@Research Paper <#LINE#>Quantification of dapsone in human plasma by using UPLC-MS/MS technique<#LINE#>Sandeep @Zaware,Neel @Lahoti <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2023-008.pdf<#LINE#>Synergen Bio Private Limited, Unit Nos. 101 to 104 and 309 to 311, Sai Chambers, 302, Old Mumbai – Pune, India Highway, Wakadewadi, Shivajinagar, Pune, Maharashtra - 411003, India@Synergen Bio Private Limited, Unit Nos. 101 to 104 and 309 to 311, Sai Chambers, 302, Old Mumbai – Pune, India Highway, Wakadewadi, Shivajinagar, Pune, Maharashtra - 411003, India<#LINE#>20/6/2023<#LINE#>5/7/2023<#LINE#>To validate the method for determination of dapsone in K2EDTA human plasma using high performance liquid chromatography method with tandem mass spectrometry. Bioanalytical method was developed at Bioanalytical Research of Synergen Bio Pvt. Ltd. and validated as per method validation SOP. 0.200mL plasma was aliquoted and 0.050mL of internal standard dilution was added to it, except in blank in which 0.050mL of diluents was added and vortexed all the samples. 0.200 mL of 5mM Ammonium Acetate was added to all samples and vortexed for few seconds. Conditioning and equilibration were done with 1 ml of Methanol. Equilibration with 1ml of HPLC Water. Samples were loaded on Cartridges and washing with 1 ml HPLC water then by 5% MeOH in HPLC water. Samples were eluted with 1ml elution solution (70:30: Acetonitrile: 5mM Ammonium Acetate Solution). Transfer the samples into pre-labelled autosampler vials. Linearity of Calibration standard were linear in range of 5.000–3000.000ng/mL for Dapsone. The method validated at current regulatory requirements for sensitivity, selectivity, accuracy and precision, linearity, matrix effect, autosampler carryover effect, cross reactivity and stability of bench top, freeze thaw, autosampler and stability in whole blood etc. However, Recovery for dapsone and its internal standard were found precise, consistent and reproducible. (i.e. not more than 100%). The validated method has been used for the quantification dapsone in Human plasma and can be applied to BA/BE studies of dapsone.<#LINE#>Shepard C.C. (1982).@Leprosy today.@N Engl J Med (307), 640-641.@No$Waters MFR (1983).@New approaches to chemotherapy for leprosy.@Drugs, (26), 465-467.@Yes$Powell R. D., DeGowin R. L., Eppes R.B., McNamara J. V. & Carson P. E. (1967).@The antimalarial and hemolytic properties of 4-4@Int J. Lepr, (35), 590-604.@Yes$Rees R.S., Altenbem D.P., Lynch J.P. & King L.E. Jr (1985).@Brown recluse spider bites: A comparison of early surgical excisionversus dapsone and delayed surgical excision.@Ann Surg, (202), 659-663.@Yes$Swain A.F., Ahmad R.A., Rogers H.J., Leonard J. N. & Fry L. (1983).@Pharmacokinetic observations on dapsone in dermatitis herpetiformis.@Br J Dermatol, (108), 91-98.@Yes$Kumano K., Tani M. & Murata Y. (1983).@Dapsone in the treatment of miliary lupus of the face.@Br J Dermatol, (109), 57-62.@Yes$Grindulis K.A. & McConkey B. Rheumatoid (1984).@Arthritis: The effects of treatment with dapsone on hemoglobin.@J. Rheumatol, (11), 776-778.@Yes$Poulsen A., Hultberg B., Thomsen K. & Wantzin G. L. (1984).@Regression of Kaposi@Lancet; (1), 560.@Yes$Yu-Luan Chen, Heiko Junga, Xiangyu Jiang&Weng Naidong (2003).@Simultaneous determination of theophylline, tolbutamide, mephenytoin, debrisoquin, and dapsone in human plasma using high-speed gradient liquid chromatography/tandem mass spectrometry on a silica-based monolithic column.@J Sep Sci., 26(17), 1509–1519.@Yes$Eljaschewitsch J., Padberg J., Schürmann D. & Ruf B. (1996). Highperformance liquid chromatography determination of pyrimethamine, dapsone, monoacetyldapsone, sulfadoxine, and N-acetyl-sulfadoxine after rapid solid-phase extraction.@Ther Drug Monit, 18(5), 592-597.@undefined@Yes$Philip, P. A., Roberts, M. S., & Rogers, H. J. (1984).@A rapid method for determination of acetylation phenotype using dapsone.@British journal of clinical pharmacology, 17(4), 465-469.@Yes$Tigecycline, P. R. O. D. U. C. T., Reviewer, P., Wang, Y., Leader, T. E. A. M., Jarugula, V. R., Leader, P. T., & Gobburu, J. (2018).@Clinical pharmacology & biopharmaceutics review.@@Yes$Guideline, I. H. (2022).@Bioanalytical method validation and study sample analysis M10.@ICH Harmonised Guideline: Geneva, Switzerland.@Yes$Lin, Y. J., Wang, Y. C., Huang, H. H., Huang, C. H., & Lin, P. L. (2022).@Efficacy and safety of remifentanil for endoscopic ultrasound-guided tissue acquisition: a single center retrospective study.@Surgical Endoscopy, 36(9), 6516-6521.@Yes$Chae, S. U., Kim, J. S., Lee, C. B., Jo, S. J., Min, K. L., Chang, M. J., & Bae, S. K. (2023).@A Sensitive, Simple, and Fast LC–MS/MS Method for Quantification of Remifentanil in Human Plasma: Applications in Critically Ill Patients’ Plasma during Extracorporeal Membrane Oxygenation.@Separations, 10(6), 359.@Yes <#LINE#>Synthesis and Characterisation of ZnS-PVA and ZnS-PVAc Nanofibers with Potential Application in Wastewater Treatment<#LINE#>Aliyu Danmusa @Mohammed,Amina Sada @Yusuf,Ansar Bilyaminu @Adam <#LINE#>8-15<#LINE#>2.ISCA-RJCS-2023-013.pdf<#LINE#>Department of Chemistry, Umaru Musa Yar’adua University, Katsina, Katsina State, Nigeria@Department of Chemistry, Umaru Musa Yar’adua University, Katsina, Katsina State, Nigeria@Department of Chemical Sciences, Federal University Wukari, Taraba State, Nigeria<#LINE#>26/7/2023<#LINE#>15/10/2023<#LINE#>ZnS nanoparticles were synthesised from pyrolysis of two different ligands of dithiocarbamate at a temperature of 350 ºC. The as-prepared nanoparticles were electro-spun with two different polymer matrices of polyvinyl alcohol (PVA) and polyvinyl acetate (PVAc) to form nanocomposites (nanofibers). The nanofibers were used differently as catalyst in the photodegradation of methylene blue dye in aqueous solution. ZnS/PVAc nanofiber was observed to have more catalytic effect on the dye photodegradation than ZnS/PVA nanofiber composite. ZnS nanoparticles were characterized with UV-vis spectroscopy while the electrospun nanofibers were characterized using fouriertansform infrared (FTIR), scanning electron microscope (SEM) and thermogravimetric (TGA) analyses.<#LINE#>Loseva, O. V., Rodina, T. A., Smolentsev, A. I. & Ivanov, A. V. (2014).@Synthesis, supramolecular self-organization, and thermal behavior of the heteropolynuclear complex ([H 3 O][Au {S 2 CN (CH 2) 6} 2][Au 2 {S 2 CN (CH 2) 6} 4][ZnCl 4] 2) n.@Journal of Structural Chemistry, 55, 901-909.@Yes$Stiefel, E. I., & Matsumoto, K. (1995).@Transition Metal Sulfur Chemistry.@ASC Symposium Series, Vol. 653.@Yes$Goodsell, D. S. (2004).@Bionanotechnology: lessons from nature.@John Wiley & Sons.@Yes$Liu, W. T. (2006).@Nanoparticles and their biological and environmental applications.@Journal of bioscience and bioengineering, 102(1), 1-7.@Yes$Ng Cheong Chan, Y., Schrock, R. R., & Cohen, R. E. (1992).@Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films.@Journal of the American Chemical Society, 114(18), 7295-7296.@Yes$Kuo, S. W., Chung, Y. C., Jeong, K. U., & Chang, F. C. (2008).@A simple route from monomeric nanofibers to zinc oxide/zinc sulfide nanoparticle/polymer composites through the combined use of γ-irradiation polymerization, gas/solid reaction and thermal decomposition.@The Journal of Physical Chemistry C., 112(42), 16470-16477.@Yes$Qu, X., Alvarez, P. J., & Li, Q. (2013).@Applications of nanotechnology in water and wastewater treatment.@Water research, 47(12), 3931-3946.@Yes$Ou, C. Y., Zhang, C. H., Li, S. D., Yang, L., Dong, J. J., Mo, X. L., & Zeng, M. T. (2010).@Thermal degradation kinetics of chitosan–cobalt complex as studied by thermogravimetric analysis.@Carbohydrate polymers, 82(4), 1284-1289.@Yes$Onwudiwe, D. C., & Ajibade, P. A. (2010).@Synthesis and characterization of Zn (II), Cd (II), and Hg (II) Alkyl-aryl dithiocarbamate: X-ray crystal structure of [(C6H5N (et) CS2) Hg (C6H5N (butyl) CS2)].@Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(4), 279-284.@Yes$Onwudiwe, D. C., & Ajibade, P. A. (2010).@Synthesis and characterization of metal complexes of N-alkyl-N-phenyl dithiocarbamates.@Polyhedron, 29(5), 1431-1436.@Yes$Onwudiwe, D. C., Strydom, C. A., Vala, R. M., & Tichagwa, L. (2015).@Preparation and structural properties of electrospun PAN nanofibers reinforced with ZnS nanoparticles.@Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(8), 1251-1259.@Yes$Romano, R., & Alves, O. L. (2006).@Semiconductor/porous silica glass nanocomposites via the single-source precursor approach.@Materials research bulletin, 41(2), 376-386.@Yes$Coats, A. W., & Redfern, J. P. (1963).@Thermogravimetric analysis. A review.@Analyst, 88(1053), 906-924.@Yes$Plyusnin, V. F., Kolomeets, A. V., Grivin, V. P., Larionov, S. V., & Lemmetyinen, H. (2011).@Photochemistry of dithiocarbamate Cu (II) complex in CCl4.@The Journal of Physical Chemistry A, 115(10), 1763-1773.@Yes$Wageh, S., Ling, Z. S. & Xu-Rong, X. (2003).@Growth and optical properties of colloidal ZnS nanoparticles.@Journal of Crystal Growth, 255(3-4), 332-337.@Yes$Onwudiwe, D. C., Strydom, C. A., Vala, R. M., & Tichagwa, L. (2015).@Preparation and structural properties of electrospun PAN nanofibers reinforced with ZnS nanoparticles.@Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(8), 1251-1259.@Yes$Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. (2010).@Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS.@Chemical Engineering Journal, 157(2-3), 373-378.@Yes$Wang, W., Germanenko, I., & El-Shall, M. S. (2002).@Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and Cd x Zn1-x S.@Chemistry of Materials, 14(7), 3028-3033.@Yes <#LINE#>Theoretical estimation of heat capacity of binary liquid mixtures at different temperatures by associated and non associated processes<#LINE#>Naveen @Awasthi,Divya Jyoti @Mishra,Nalini @Dwivedi,Vivek Kumar @Pandey <#LINE#>16-20<#LINE#>3.ISCA-RJCS-2023-021.pdf<#LINE#>Department of Chemistry, Janta College Bakewar (206124), Etawah, India@Department of Agriculture Chemistry, Janta College Bakewar (206124), Etawah, India@Department of Chemistry, Raghunath Girls P.G. College, Meerut (250001), India@Department of Chemistry, D.B.S P.G. College, Govind nagar (208006), Kanpur, India<#LINE#>5/10/2023<#LINE#>18/12/2023<#LINE#>In the present investigation experimental density (ρ), ultrasonic speed (U), thermal expansion coefficient (α) isothermal compressibility (βT), characteristic pressure (P*), characteristic volume (V*) and characteristic temperature (T*) were used to evaluate heat capacity (CP) of two weakly interacting binary liquid mixtures such as 1-butanol+dodecane and 2-butanol+dodecane over the entire range of concentration and atmospheric pressure from 288.15-318.15K by Prigogine-Flory-Patterson model based on non- associated process. Ramaswamy (RS) as well as model devised by Glinski (GLI) based on association process were also considered for evaluation of aforementioned thermodynamic properties at different temperatures. Deviations of heat capacity were fitted to redlich kister polynomial to estimate the binary coefficient and standard deviation. McAllister Multi body interaction model was used to correlate the experimental findings. Results were discussed in terms of average absolute % deviation for both the liquid mixtures at different temperatures. McAllister four body (Mc4) was found to be more consistent than McAllister three body (Mc3) model. Excess heat capacities of binary liquid mixtures were also computed to analyze the intermolecular interactions. Prigogine-Flory-Patterson model deals a fair agreement with experimental findings in comparison to other two models based on associated process.<#LINE#>Shukla, R. K., Shukla, S. K., Pandey, V. K., & Awasthi, P. (2008).@Excess internal pressure, excess energy of vaporization and excess pseudo-Gruneisen parameter of binary, ternary and quaternary liquid mixtures.@Journal of Molecular Liquids, 137(1-3), 104-109.@Yes$Shukla, R., Shukla, R. K., Gangwar, V., Shukla, S., Tiwari, M., & Tenguriya, K. (2015).@Pseudo-Gruneisen Parameter and Internal Pressure of Binary Mixtures from Different Approaches.@International Journal of Thermodynamics, 18(3), 150-159.@Yes$Pandey, J. D., & Sanguri, V. (2008).@Theoretical estimations of thermodynamic properties of liquid mixtures by Flory@Physics and Chemistry of Liquids, 46(4), 417-432.@Yes$Pandey, J. D., Dubey, N., Dwivedi, D. K., & Dey, R. (2001).@Prediction of heat of mixing from internal pressure data.@Physics and chemistry of liquids, 39(6), 781-790.@Yes$Sanguri, V., Sethi, R., & Pandey, J. D. (2018).@Thermodynamic and interaction studies of binary liquid mixtures on the basis of Flory@Journal of Molecular Liquids, 271, 892-906.@Yes$Ogawa, H., & Murakami, S. (1987).@Excess volumes, isentropic compressions, and isobaric heat capacities for methanol mixed with other alkanols at 25°C.@Journal of solution chemistry, 16, 315-326.@Yes$Flory P.J., Orwoll R.A., Vrij A. (1964).@Statistical thermodynamics of chain molecule liquids. II. Liquid mixtures of normal paraffin hydrocarbons.@Journal of the American Chemical Society, 86(17), 3515.@Yes$Prigogine I. and Ballemans A. (1957).@Method V. A. Molecular theory of solutions. Amsterdam: North –Holland Publ. Company.@undefined@Yes$Prigogine I. & Saraga L. (1952).@Test of monolayer model for surface tension of simple liquid.@J Chem Phys., 49, 399-407@Yes$Flory P. D. (1965).@Statistical thermodynamics of liquid mixtures.@Journal of the American Chemical Society, 87(9), 1833-1838.@Yes$Patterson D. &Rastogi A.K. (1970).@The surface tension of polymeric liquids and the principle of corresponding states.@J. Phy Chem., 74, 1067-1071.@Yes$Gliński, J. (2003).@Determination of the conditional association constants from the sound velocity data in binary liquid mixtures.@The Journal of chemical physics, 118(5), 2301-2307.@Yes$Awasthi N., (2021).@Theoretical interpretation of excess volume and refractive index of non-polar mixture from 298.15-323.15K.@International research journal of modernization in engineering technology and science.@Yes$Awasthi N. (2023).@Physicochemical study of a binary liquid mixture by ultrasonic speed, isentropic compressibility and acoustic impedance from 288.15-318.15K.@Research Journal of chemical sciences, 13(1), 46-59.@No$Awasthi N. (2023).@Estimation of acoustic impedance of binary liquid system from 288.15to 318.15K by associated and non-associated process.@Research Journal of physical sciences, 11(1), 8-13.@No$Awasthi N. (2022).@Estimation of heat capacity of isomeric alcohols with long chain saturated hydrocarbon by liquid state models from 288.25-318.15K..@International research journal of modernization in engineering technology and science, 4(1), 354-259.@Yes$Awasthi N., Bhadauria J., Dubey P., (2022).@Viscosity and Excess viscosity for non-polar system from 298.15 to 323.15K.@Research Journal of Recent sciences, 11(2), 23-33.@Yes$Redlich, O., & Kister, A. T. (1948).@Algebraic representation of thermodynamic properties and the classification of solutions.@Industrial & Engineering Chemistry, 40(2), 345-348.@Yes$McAllister, R. A. (1960).@The viscosity of liquid mixtures.@AIChE Journal, 6(3), 427-431.@Yes$Troncoso, J., Valencia, J. L., Souto-Caride, M., González-Salgado, D., & Peleteiro, J. (2004).@Thermodynamic properties of dodecane 1-butanol and 2-butanol systems.@Journal of Chemical & Engineering Data, 49(6), 1789-1793.@Yes$Shukla, R. K., Kumar, A., Awasthi, N., Srivastava, U., & Srivastava, K. (2017).@Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol with benzene from various models at temperature range 298.15–313.15 K.@Arabian Journal of Chemistry, 10(7), 895-905.@Yes$Awasthi, N., Kumar, A., Srivastava, U., Srivastava, K., & Shukla, R. K. (2019).@Excess volume and surface tension of some flavoured binary alcohols at temperatures 298.15, 308.15 and 318.15 K.@Physics and Chemistry of Liquids, 57(6), 800-815.@Yes$Pandey, J. D., & Verma, R. (2001).@Inversion of the Kirkwood–Buff theory of solutions: Application to binary systems.@Chemical Physics, 270(3), 429-438.