare agent in the presence and absence of Fenanoparticles. Fe nanoparticles were produced by sol-gel technique and were characterized by UV-visible, FTIR, TEM and XRD techniques. Change in current response and OCP values helps in the detection of biological warfare agent in presence and absence of Fe4 nanoparticles. Effects of temperature, stirring and Fe nanoparticles on the BWA have also been investigated. <#LINE#> @ @ North Atlantic Treaty Organization, NATO Handbook on the Medical Aspects of NBC Defensive Operations, Part II, Biological NATO Amed, P-6(B) (1996) @No $ @ @ Karube I.; Hera K.; Matsuoka H. and Suzuki S., Amperometric determination of total cholesterol in serum with use of immobilized cholesterol esterase and cholesterol oxidase, Anal. Chim. Acta., 139, 127 –32 1982) 3.Veldhoven V.; Meyhi P.P. and Mannaerts G.P., Enzymatic quantitation of cholesterol esters in lipid extracts, Anal. Biochem, 258, 152–55 (1998) @No $ @ @ Res. J. Chem. Sci. International Science Congress Association 974.Shahnaz B., Tada S., Kajikawa T., Ishida T. and Kawanishi K., Automated fluorimetric determination of cellular cholesterol, Ann. Clin. Biochem,345, 665–70 1998) 5.Kennedy J.F., In: Wiseman, A. (ed.) Handbook of Enzyme Biotechnology, Chap John Wiley and Sons, New York, (1975) @No $ @ @ Singh S., Solanki P.R. and Malhotra B.D., Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor, Anal. Chim. Acta., 568, 126–32 (2006) @No $ @ @ Kennedy J.F., Handbook of Enzyme Technology, Marcel Dekker, New York, (1985) @No $ @ @ Lee W.E., Thomson H.G., Hall J.G., Fulton R.E. and Wong J.P., Characteristics of the Biochemical detector sensor, Defence Research Establishment Suffield, Canada, Suffield Memorandum No.1402, 1-23 (1993) @No $ @ @ Ercole C., Del Gallo M., Pantalone M., Santucci S., Mosiello L., Laconi C. and Lepidi, Sensor Actuators B, 4163, 1-5 (2002) @No $ @ @ Ghindilis A.L., Atanasov P., Wilkins P. and Wilkins E.A., biosensor for Escherichia coli based on a potentiometric alternating biosensing (PAB) transducer, Biosensors Bioelectronics, 13, 113-31 (1998) @No $ @ @ Crowley E.L., O'Sullivan C.K. and Guilbault G.G., Increasing the sensitivity of listeria monocytogenes assays: Evaluating using ELISA and amperometric detection. Analyst, 124(3), 295-99 (1999) @No $ @ @ Mirhabibollahi B., Brooks J.L. and Kroll R.G., A semi-homogeneous amperometric immunosensor for protein A-bearing Staphylococcus aureus in foods, Appl. Microbiol. Biotechnol., 34, 242 (1990) @No $ @ @ Brooks J.L., Mirhabibollahi B. and Kroll R.G., Sensitive enzyme-amplified electrical immunoassay for protein A-bearing S. Aures in food, Appl. Environ. Microbiol., 56, 3278-84 (1990) @No $ @ @ Nakamura N., Shigematsu A. and Matsunaga T., Electrochemical detection of viable bacteria in urine and antibiotic selection, Biosens. Bioelectron, , 575 (1991) @No $ @ @ Brook J.L., Mirhabibollahi B. and Kroll R.G., Experimental enzyme linked immunosensor for the detection of Salmonella in food, J. Appl. Bacteriology, 73, 189-96 (1992) @No $ @ @ Kim H.J., Bennetto H.P. and Haqlablab M.A., A novel liposome based electrochemical biosensor for the detection of haemolytic microorganisms, Biotechnol. Tech.,9(6), 389-94 (1995) @No $ @ @ Kumar H. and Rani R., Development of Biosensor for the detection of Biological Warfare Agents: Its Issues and Challenges, Sci. Progress, 96(3), 294-308 (2013) @No $ @ @ Koutzarova T., Kolev S., Ghelev C., Paneva D. and Nedkov I., Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique, Phys. Stat. Sol.