@Yes <#LINE#>A simple and convenient synthesis of α-cinnamic aryl-n-aryl nitrones [n-(3-phenylallylidene) aniline oxide] and their antibacterial activities<#LINE#>P. @Sivadharani,M.R. @Bhamuni,M. Muthu @Selvi,S.R. @Jayapradha <#LINE#>26-30<#LINE#>4.ISCA-RJCS-2023-023.pdf<#LINE#>PG and Research Department of Chemistry, Government Arts College for women, Nilakottai-624208, India@PG and Research Department of Chemistry, Government Arts College for women, Nilakottai-624208, India@PG and Research Department of Chemistry, Government Arts College for women, Nilakottai-624208, India@PG and Research Department of Chemistry, Government Arts College for women, Nilakottai-624208, India<#LINE#>9/10/2023<#LINE#>22/12/2023<#LINE#>It is a popular two-step convenient method to prepare nitrones with distinctive phenylhydroxylamines and cinnamaldehydes. Nitrone is 1, 3-dipole and is one of the powerful substrate in 1,3-dipolar cycloadditions, it has drawn great attention because of its extensive tendency as a 1,3 dipole in Organic synthesis and its biological activities. Here the novel nitrones can be synthesized in exemplary yield (above 80%) and it has been confirmed by using 1H and 13C NMR techniques. The synthesized nitrone possess antibacterial activities in the bacterial strains of Pseudomonas aeruginosa, Bacillus marisflavi, Exiguobacterium Indicum and E.Coli.<#LINE#>V. Nair and T.D. Suja (2007). Tetrahedron. 63, 147-175@undefined@undefined@No$Jun-ichi Matsuo, Tsyoshi Shibata, Hideo Kitagawa & Teruaki Mukaiyamma, (2001). ARKOVIC(X). 58-65.@undefined@undefined@No$Monire Shariatipour, Masoumeh Jadidinejad and Akbar Heydari (201).@Chemistry Department, Tarbiat Modares University, Tehran, Iran.@J. Chem. Sci., Indian Academy of Sciences 131:102, https://doi.org/10.1007/s12039-019-1677-7@No$Pfeiffer, J. Y., & Beauchemin, A. M. (2009).@Simple reaction conditions for the formation of ketonitrones from ketones and hydroxylamines.@The Journal of Organic Chemistry, 74(21), 8381-8383.@Yes$Moran, J., Pfeiffer, J. Y., Gorelsky, S. I., & Beauchemin, A. M. (2009).@Ketonitrones via cope-type hydroamination of allenes.@Organic Letters, 11(9), 1895-1898.@Yes$Gella, C., Ferrer, E., Alibés, R., Busque, F., De March, P., Figueredo, M., & Font, J. (2009).@A metal-free general procedure for oxidation of secondary amines to nitrones.@The Journal of organic chemistry, 74(16), 6365-6367.@Yes$Article (2019).@Cinnamaldehyde.@PubChem., pubchem.ncbi.nlm.nih.gov. Retrieved 2019-10-18.@No$Jayapradha, S. R., Sridharan, V., Muthusubramanian, S., & Polborn, K. (2007).@Chemo, stereo, and regioselective addition of α‐(2‐methoxyaryl)‐N‐aryl nitrones to diarylidineacetone: Synthesis of novel isoxazolidines.@Journal of Heterocyclic Chemistry, 44(5), 1105-1108.@Yes$Jayapradha, S. R., & Muthusubramanian, S. (2010).@Novel Rearrangement during the Reaction of Diethylmalonate with α-(5-Substituted 2-hydroxyphenyl)-N-phenyl Nitrones.@Synthetic Communications®, 40(3), 434-441.@Yes$Sivasubramanian S, Amutha C, Thirumalaikumar M & Muthusubramanian S, (1996). Indian J. Chem, 35B, 503.@undefined@undefined@No$Thirumalaikumar, M., Sivasubramanian, S., Ponnuswamy, A., & Mohan, P. (1996).@Synthesis, reactions and antimicrobial studies of α-aryl-N-(2-nitrocyclohexyl) nitrones.@European journal of medicinal chemistry, 31(11), 905-908.@Yes$Zosimo-Landolfo, G., Tronchet, J. M. J., Bizzozero, N., Habashi, F., & Kamatari, A. (1998).@Hydroxyamino sugar derivatives: sugar nitrones.@Il Farmaco, 53(8-9), 623-625.@Yes <#LINE#>Isotherm and batch system kinetics of cadmium ion sorption using mango seed shell<#LINE#>Yusufu @Luka,Abdulhalim Musa @Abubakar,Hassan Ahmed @Saddiq,Solomon @Isuwa <#LINE#>31-44<#LINE#>5.ISCA-RJCS-2023-025.pdf<#LINE#>Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria@Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria@Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria@Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria<#LINE#>27/10/2023<#LINE#>20/11/2023<#LINE#>Cadmium (Cd) toxicity even in low amounts can be felt if consumed by humans and animals. Mango seed shell biosorption property to get rid of this metal ion from contaminated water is therefore proposed by this study after several thoughtful bench-scale batch examination, beginning with Fourier Transform Infrared (FTIR) spectroscopic analysis. In that regard, the removal of Cd2+ at higher biosorption percentage occurs at low process conditions, which are: 10 min contact time, 0.5g biosorbent dose, 5mg/L initial Cd2+ concentration and pH = 4, corresponding to 82.47%, 99.49%, 62.43% and 62.45%, respectively. Uniquely, in this study, two solution approaches for finding isotherm model parameters from Langmuir, Freundlich and Dubinin-Radushkevich (D-R) formulae were also examined. Herein, the nonlinear regression technique (NRT) with satisfactory statistical estimates was the best method of finding the model parameters compared to the graphical technique (GT). Based on reduced chi-square, coefficient of determination (R2) and the residual sum of squares (RSS) given by the user-defined NRT carried out in Origin Pro 2018, the best isotherm are in the order of Langmuir, D-R and Freundlich. Both techniques however, reveals that the adsorption of Cd unto mango seed shell endocarp is a physical adsorption process, due to an E = 0.3743 & 0.4677 kJ/mol obtained from the D-R isotherm. Also, an R2 = 0.9978 from linear fitting, presents the Pseudo Second order adsorption kinetic model followed by the Lagergren alternative proposed in the literature, as the best model under the specified conditions. The bottom line now is to compare the biosorbent performance of mango seed shell with others reported previously and to determine the percent removal of other toxic heavy metals, also studying their isotherms and kinetics.<#LINE#>Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009).@Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China.@Science of the total environment, 407(5), 1551-1561.@Yes$Sarı, A., & Tuzen, M. (2008).@Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies.@Journal of hazardous materials, 157(2-3), 448-454.@Yes$Smith J.E. (2012).@Biotechnology-Studies in Biology.@4th ed. Cambridge University Press; 2012. doi:10.1017/CBO9781139167215@No$Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. A. (2017).@Cadmium toxicity and treatment: An update.@Caspian journal of internal medicine, 8(3), 135.@Yes$Tucker, P. (2011).@Agency for toxic substances and disease registry.@Case Studies in Environmental Medicine: Asbestos Toxicity.@Yes$WHO (2019).@Exposure to Cadmium: A Major Public Health Concern.@Team-Chemical Safety and Health Unit; https://www.who.int/publications-detail-redirect/WHO-CED-PHE-EPE-19-4-3@No$Pinto, A. P., Mota, A. D., De Varennes, A., & Pinto, F. C. (2004).@Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants.@Science of the total environment, 326(1-3), 239-247.@Yes$Goyer, R. A., & Clarkson, T. W. (1996).@Toxic effects of metals.@Casarett and Doull’s toxicology: the basic science of poisons, 5, 691-736.@Yes$Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Munoz, J. A. (2009).@Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.@Journal of hazardous materials, 163(2-3), 555-562.@Yes$Montazer-Rahmati, M. M., Rabbani, P., Abdolali, A., & Keshtkar, A. R. (2011).@Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae.@Journal of hazardous materials, 185(1), 401-407.@Yes$Pradhan, A. A., & Levine, A. D. (1992).@Role of extracellular components in microbial biosorption of copper and lead.@Water Science and Technology, 26(9-11), 2153-2156.@Yes$Sharma, Y. C. (1995).@Economic treatment of cadmium (II)-rich hazardous waste by indigenous material.@Journal of colloid and interface science, 173(1), 66-70.@Yes$Rao, K. S., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010).@Review on cadmium removal from aqueous solutions.@International journal of engineering, science and technology, 2(7).@Yes$Yun, Y. S., & Volesky, B. (2003).@Modeling of lithium interference in cadmium biosorption.@Environmental science & technology, 37(16), 3601-3608.@Yes$Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006).@Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals.@Science of the total environment, 366(2-3), 409-426.@Yes$Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008).@Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste.@Journal of Hazardous Materials, 158(2-3), 499-506.@Yes$Raval, N. P., Shah, P. U., & Shah, N. K. (2016).@Adsorptive removal of nickel (II) ions from aqueous environment: A review.@Journal of environmental management, 179, 1-20.@Yes$Fane, A. G., Awang, A. R., Bolko, M., Macoun, R., Schofield, R., Shen, Y. R., & Zha, F. (1992).@Metal recovery from wastewater using membranes.