(c)., 3(5), 1302-07 (2006) @No $ @ @ Bard X.J. and Faulkner L.R., Electrochemical Methods: Fundamentals and Applications, 2nd edn, Wiley, New York, (2000) @No $ @ @ Chen X.; Wang Y., Zhou J., Yan W., Li X. and Hu J.J., Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film, Anal. Chem., 80, 2133-40 (2008) @No $ @ @ Meng J.H., Yang G.Q., Yan L.M. and Wang X.Y., Synthesis and characterization of magnetic nanometer pigment Fe, Dye. Pigments, 66, 109-13 (2005) @No $ @ @ Kaushik A., Khan R., Solanki P.R., Pandey P., Alam J., Ahmad S. and Malhotra B.D., Iron oxide nanoparticles-chitosan composite based glucose biosensor, Biosens. Bioelectron, 24(4), 676-83 (2008) @No $ @ @ Boistelle R. and Astier J.P., Crystallization mechanism in solutions, J. Cryst. Growth, 90, 14-30 (1988) @No $ @ @ Moudgil H.K., A textbook of Physical Chemistry, 2ndEdn., Prentice Hall of India, Pvt. Ltd., New Delhi, 648-50 (2015) @No $ @ @ Wang J., Chen Q., Zheng C. and Hou B., Magnetic-field-induced growth of single-crystalline Fe nanowires, Adv. Mater., 16(2), 137-40 (2004) @No @Review Paper <#LINE#>Sol-Gel Derived Nanomaterials and It’s Applications: A Review<#LINE#>Amit@Kumar,Nishtha@Yadav,Monica@Bhatt,NeerajK@Mishra,Pratibha@Chaudhary,Singh@Rajeev<#LINE#>98-105<#LINE#>10.ISCA-RJCS-2015-152.pdf<#LINE#> Department of Polymer Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, 110075, INDIA @ Department of Chemistry, Amity University, Noida, Uttar Pradesh 201313, INDIA @ Material/ Organometallics Laboratory, Department of Chemistry, ARSD College, University of Delhi-110021, INDIA @ Maitreyi College, University of Delhi, Bapudham Complex, Chanakyapuri, New Delhi, 110021, INDIA<#LINE#>3/11/2015<#LINE#>23/11/2015<#LINE#>Sol gel technique has come across as a convenient route to synthesize nanoparticles using various precursors. Starting from the earlier work on the silica material and now covering precursor like metal-oxides and organic-inorganic hybrids, this method has proved to be flexible, economical and less complex as compared to conventional routes for nanoparticle synthesis at relatively low temperatures. This process has been extensively used in the field of ceramics, glass and thin-film-coatings. This review, sol-gel technique has been studied explaining its origin, processing, applications and advantages. Sol-gel derived materials have a wide range of uses. This review is a study about sol gel derived materials, the process and its applications. <#LINE#> @ @ http://www.spectraresearch.com/news.html, (2015) @No $ @ @ Verwey E.J.W. and Overbeek J.T.G., H. Kruyt, ed.,Colloid Science, 1, Elsevier, Amsterdam, The Netherlands, (1948) @No $ @ @ Hench L.L. and West J.K., Chem. Rev., 90, 33-72 (1990) @No $ @ @ W. Ford, Ceramics Drying, Pergamon, New York, 19867. H. Dislich, J. Non-Cryst. Solids, 57, 371, (1983) @No $ @ @ H. Dislich, J. Non-Cryst. Solids, 57, 371 (1983) @No $ @ @ http://homepages.rpi.edu/~plawsky/Research/Processing.html, (2015) @No $ @ @ Graham, T. Liquid diffusion applied to analysis. Philos,Trans. R. Soc. Jpn, 29, 902 (1970) @No $ @ @ Robinson, Arthur L, A chemical route to advanced ceramic, Science, 233, 25-27 (1986) @No $ @ @ Huang, Y., and Pemberton, J.E., Colloids and SurfacesA: Physicochem, Eng. Aspects, 360, 175–183 (2010) @No $ @ @ Matijevic E., Butterworth Heinemann, London, 39-59(1994) @No $ @ @ A.C Pierre, Sol Gel Technology, (2000) @No $ @ @ Adv Polym Sci., 242: 29–89 Vladimir Aseyev, Heikki Tenhu, and Françoise M. Winnik, (2011) @No $ @ @ Kistler S S, Cohenrent expanded aerogels, J Phys Chem,36, 52-64 (1932) @No $ @ @ Sol-gel synthesis of solids by J. Livage, Encyclopedia of Inorganic Chemistry, R. Bruce King, John Wiley edition,Ney York, 3836-3851 (1994) @No $ @ @ Mackenzie J.D., Journal of Non-Crystalline Solids, 100,162-168 (1988) @No $ @ @ Deng Z, Wang J, Wei J, Shen J, Zhou B and Chen L, JSol Gel Sci Technol, 19, 677-680 (2000) @No $ @ @ Venkastewara Rao A, Bhagat S.D, Hirashima H and Rajonk GM, J Colloid Interface Sci, 300, 279-285 (2006) @No $ @ @ El Rassy H, Buisson P, Bouali B, Perrard A, Pierre AC,Langmuir, 19, 358-363 (2003) @No $ @ @ Harrels JH, Ebina T, Tsubo N and Stucky G, J NonCryst Solids, 298, 241-251 (2002) @No $ @ @ Allie C, Pirard R, Lechloux AJ, Pirard JP, J Non-Cryst Solids, 246, 216-228 (1999) @No $ @ @ Budd, K. U, S. K. Dey, and D. A, Material Research Society Symposium Proceedings, 73, 711-716 (1986) @No $ @ @ Woodhead J.L, Science of Ceramics, 4, 105-112 (1968) @No $ @ @ Wymer R.G. and Coobs J.H., Proceedings of the BritishCeramic Society, (7), 61-79 (1967) @No $ @ @ Zarzycki J.A, Wright F. and Dupuy J., Martinus NijhoffPublishers, Dordrecht, Netherlands. eds., Glass current issues, 203-223 (1985) @No $ @ @ MacKenzie J.D, jji Larry L. Hench and Donald R, Ulrich,eds. Ultrastructure processing of ceramics, glasses, andcomposites. John Wiley and Sons, Inc., New York, NewYork, 15-26 (1984) @No $ @ @ Tsionsky M., Gun G., Giezer V. and Lev O., Anal.Chem., 66, 1747-1753 (1994) @No $ @ @ Fletcher J.M. and Hardy C.J., Application of sol-gel processes to industrial oxides, Chemistry and Industry(2), 48-51 (1968) @No $ @ @ de Lange R.S.A., Keizer K. and Burggraa A.J., Journal of Membrane Science, 104, 81-100 (1995) @No $ @ @ Elma M., Yacao C., D. Costa J.C. and Wang D.K.,Membranes, 3(3), 136-150 (2013) @No $ @ @ Gong K., Zhang M., Yan Y., Lei Su, Mao L., Xiong S.and Chen Y., Anal. Chem., 76, 6500-6505 (2004) @No $ @ @ Ebelmen, Ann. Chim. Phys. Ser., 57, 319-355 (1846) @No $ @ @ Roy D.M. and Roy R., Am. Mineral, 39, 957-975 (1955) @No $ @ @ Schroeder H., Paint Varnish Prod., 55, 31-46 (1965) @No $ @ @ Chai C., Ben-Nissan B., Pyke S. and Evans L., Mater, Manuf. Process, 10, 205–216 (1995) @No $ @ @ Choi A.H. and Ben Nissan B., Journal of crystalline Australian Ceramic Society, 50, 121-136 (2014) @No $ @ @ Marikkannan M., Vishnukanthan V., Vijayshankar A.,Mayandi J. and Pearce J.M., Aip Advances, 5, 027122(2015) @No $ @ @ Benlarbi M., Farre C., Chaix C., Lawrence M.F., BlumL.J., Lysenko V. and Marquette C.A., Synthetic Metals,2675–2680 (2010) @No $ @ @ Sumio Sakka and Toshinobu Yuko, chemistry,spectroscopy and application of sol-gel glasses, ed R.Reisfeld, spring-verla, Berlin, 89 (1992) @No $ @ @ Alan P.B., Use of sol-gels in the application of ceramic oxide thin films, (1987) @No $ @ @ Horikoshi S. and Serpone N., microwaves in nanoparticles synthesis, wiley, (2013) @No $ @ @ Tavakoli A., Sohrabi M. and Kargar A., 7 Institute ofChemistry, Slovak Academy of Sciences DOI:10.2478/s11696-007-0014-7, (2007) @No $ @ @ Gajewicz A., Puzyn T., Rasulev B., Leszczynska D. and Leszczynski J., nanoscience and nanotechnology-Asia, 1 (2011) @No $ @ @ Lin H.P. and Chung Yang M., Chem. Res., 35, 927(2002) @No $ @ @ Schubert U., Hüsing N. and Lorenz A., Chem. Mater., 7,2010–2027 (1995) @No $ @ @ Livage J., Carodin T. and Roux C., Functional hybrid material,ed. P.Gomez-Romero, and C. Sanchez, Functional Hybrid Materials, Wiley-VCH, Weinheim,(2004) @No