@Water Science and Technology, 25(10), 5-18.@Yes$Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014).@Recovery of nickel and water from nickel electroplating wastewater by electrodialysis.@Separation and purification technology, 129, 106-112.@Yes$Jakobsen, M. R., Fritt-Rasmussen, J., Nielsen, S., & Ottosen, L. M. (2004).@Electrodialytic removal of cadmium from wastewater sludge.@Journal of Hazardous Materials, 106(2-3), 127-132.@Yes$Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110.@undefined@undefined@Yes$Saffaj, N., Loukili, H., Younssi, S. A., Albizane, A., Bouhria, M., Persin, M., & Larbot, A. (2004).@Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay.@Desalination, 168, 301-306.@Yes$Danesi, P. R. (1984).@Separation of metal species by supported liquid membranes.@Separation Science and Technology, 19(11-12), 857-894.@Yes$Kumar, V., Sahu, S. K., & Pandey, B. D. (2010).@Prospects for solvent extraction processes in the Indian context for the recovery of base metals. A review.@Hydrometallurgy, 103(1-4), 45-53.@Yes$Provazi, K., Campos, B. A., Espinosa, D. C. R., & Tenório, J. A. S. (2011).@Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques.@Waste Management, 31(1), 59-64.@Yes$Jha, M. K., Kumar, V., Jeong, J., & Lee, J. C. (2012).@Review on solvent extraction of cadmium from various solutions.@hydrometallurgy, 111, 1-9.@Yes$Tzanetakis, N., Taama, W. M., Scott, K., Jachuck, R. J. J., Slade, R. S., & Varcoe, J. (2003).@Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt.@Separation and Purification Technology, 30(2), 113-127.@Yes$Otrembska, P., & Gęga, J. (2012).@Separation of nickel (II) and cadmium (II) with ion-exchange process.@Separation Science and Technology, 47(9), 1345-1349.@Yes$Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J., & Loizidou, M. (2004).@Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods.@Separation and Purification Technology, 39(3), 181-188.@Yes$Tünay, O., & Kabdaşli, N. I. (1994).@Hydroxide precipitation of complexed metals.@Water Research, 28(10), 2117-2124.@Yes$Lazaridis, N. K., & Asouhidou, D. (2003).@Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite.@Water research, 37(12), 2875-2882.@Yes$Hawari, A. H., & Mulligan, C. N. (2006).@Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass.@Bioresource technology, 97(4), 692-700.@Yes$Mukherjee, S. K., & Litz, R. E. (2009).@Introduction: botany and importance. In The mango: Botany, production and uses (pp. 1-18).@Wallingford UK: CABI.@Yes$Arogba, S. S. (1997).@Physical, chemical and functional properties of Nigerian mango (Mangifera indica) kernel and its processed flour.@Journal of the Science of Food and Agriculture, 73(3), 321-328.@Yes$Ramteke, R. S., & Eipeson, W. E. (1997).@Effect of additives on the stability of mango aroma concentrate during storage.@Journal of Food Science and Technology, 34(3), 195-199.@Yes$Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013).@Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods.@Food chemistry, 141(3), 2649-2655.@Yes$Murugan, T., Ganapathi, A., & Valliappan, R. (2010).@Removal of dyes from aqueous solution by adsorption on biomass of mango (Mangifera indica) leaves.@Journal of Chemistry, 7, 669-676.@Yes$Ashraf, M. A., Wajid, A., Mahmood, K., Maah, M. J., & Yusoff, I. (2011).@Removal of heavy metals from aqueous solution by using mango biomass.@African Journal of Biotechnology, 10(11), 2163-2177.@Yes$Iqbal, M., Saeed, A., & Zafar, S. I. (2009).@FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste.@Journal of hazardous materials, 164(1), 161-171.@Yes$Kowanga, K. D., Gatebe, E., Mauti, G. O., & Mauti, E. M. (2016).@Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu (II) and Pb (II) using defatted Moringa oleifera seed powder.@The journal of phytopharmacology, 5(2), 71-78.@Yes$Khayyun, T. S., & Mseer, A. H. (2019).@Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent.@Applied Water Science, 9(8), 170.@Yes$Musah, M., Azeh, Y., Mathew, J. T., Umar, M. T., Abdulhamid, Z., & Muhammad, A. I. (2022).@Adsorption kinetics and isotherm models: a review.@CaJoST, 4(1), 20-26.@Yes$Okeola, F. O., & Odebunmi, E. O. (2010).@Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon.@Advances in Environmental Biology, 329-336.@Yes$Thang, N. H., Khang, D. S., Hai, T. D., Nga, D. T., & Tuan, P. D. (2021).@Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells.@RSC advances, 11(43), 26563-26570.@Yes$Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020).@Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review.@Cleaner Engineering and Technology, 1, 100032.@Yes$Sahoo, T. R., & Prelot, B. (2020).@Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology.@In Nanomaterials for the detection and removal of wastewater pollutants, pp. 161-222. Elsevier.@Yes @Review Paper <#LINE#>Heena (Lawsonia inermis L.) as a green inhibitor for prevention of metals and alloys from corrosion-A Review<#LINE#>Rajendra T. @Vashi <#LINE#>45-52<#LINE#>6.ISCA-RJCS-2023-019.pdf<#LINE#>Department of Chemistry, Navyug Science College, Surat, India<#LINE#>29/9/2023<#LINE#>30/11/2023<#LINE#>Henna has been used as green corrosion inhibitor for prevention of various metals and alloys such as Al, MS, CS, SS, iron, zinc, copper, tin and brass in various media like acidic, basic or neutral. A percentage of I.E. of Heena was determined by using various techniques such as WL, PDP and EIS. Film occur on metal surface has been studied by using SEM, FT-IR, UV-Vis. spectroscopy and EDX techniques. Phsysorption of Henna extract on metal surface was found to obey various isotherms. PDP study reveals that Lawsonia inermis L. can function as mixed type or anodic or cathodic type of inhibitor.<#LINE#>Verma, C., Ebanso, E., Bahadur, I. & Quraishi, M.A. (2018).@An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media.@J. Mol. Liq., 266, 577-590. https://doi.org/10.1016/j.molliq.2018.06.110.@Yes$Kumar, S., Sharma, D., Yadav, P., & Yadav, M. (2013).@Experimental and quantum chemical studies on corrosion inhibition effect of synthesized organic compounds on N80 steel in hydrochloric acid.@Industrial & Engineering Chemistry Research, 52(39), 14019-14029.@Yes$El-Etre, A. Y. (1998).@Natural honey as corrosion inhibitor for metals and alloys. I. Copper in neutral aqueous solution.@Corrosion Science, 40(11), 1845-1850.@Yes$Elewady, G. Y., El-Said, I. A., & Fouda, A. S. (2008).@Effect of Anions on the Corrosion Inhibition of Aluminum in HCl using Ethyl Trimethyl Ammonium Bromide as Cationic Inhibitor.@International Journal of Electrochemical Science, 3(5), 644-655.@Yes$Vasudha, V. G. & Shanmuga Priya, K. (2013).@Polyalthia Longifolia as a corrosion inhibitor for mild steel in HCl solution.@Research Journal of Chemical Sciences@Yes$Patel, N., Rawat, A., Jauhari, S., & Mehta, G. (2010).@Inhibitive action of Bridelia retusa leaves extract on corrosion of mild steel in acidic media.@European Journal of Chemistry, 1(2), 129-133.@Yes$Ibrahim, T., Alayan, H., & Al Mowaqet, Y. (2012).@The effect of Thyme leaves extract on corrosion of mild steel in HCl.@Progress in Organic Coatings, 75(4), 456-462.@Yes$Nadkarni, K. M. (1954).@Indian materia medica, popular Book Depot.@Bombay, 7, 946-948.@Yes$Dev, S. (2006).@Selection of prime ayurvedic plant drugs.@@Yes$Hanna, R., Maciej, J. N., Lapinsky, L., & Adamowicz, L. (1998).@Molecular structure and infra-red spectra of 2-hydroxy-1, 4-naphthaquinone; Experimental matrix isolation and theoretical Hatree-Fock and post Hatree-Fock study.@Spec Act, 54, 1091-1103.@Yes$Shihata, I. M., Hassan, A. B., & Mayah, G. Y. (1981).@Pharmacological effects of Lawsonia inermis leaves (el-henna).@@Yes$Varier, P. S. (1997).@Indian medicinal plants: a compendium of 500 species.@Vol. 5. V. Orient Longman, Hyderabad, India, 245-248.@Yes$Gogaṭe, V. M. (2000).@Ayurvedic pharmacology and therapeutic uses of medicinal plants (Dravyaguna vignyan).@@Yes$Khare, C. P. (2008).@Indian medicinal plants: an illustrated dictionary. Springer Science & Business Media.@@Yes$Abdulmoneim, M. A. (2007).@Evalution of Lawsonia inermis Linn. Sudanese Henna) leaf Extracts as an Antimicrobial Agent.@Res J of Biological Sciences, 2(4), 419-23.@Yes$Alia, B. H., Bashir, A. K., & Tanira, M. O. M. (1995).@Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L.(henna) in rats.@Pharmacology, 51(6), 356-363.@Yes$Petchiammal, A., & Selvaraj, S. (2013).@The corrosion control of aluminium using Lawsonia inermis seed extract in acid medium.@@Yes$Vashi, R. T. and Prajapati, N. I. (2017).@Corrosion Inhibition of Aluminium in Hydrochloric Acid by Lawsonia inermis Leaves Extract.@J. Chem. Bio. Phys. Sci., 7(4), 950-964. DOI:10.24214/jcbps.A.7.4.9564.@No$Al-Sehaibani, H. (2000).@Evaluation of extracts of henna leaves as environmentally friendly corrosion inhibitors for metals.@Mater. Wissen Werkst. Tech., 31(12), 1060-1063.@Yes$Nik, W. W., Zulkifli, F., Rosliza, R., & Rahman, M. M. (2011).@Lawsonia Inermis as green inhibitor for corrosion protection of aluminium alloy.@International Journal of Modern Engineering and Research Technology, 1, 723-728.@Yes$Zulkifli, F., WB, W. N., Isa, M. I. N., & El-Etr, A. Y. (2018).@Corrosion inhibition of aluminium alloy 5083 by Lawsonia inermis in tropical seawater.@Int. J. Mech. Eng. Technol., 9, 654.@Yes$Nik, W. W., Zulkifli, F., Sulaiman, O., Samo, K. B., & Rosliza, R. (2012).@Study of Henna (Lawsonia inermis) as natural corrosion inhibitor for aluminum alloy in seawater.@In IOP Conference Series: Materials Science and Engineering, 36, 1, 012043. IOP Publishing.@Yes$Hajar, H. M., Zulkifli, F., Mohd Sabri, M. G., & Wan Nik, W. B. (2016).@Protection against corrosion of aluminum alloy in marine environment by Lawsonia inermis.@International Journal of Corrosion, 2016.@Yes$Zulkifli, F., Ali, N. A., Yusof, M. S. M., Khairul, W. M., Rahamathullah, R., Isa, M. I. N., & Wan Nik, W. B. (2017).@The effect of concentration of Lawsonia inermis as a corrosion inhibitor for aluminum alloy in seawater.@Advances in Physical Chemistry, 2017.@Yes$Rehan, H. H. (2003).@Corrosion control by water‐soluble extracts from leaves of economic plants.@Material wissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe, 34(2), 232-237.@Yes$Patel, K.K. and Vashi, R.T. (2017).@Corrosion inhibition of copper in nitric acid using Lawsonia extract as green inhibitor.@J. of Corros. Sci. and Engg., 19, Paper-45.@No$Patel, J.J. and Patel, K.N. (2017).@Leaves Extract of Lawsonia Inermis (Heena) As a Corrosion Inhibitor for Copper in Trichloro acetic Acid.@J. of Appl. Chem., 6(4), 484-491.@Yes$Diab, A. and Abd El-Haleema, S.M. (2022).@Corrosion Inhibition of Copper in Acidic Solution by using a Natural Product as Henna Extract (Lawsoniainermis L).@Egypt. J. Chem., 65(2), 103-111.@Yes$Monika, Sharma, A. & Sharma, A. (2016).@Lawsoniainermis Leaves Extract to Impede Acid Corrosion of Copper.@Int. J. of Sci. and Res., 5(12), 2138-2144, Paper ID: 11011702, DOI: 10.21275/11011702.@Yes$El-Etre, A.Y., Abdallah, M. & El-Tantawy, Z. E., (2005).@Corrosion inhibition of some metals using lawsonia extract.@Corros. Sci., 47(2), 385-395. DOI:10.1016/j. corsci.2004.06.006.@Yes$Fouda, A.S., Hegazi, M.M. & El-Azaly, A. (2019).@Henna Extract as Green Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution.@Int. J. Electrochem. Sci., 14, 4668-4682.@Yes$Rajendran, S., Agasta, M., Devi, R. B., Devi, B. S., Rajam, K., & Jeyasundari, J. (2009).@Corrosion inhibition by an aqueous extract of Henna leaves (Lawsonia Inermis L).@Zastita Materijala, 50(2), 77-84.@Yes$El-Bindary, R., El-Shamy, A. M., Elhadek, M. A. & Nassef, A. E. (2021).@Statistical Analysis of the Inhibition of Carbon Steel Corrosion in 3.5 wt. % NaCl Solution Using Lawsonia Extract.@Port. Said Eng. Res. J., 25(1), 101-113. DOI: 10.21608/pserj.2020.35020.1050.@Yes$Hamdy, A. and El-Gendy, N. S. (2013).@Thermodynamic, adsorption and electrochemical studies for corrosion inhibition of carbon steel by henna extract in acid medium.@Egyptian J. of Petrol. 22, 17-25. https://doi.org/10.1016/j.ejpe.2012.06.002 .@Yes$Singh, A. (2021).@Henna Leaves Extract as Green Corrosion Inhibitor for 304 Stainless Steel in Sulphuric Acid Solution, Int. J. for Res. in Appl. Sci. & Eng. Tech. (IJRASET), 9(VII), 2212-2214. https://doi.org/10.22214/ijraset.2021.36862.@undefined@Yes$Abdollahi, R. and Shadizadeh, S.R. (2012). Effect of acid additives on anticorrosive property of henna in regular mud acid, Scientia Iranica, 19(6), 1665-1671. https://doi.org/10.1016/j.scient.2012.09.006 .@undefined@undefined@Yes$Abdel Rahman, H.H., Seleim, S.M., Hafez, A.M. &Helmy, A.A. (2015). Study of electropolishing inhibition of steel using natural products as a green inhibitor in ortho-phosphoric acid, Green Chem. Letters & Rev., 8(34), 88-94. https://doi.org/10.1080/17518253.2015.1111430.@undefined@undefined@Yes$Chetouani, A. and Hammouti, B. (2003). Corrosion inhibition of iron in hydrochloric acid solutions by naturally henna, Bull. of Electrochem., 19(1), 23–25.@undefined@undefined@Yes$Chaudhari, H.G. and Vashi, R.T. (2016). The study of henna leaves extract as green corrosion inhibitor for mild steel in acetic acid. J. Fundam. Appl. Sci.,8(2),280-296. http://dx.doi.org/10.4314/jfas.v8i2.8.@undefined@undefined@Yes$Choudhary, G. and Sharma, A.A. (2016). Impeding Acid Corrosion of Mild Steel using Green Inhibitor. Int. J. Innov. Res. Sci. Eng. Technol., 5(12), 21064. DOI:10.15680/IJIRSET.2016.0512159.@undefined@undefined@No$Ostovari, A.H., Hoseinieh, S.M., Peikari, M., Shadizadeh, S.R. & Hashemi, S.J. (2009). Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, a-D-Glucose and Tannic acid), Corros. Sci., 51(9), 1935–1949. https://doi.org/10.1016/j.corsci.2009.05.024.@undefined@undefined@Yes$Mahdi, S.M. (2017). Effect of Henna (Lawsonia inermis) concentration on mild steel corrosion, Int. J. of Energy and Environ., 8(4), 321-330.@undefined@undefined@Yes$Ramakrishnan, P. J., Janardhanan V. D. K., Sreekumar R. & Mohan, K. P. (2014). Investigation on the effect of green inhibitors for corrosion protection of mild steel in 1 M NaOH solution, Int. J. Corros., Article ID 487103, 1-5. http://dx.doi.org/10.1155/2014/487103.@undefined@undefined@Yes$Kumaravelan, V. and Dhivyapriya, D. (2014). Comparative study of mild steel corrosion in 1N Sulphuric acid using Aloe vera and Lawsonia inermis extract, Int. J. of Adv. Res., 2(11), 614-621.@undefined@undefined@Yes$Hajar, H. M., Zulkifli, F., Mohd Sabri, M.G., Fitriadhy A. & Wan Nik, W.B. (2016). Lawsonia Inermis Performance as Corrosion Inhibitor for Mild Steel in Seawater, Int. J. of Chem. Tech. Res., 9(8),600-608.@undefined@undefined@Yes$Karthiga, N., Prabhakar, P. & Rajendran, S. (2019). Inhibition of corrosion of mild steel in well water by an aqueous extract of lawsonia inermis leaves, Int. J. of Res. and Anal. Rev., 6(1), 437-444.@undefined@undefined@Yes$Devi, N.R., Karthiga, N., Keerthana, R., Uma sankareswari, T., Krishnaveni, A., Singh G. & Rajendran, S. (2020).@Extracts of leaves as corrosion inhibitors – An overview and corrosion inhibition by an aqueous extract of henna leaves (Lawsonia inermis).@Int. J. Corros. Scale Inhib., 9(4), 1169-1193. doi: 10.17675/2305-6894-2020-9-4-2.@Yes$Siddekha, A. (2022).@Aqueous Plant extract of Henna leaves (Lawsonia inermis) as green corrosion inhibitors: A prescreening investigation for mild steel in a simulated environment.@Int. Adv. Res. J. in Sci. Eng. and Tech., 9(2), 373-380. DOI: 10.17148/IARJSET.2022.9255.@Yes$Dananjaya, S.H.S., Edussuriya, M. & Dissanayake, A.S. (2012).@Inhibition action of lawsone on the corrosion of mild steel in acidic media.@TOJSAT: The Online J. of Sci. and Tech., 2(2), 32-36.@Yes$Serbout, J., Touzani, R., Bouklah, M. & Hammouti, B. (2021).@An insight on the corrosion inhibition of mild steel in aggressive medium by henna extract.@Int. J. Corros. Scale Inhib., 10(3), 1042–1068.@Yes$Ibrahim, M. B., Sulaiman, Z., Usman, B. & Ibrahim, M.A. (2019).@Effect of Henna Leaves on the Corrosion Inhibition of Tin in Acidic and Alkaline Media.@World J. of Appl. Chem., 4(4), 45-51.@Yes$El-Aila, H. J. Y., Aminb, N. H., Tamousec, H. M.&El- Jbooura, M. A. (2010).@Some Natural Additives as Corrosion Inhibitors for Zinc in Acetic Acid Media.@Jordan J. Chem., 5(1), 61-75.@Yes$Thomson, R. H. (2012).@Naturally occurring quinones IV: recent advances.@@Yes$Kirkland, D., & Marzin, D. (2003).@An assessment of the genotoxicity of 2-hydroxy-1, 4-naphthoquinone, the natural dye ingredient of Henna.@Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 537(2), 183-199.@Yes$Shastry, C. S., Kiran, U. P., & Aswathanarayana, B. J. (2012).@Effect of acute and chronic administration of the aqueous extract of Lawsonia inermis leaves on haloperidol induced catalepsy in albino mice.@@Yes$Borade, A. S., Kale, B. N., & Shete, R. V. (2011).@A phytopharmacological review on Lawsonia inermis (Linn.).@Int J Pharm Life Sci, 2(1), 536-541.@Yes$Mahmoud, Z. F., Abdel Salam, N.A. &Khafagy, S. M. (1980).@Constituents of henna leaves-Lawsonia inermis L growing in egypt.@Fitoterapia, 51,153-5.@Yes$Sharma, R. K., Goel, A. & Bhatia, A. K. (2016).@Antityphoid activity and phytochemical screening of different extracts of L. inermis plant leaves.@Int. J. Curr. Res., 8, 37539-42.@Yes$Siddiqui, B. S., Kardar, M. N., Ali, S. T., &Khan, S. (2003).@Two new and a known compound from Lawsonia inermis.@Helvetica Chim. Acta, 86(6), 2164–2169.@Yes$Rajagopalan, K.S., Subramanyan, N. & Sundaram, M. (1969).@Vapour phase corrosion inhibition of meta-dinitro benzene and beta-naphthol.@Ind. J. Appl. Chem., 107, 414.@Yes$Booth, G. H. and Mercer, S. J. (1964).@The effect of mimosa tannin on the corrosion of mild steel in the presence of sulphate-reducing bacteria.@Corros. Sci., 4, 425-433.@Yes$Musa, A. Y., Kadhum, A. A. H., Mohamad A. B. &Takriff, A. S. (2010).@Experimental and Theoretical Study on the Inhibition Performance of Triazole Compounds for Mild Steel Corrosion.@Corros. Sci., 52(10), 3331-3340. https://doi.org/10.1016/j.corsci.2010.06.002.@Yes <#LINE#>Study of catalysts used in pyrolysis of plastic for enhancing gasoline fraction – A Review<#LINE#>Pradnya K. @Giri,Shobha @Waghmode <#LINE#>53-62<#LINE#>7.ISCA-RJCS-2023-020.pdf<#LINE#>Department of Applied Science, COEP Technological University, Pune 411005, India@Department of chemistry, MES Abasaheb Garware College Pune 411004, India<#LINE#>4/10/2023<#LINE#>18/11/2023<#LINE#>Plastics are usually synthetic or semi-synthetic polymers with high molecular mass and can be moulded onto solid objects of different sizes and shapes. Plastics are with limitless numbers of useful characteristics, and colours, and are easy to manufacture. Plastics have major applications in the field of automotive, building constructions, medical devices, electrical and electronics, industrial machinery, Packaging etc, because of the wide spread of plastic use plastic become an integral part of our life. Once the plastic is discarded it becomes waste and it acts as a pollutant. Accumulation of plastic waste in the environment affects human as well as wildlife habitats on earth. The main disadvantage of plastic waste is that it takes around 500 years to decompose. Recycling waste plastic using the pyrolysis process can be beneficial as it converts waste into energy. Pyrolysis is the endothermic irreversible thermochemical degradation and decomposition of complex long-chain organic polymer molecules into units of simple short-chain compounds at temperatures greater than 3000C in the absence of atmospheric oxygen, with or without the application of pressure. The liquid product is oil-like material and has properties similar to diesel as plastics are originally petroleum-based products. To make pyrolysis more effective by using a catalyst which can be lower the temperature and enhance the efficiency of the reaction to produce liquid oil with characteristics of gasoline or diesel.<#LINE#>Islam, M. N., & Beg, M. R. A. (2004).@Fixed bed pyrolysis of waste plastic for alternative fuel production.@J. Energy Environ, 3, 69-80.@Yes$Qinglan, H., Chang, W., Dingqiang, L., Yao, W., Dan, L., & Guiju, L. (2010).@Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature.@International Journal of Hydrogen Energy, 35(17), 8884-8890.@Yes$Vasile, C., & Brebu, M. A. (2006).@Thermal valorisation of biomass and of synthetic polymer waste. Upgrading of pyrolysis oils.@Cellulose chemistry and technology, 40(7), 489.@Yes$Fodor, Z., & Klemeš, J. J. (2012).@Waste as alternative fuel–Minimising emissions and effluents by advanced design.@Process safety and environmental protection, 90(3), 263-284.@Yes$Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009).@Recycling and recovery routes of plastic solid waste (PSW): A review.@Waste management, 29(10), 2625-2643.@Yes$Panda, A. K., Singh, R. K., & Mishra, D. K. (2010).@Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective.@Renewable and Sustainable Energy Reviews, 14(1), 233-248.@Yes$Kaminsky, W., & Kim, J. S. (1999).@Pyrolysis of mixed plastics into aromatics.@Journal of Analytical and Applied Pyrolysis, 51(1-2), 127-134.@Yes$Ratnasari, D. K., Nahil, M. A., & Williams, P. T. (2017).@Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils.@Journal of analytical and applied pyrolysis, 124, 631-637.@Yes$Ivanova, S. R., Gumerova, E. F., Minsker, K. S., Zaikov, G. E., & Berlin, A. A. (1990).@Selective catalytic degradation of polyolefins.@Progress in polymer science, 15(2), 193-215.@Yes$Zhao D.Wu M. Kou Y. and Min E. (2002).@Ionic liquids: Applications in catalysis.@Catalysis Today, 74, 1-2.@No$Aguado J. Serrano D. P. and Escola J. M. (2006).@Catalytic Upgrading of Plastic Wastes. Feedstock Recycling and Pyrolysis of Waste Plastics.@Converting Waste Plastics into Diesel and Other Fuels, 73–110.@Yes$Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., & Nizami, A. S. (2017).@Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.@Waste Management, 69, 66-78.@Yes$Obeid, F., Zeaiter, J., Ala’a, H., & Bouhadir, K. (2014).@Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts.@Energy conversion and management, 85, 1-6.@Yes$Weitkamp, J. (2000).@Zeolites and catalysis.@Solid State Ionics 131(1–2):p. 175–188.@Yes$Park, J. W., Kim, J. H., & Seo, G. (2002).@The effect of pore shape on the catalytic performance of zeolites in the liquid-phase degradation of HDPE.@Polymer degradation and stability, 76(3), 495-501.@Yes$Bagri R. & Williams P. T. (2002).@Catalytic pyrolysis of polyethylene.@Analytical and Applied Pyrolysis, 63(1), 29–41.@Yes$Li K. Lei J. Yuan G. Weerachanchai P. Wang J. Y. Zhao J. and Yang Y. (2017).@Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics.@Chemical Engineering Journal, 317, 800–809.@Yes$Rehan, M., Miandad, R., Barakat, M. A., Ismail, I. M. I., Almeelbi, T., Gardy, J., ... & Nizami, A. S. (2017).@Effect of zeolite catalysts on pyrolysis liquid oil.@International Biodeterioration & Biodegradation, 119, 162-175.@Yes$Rusnadi, I., Aswan, A., & Daniar, R. (2021).@Catalytic Pyrolysis of High Density Polyethylene (HDPE) and Polystyrene Plastic Waste Using Zeolite Catalyst to Produce Liquid Fuel.@In 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020) (62-66). Atlantis Press.@Yes$López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., & Aranzabal, A. (2011).@Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud.@Applied Catalysis B: Environmental, 104(3-4), 211-219.@Yes$Schirmer, J., Kim, J. S., & Klemm, E. (2001).@Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor.@Journal of analytical and applied pyrolysis, 60(2), 205-217.@Yes$Onu, P., Vasile, C., Ciocılteu, S., Iojoiu, E., & Darie, H. (1999).@Thermal and catalytic decomposition of polyethylene and polypropylene.@Journal of Analytical and Applied pyrolysis, 49(1-2), 145-153.@Yes$Budsaereechai, S., Hunt, A. J., & Ngernyen, Y. (2019).@Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.@RSC advances, 9(10), 5844-5857.@Yes$Anene, A. F., Fredriksen, S. B., Sætre, K. A., & Tokheim, L. A. (2018).@Experimental study of thermal and catalytic pyrolysis of plastic waste components.@Sustainability, 10(11), 3979.@Yes$Aguado, J., Sotelo, J. L., Serrano, D. P., Calles, J. A., & Escola, J. M. (1997).@Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO2−Al2O3.@Energy & Fuels, 11(6), 1225-1231.@Yes$Sivagami, K., Divyapriya, G., Selvaraj, R., Madhiyazhagan, P., Sriram, N., & Nambi, I. (2021).@Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: a pilot scale study.@Process Safety and Environmental Protection, 149, 497-506.@Yes$Singh M. V. Kumar S. and Sarker M. (2018).@Waste HD-PE plastic, deformation into liquid hydrocarbon fuel using pyrolysis-catalytic cracking with a CuCO3 catalyst.@Sustainable Energy and Fuels. 2(5), 1057–1068.@Yes$Kunwar, B., Moser, B. R., Chandrasekaran, S. R., Rajagopalan, N., & Sharma, B. K. (2016).@Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic.@Energy, 111, 884-892.@Yes$Sakata, Y., Uddin, M. A., Muto, A., Kanada, Y., Koizumi, K., & Murata, K. (1997).@Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst.@Journal of Analytical and Applied Pyrolysis, 43(1), 15-25.@Yes$Sonawane, Y. B., Shindikar, M. R., & Khaladkar, M. Y. (2017).@High calorific value fuel from household plastic waste by catalytic pyrolysis.@Nature Environment and Pollution Technology, 16(3), 879.@Yes$Cocchi M. de Angelis D. Mazzeo L. Nardozi P. Piemonte V. Tuffi R. and Ciprioti S. V. (2020).@Catalytic pyrolysis of a residual plastic waste using zeolites produced by coal fly ash.@Catalysts, 10(10), 1–17.@Yes$Panda A. and Singh R. K. (2013).@Experimental optimization of process for the thermo-catalytic degradation of waste polypropylene to liquid fuel Experimental investigations of bio oil in a DI diesel engine View project pyrolysis process View project.@Advances in Energy Engineering (AEE), 1(3),74-84.@Yes$Hazrat M. A. Rasul M. G. and Khan M. M. K. (2015).@A study on thermo-catalytic degradation for production of clean transport fuel and reducing plastic wastes.@Procedia Engineering, (105), 865–876.@Yes$Shah J. Jan M. R. Mabood F. and Jabeen F. (2010).@Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems, Energy Conversion and Management.@Energy Conversion and Management, 51(12), 2791-2801.@Yes$Buekens A. G. and Huang H. (1998).@Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes.@Resources, Conservation and Recycling, 23, 163- 181.@Yes$Uemichi Y. Kashiwaya Y. Ayame A. and Kanoh H. (1984).@Formation of aromatic hydrocarbons in degradation of polyethylene over activated carbon catalyst.@Chemistry Letters, 41-44.@Yes$Uemichi Y. Makino, Y. & Kanazuka T. (1989).@Degradation of polyethylene to aromatic hydrocarbons over metal-supported activated carbon catalysts.@Journal of Analytical and Applied Pyrolysis, 14(4), 331-344.@Yes$Serrano D. P. Aguado J. & Escola J. M. (2000).@Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking. In Applied Catalysis B: Environmental, 25, 181-189.@undefined@Yes$Anil H. Cakici A. I. Yanik J. U ar S. and Karayildirim T. (2004).@Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel.@Journal of Material Cycles and Waste Management, 6(1), 20–26.@Yes <#LINE#>Mechanochemistry: A green chemistry for green technology<#LINE#>Jibrin @Mohammed,Osuegba @O.S.,Bulus @Y.E. <#LINE#>63-71<#LINE#>8.ISCA-RJCS-2023-022.pdf<#LINE#>Department of Chemistry, Nasarawa State University, Keffi, Nigeria@Department of Chemistry, Nasarawa State University, Keffi, Nigeria@Department of Chemistry, Kaduna State College of Education,GidanWaya, Nigeria<#LINE#>7/10/2023<#LINE#>16/11/2023<#LINE#>Mechanochemistry involves the physicochemical transformation of materials or substances induced by external mechanical energy or forces. In recent years, the application of mechanochemistry as a green synthetic method for the preparation or production of new functional materials has gained significant interest by many researchers. This paper reviewed the relationship between mechanochemistry and the principles of green chemistry, mechanochemistry as green technology, mechanochemical reactions, peculiarities of mechanochemical processes, applications, and the challenges of mechanochemistry. However, based on the review, with improved or advanced technologies, it is strongly believed that mechanochemistry is probably going to be one of the most efficient way to improve greenness in chemical industries and beyond.<#LINE#>Anastas, P. T. & Zimmerman, J. B. (2003).@Peer reviewed: design through the 12 principles of green engineering.@@Yes$Mulvihill, M. J., Beach, E. S., Zimmerman, J. B., & Anastas, P. T. (2011).@Green chemistry and green engineering: a framework for sustainable technology development.@Annual review of environment and resources, 36, 271-293.@Yes$Khare, R., Kulshrestha, A., Pandey, J., & Singh, N. (2017).@Importance of Green chemistry in oxidation and reduction.@International Journal of Engineering and Technical Research, 7(7), 264972.@Yes$Zuin, V. G., Eilks, I., Elschami, M., & Kümmerer, K. (2021).@Education in green chemistry and in sustainable chemistry: perspectives towards sustainability.@Green Chemistry, 23(4), 1594-1608.@Yes$O’Neill, R. T., & Boulatov, R. (2021).@The many flavours of mechanochemistry and its plausible conceptual underpinnings.@Nature Reviews Chemistry, 5(3), 148-167.@Yes$Cindro, N., Tireli, M., Karadeniz, B., Mrla, T., & Užarević, K. (2019). Investigations of thermally controlled mechanochemical milling reactions. ACS sustainable chemistry & engineering, 7(19), 16301-16309.@undefined@undefined@Yes$Lapshin, O. V., Boldyreva, E. V., & Boldyrev, V. V. (2021).@Role of mixing and milling in mechanochemical synthesis.@Russian Journal of Inorganic Chemistry, 66, 433-453.@Yes$Chen, R., Gokus, M. K., & Pagola, S. (2020).@Tetrathiafulvalene: A Gate to the Mechanochemical Mechanisms of Electron Transfer Reactions.@Crystals, 10(6), 482.@Yes$Ngilirabanga, J.B, Aucamp, M., Rosa, R.P. & Samsodien. H. (2020).@Mechanochemical Synthesis and Physicochemical Characterization of Isoniazid and Pyrazinamide Co-crystals With Glutaric Acid.@Front. Chem.,1-11, 8, 595908. doi: 10.3389/fchem.2020.595908@Yes$Shan, N., Toda, F. & Jones, W. (2002).@Mechanochemistry and Co-Crystal Formation: Effect of solvent on reaction Kinetics.@Chem. Commun., 8, 2372–2373@Yes$Tan, D., Mottillo, C., Katsenis, A. D., Štrukil, V. & Frisčič, T. (2014).@Development of C-N coupling using mechanochemistry: catalytic coupling of arylsulfonamides and carbodiimides.@Angew. Chem., Int. Ed., 53, 9321−9324.@Yes$Ou, Z., Li, J., & Wang, Z. (2015).@Application of mechanochemistry to metal recovery from second-hand resources: a technical overview.@Environmental Science: Processes & Impacts, 17(9), 1522-1530.@Yes$Chen, M., Li, Z., Huang, P. Li, X., Qu, J., Yuan, W. & Zhang, Q. (2018).@Mechanochemical transformation of apatite to phosphoric slow-release fertilizer and soluble phosphate.@Process Safety and Environmental Protection, 114, 91–96.@Yes$McCalmont, A.S., Ruiz, A., Lagunas, M.C., Al-Jamal, W.T. & Crawford, D.E. (2020).@Cytotoxicity of mechanochemically prepared Cu(II) complexes.@ACS Sustain. Chem. Eng., 8, 15243–15249.@Yes$Kaabel, S. Friščić, T. & Auclair, K. (2019).@Mechanoenzymatic transformations in the absence of bulk water: A more natural way of using unzymes.@ChemBioChem., 21, 742–758.@Yes$Podgorbunskikh, E.M., Bychkov, A.L., Bulina, N.V. & Lomovskii, O.I. (2018).@Disordering of the crystal structure of cellulose under mechanical activation.@J. Struct. Chem., 59, 201–208.@Yes$Bolm, C. & Hernández, J. G. (2019).@Mechanochemistry of gaseous reactants.@Angewandte Chemie International Edition, 58(11), 3285-3299.@Yes$Ferguson, M., Giri, N., Huang, X., Apperley, D. & James, S.L. (2014).@One-pot two-step mechanochemical synthesis: Ligand and complex preparation without isolating intermediates.@Green Chem., 16, 1374–1382.@Yes$Silviina, P. (2023).@Outstanding advantage, current drawbacks, and significant recent developments in mechanochemistry: A perspective view.@Crystals, 13(1), 124, doi:10.3390/cryst13010124.@Yes$Subin, J.W. Phakhodee, N. & Chairungsi, M. P. (2018).@Mechanochemical synthesis of primary amides from carboxylic acids using TCT/NH4SCN.@Tetrahedron Letters, 59(39), 3571-3573.@Yes$Do, J. L., & Friščić, T. (2017).@Mechanochemistry: a force of synthesis.@ACS central science, 3(1), 13-19.@Yes$Tireli, M., Kulcsár, M. J., Cindro, N., Gracin, D., Biliškov, N., Borovina, M., ... & Užarević, K. (2015).@Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding.@Chemical communications, 51(38), 8058-8061.@Yes$Uzarevic ̌, K., Halasz, I. & Fris ́čič, T. (2015).@Real-time and ́ in situ monitoring of mechanochemical reactions: A new playground for all chemists.@J. Phys. Chem. Lett.,6, 4129−4140.@Yes$Oh, C., Choi, E.H., Choi, E.J., Premkumar, T. & Song, C. (2020).@Facile Solid-State Mechanochemical synthesis of eco-friendly thermoplastic polyurethanes and copolymers using a biomass-derived furan diol.@ACS Sustain. Chem. Eng., 8, 4400–4406.@Yes$Rightmire, N. R., Hanusa, T. P., & Rheingold, A. L. (2014).@Mechanochemical synthesis of [1, 3-(SiMe3) 2C3H3] 3 (Al, Sc), a base-free tris (allyl) aluminum complex and its scandium analogue.@Organometallics, 33(21), 5952-5955.@Yes$Haley, R. A., Zellner, A. R., Krause, J. A., Guan, H., & Mack, J. (2016).@Nickel catalysis in a high speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetraene compounds.@ACS Sustainable Chemistry & Engineering, 4(5), 2464-2469.@Yes$Zhao, Y., Rocha, S. V. & Swager, T. M. (2016).@Mechanochemical Synthesis of Extended Iptycenes.@J. Am. Chem. Soc., 138, 13834–13837@Yes$Urakaev, F. K. & Boldyrev, V.V. (2000).@Mechanism and kinetics of mechanochemical processes in comminuting devices - 1.@Theory. Powder Technol., 107, 93−107.@Yes$Rak, M. J., Saade, N. K., Frisčič, T. & Moores, A. (2014).@Mechanosynthesis ́ of ultra-small monodisperse amine-stabilized gold nanoparticles with controllable size.@Green Chem., 16, 86−89.@Yes$Trask, A. V., van de Streek, J., Motherwell, W. D. S. & Jones, W. (2005).@Achieving polymorphic and stoichiometric diversity in cocrystal formation: Importance of solid-state grinding, powder X-ray structure determination, and seeding.@Cryst. Growth Des., 5, 2233−2241.@Yes$Karki, S. Frisčič, T. & Jones, W. (2009).@Control and interconversion of ́ cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal.@Cryst Eng Comm, 11, 470−481.@Yes$Jung-Soo,Byun, Jae-Hyeok, Shim, Young&Whan, C. (2004).@Effect of stoichiometry on mechanochemical reaction between Ti and Si3N4 powders.@Scripta Materialia, 50 279–283.@Yes$Cincič , D. Frisčič, T. & Jones, W.A. (2008). Stepwise mechanism for the ́ mechanochemical synthesis of halogen-bonded cocrystal architectures. J. Am. Chem. Soc., 130, 7524−7525@undefined@undefined@Yes$Štrukil, V., Margetic, D., Igrc, M. D., Eckert-Maksic, M. &Frisčič, T. (2012). ́@Desymmetrisation of aromatic diamines and synthesis of nonsymmetrical thiourea derivatives by click-mechanochemistry.@Chem. Commun. 48, 9705−9707.@Yes$Takacs, L. (2013).@The Historical Development of Mechanochemistry.@Chem. Soc. Rev, 42, 7649–7659.@Yes$Crawford, D.E., Miskimmin, C.K.G., Albadarin, A.B., Walker, G. & James, S.L. (2017).@Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free.@Green Chem., 19, 1507–1518.@Yes$Užarević, K., Štrukil, V., Mottillo, C. Julien, P.A., Puškarić, A., Friščić, T. & Halasz, I. (2016).@Exploring the effect of temperature on a mechanochemical reaction by in situ synchrotron powder x-ray diffraction.@Cryst. Growth Des., 16, 2342–2347.@Yes$Schmidt, R. Martin Scholze, H. & Stolle, A. (2016).@Temperature progression in a mixer ball mill.@Int. J. Ind. Chem., 7, 181–186.@Yes$Ying, P., Yu, J.B. & Su, W.K. (2021).@Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals.@Adv. Synth. Catal., 363, 1246–1271.@Yes$Alrbaihat Mohammad & Ehab Al Shamaileh (2022).@Mechanochemistry’s Role in Nonsteroidal Anti-inflammatory Drugs Development: A Review.@BOHR International Journal of General and Internal Medicine, 1(1), 17–24, https://doi.org/10.54646/bijgim.005.@Yes$Tundo, P. & Griguol, E. (2018).@Green chemistry for sustainable development.@Chemistry International, 40, 18-24. https://doi.org/10.1515/ci-2018-0105.@Yes$Hernández, J.G. & Bolm, C. (2017).@Altering Product Selectivity by Mechanochemistry.@J. Org. Chem., 82, 4007–4019.@Yes$Friščić, T. (2010).@New Opportunities for Materials Synthesis Using Mechanochemistry.@J. Mater. Chem., 20, 7599–7605.@Yes$Schultheiss, N. & Newman, A. (2009).@Pharmaceutical cocrystals and their physicochemical properties.@Cryst. Growth Des., 9, 2950–2967.@Yes$Solares-Briones, M., Coyote-Dotor, G., Páez-Franco, J.C., Zermeño-Ortega, M.R.., de la, C.M., Contreras, O., Canseco-González, D., Avila-Sorrosa, A., Morales-Morales, D. & Germán-Acacio, J.M. (2021).@Mechanochemistry: A Green approach in the preparation of pharmaceutical cocrystals.@Pharmaceutics, 13, 790. https://doi.org/10.3390/ pharmaceutics13060790.@Yes$Carneiro, R. L., de Melo, C. C., de Alvarenga Jr, B. R., Owoyemi, B. C. D., Ellena, J., & da Silva, C. C. (2022).@Mechanochemical synthesis and characterization of a novel AAs–Flucytosine drug–drug cocrystal: A versatile model system for green approaches.@Journal of Molecular Structure, 1251, 132052.@Yes$Jaśkowska, J., Drabczyk, A. K., Michorczyk, P., Kułaga, D., Zaręba, P., Jodłowski, P., ... & Pindelska, E. (2022).@Mechanochemical synthesis method for drugs used in the treatment of CNS diseases under PTC conditions.@Catalysts, 12(5), 464.@Yes$AlShamaileh, E., Alrbaihat, M., Moosa, I., Abu-Afifeh, Q., Al-Fayyad, H., Hamadneh, I., & Al-Rawajfeh, A. (2022).@Mechanochemical preparation of a novel slow-release fertilizer based on K2SO4-kaolinite.@Agronomy, 12(12), 3016.@Yes$Alrbaihat, M. R., Al-Rawajfeh, A. E., & Al Shamaileh, E. (2021).@A mechanochemical preparation, properties and kinetic study of kaolin–N, P fertilizers for agricultural applications.@Journal of the Mechanical Behavior of Materials, 30(1), 265-271.@Yes$Bhardwaj, D., Sharma, M., Sharma, P. & Tomar, R. (2012).@Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer.@J. Hazard Material, 227: 292-300.@Yes$Tongamp, W., Zhang, Q. W. & Saito F. (2008).@Mechanochemical route for synthesizing nitrate form of layered double hydroxide.@Powder Technol, 185, 43-8@Yes$Solihin Q.W. (2010).@Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers.@IndEngChem Res., 49, 2213-6.@Yes$Amrute, A.P., De Bellis, J., Felderhoff, M. & Schuth, F. (2021).@Mechanochemical synthesis of catalytic materials.@Chem. Eur. J., 27, 6819–6847.@Yes$Do, J-L., Mottillo, C. Tan, D., Štrukil, V. & Frisčič, T. (2015).@Mechanochemical ruthenium-catalyzed olefin metathesis.@J. Am. Chem. Soc.@Yes$Amrute, A. P., De Bellis, J., Felderhoff, M., & Schüth, F. (2021).@Mechanochemical synthesis of catalytic materials.@Chemistry–A European Journal, 27(23), 6819-6847.@Yes$Schneider, F., Szuppa, T., Stolle, A., Ondruschka, B. & Hopf, H. (2009).@Energetic assessment of the Suzuki-Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization.@Green Chem., 11, 1894−1899.@Yes$Cravotto, G., Garella, D., Tagliapietra, S., Stolle, A., Schüßler, S., Leonhardt, S. E., & Ondruschka, B. (2012).@Suzuki cross-couplings of (hetero) aryl chlorides in the solid-state.@New Journal of Chemistry, 36(6), 1304-1307.@Yes$Thorwirth, R., Stolle, A., Ondruschka, B., Wild, A., & Schubert, U. S. (2011).@Fast, ligand-and solvent-free copper-catalyzed click reactions in a ball mill.@Chemical communications, 47(15), 4370-4372.@Yes$Guo, X., Xiang, D., Duan, G., & Mou, P. (2010).@A review of mechanochemistry applications in waste management.@Waste management, 30(1), 4-10.@Yes$Zhang, X. X., Lu, C. H., & Liang, M. (2007).@Devulcanisation of natural rubber vulcanisate through solid state mechanochemical milling at ambient temperature.@Plastics, Rubber and Composites, 36(7-8), 370-376.@Yes$Jana, G. K., & Das, C. K. (2005).@Devulcanization of natural rubber vulcanizates by mechanochemical process.@Polymer-Plastics Technology and Engineering, 44(8-9), 1399-1412.@Yes$Bilgili, E., Dybek, A., Arastoopour, H. & Bernstein, B., (2003).@A new recycling technology: compression molding of pulverized rubber waste in the absence of virgin rubber.@Journal of Elastomers and Plastics, 35(3), 235–256.@Yes$Wang, J., Lu, J., Zhang, Q.W. & Saito, F. (2003).@Mechanochemicalsulfidization of nonferrous metal oxides by grinding with sulfur and iron.@Industrial & Engineering Chemistry Research, 42(23), 5813–5818.@Yes$Zhang, Q.W., Wang, J., Saito, F., Okura, T. &Nakamuray, I. (2002).@Sulphidization of metal oxides by means of mechanochemical solid reaction.@Chemistry Letters, 11, 1094–1095.@Yes$Kano, J., Kobayashi, E., Tongamp, W., Miyagi, S. & Saito, F. (2009).@Nonthermal reduction of indium oxide and indium tin oxide by mechanochemical method.@J. Alloys Compd., 484 (1−2), 422−425.@Yes$McDonald, R.G. & Muir, D.M. (2007).@Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products.@Hydrometallurgy, 86, 191-205.@Yes$Saeki, S., Lee, J., Zhang, Q.W. & Saito, F. (2004).@Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product.@Int. J. Miner Process, 74, 373−378.@Yes$Pavlović, M., Jovalekić, Č., Nikolić& A.S. (2009).@Mechanochemical synthesis of stoichiometric MgFe2O4 spinel.@J Mater Sci: Mater Electron, 20, 782–787. https://doi.org/10.1007/s10854-008-9802-2@Yes$Gaudino, E.C. Grillo, G. Manzoli, M. & Tabasso, S. (2022).@Maccagnan, S.; Cravotto, G. Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials.@Molecules, 27, 449.@Yes