@Research Paper <#LINE#>Aflatoxin in selected grain legumes from four states of North-Central Nigeria<#LINE#>James Innam @Okogbaa,Hycient Ochiegwu Apeh @Oluma,Charles Chidozie @Iheukwumere,Celestine @Aguoru <#LINE#>1-8<#LINE#>1.ISCA-RJCS-2023-003.pdf<#LINE#>Department of Plant Science and Biotechnology, Federal University of Lafia, P.M.B 146 Lafia, Nasarawa State, Nigeria@Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria@Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria@Department of Botany, University of Agriculture, Makurdi, Benue State, Nigeria<#LINE#>23/3/2023<#LINE#>24/6/2023<#LINE#>According to the findings, the mean AfB1 concentrations in soyabeans were 1.48g/kg, 0.14g/kg, 0.95g/kg, and 0.29g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. In Niger, Kogi Plateau, and Nasarawa states, the mean levels of total aflatoxin in soyabeans were 6.63g/kg, 7.28g/kg, 12.28g/kg, and 5.65g/kg, respectively. The mean AfB1 cowpea concentrations were 0.52g/kg, 0.9g/kg, 0.88g/kg, and 0.77g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. In the states of Niger, Kogi, Plateau, and Nasarawa, the mean total aflatoxin levels in cowpea were 5.62g/kg, 3.67g/kg, 5.76 g/kg, and 4.77 g/kg, respectively. The mean concentrations of AfB1 in bambara nuts were 0.61g/kg, 1.15g/kg, 1.09g/kg, and 1.41g/kg in the states of Niger, Kogi, Plateau, and Nasarawa, respectively. Mean Total Aflatoxin in bambara nuts was found to be 2.8g/kg, 6.06g/kg, 3.89g/kg, and 4.91g/kg in the respective states of Niger, Kogi, Plateau, and Nasarawa. While Total Aflatoxin exceeded the EU's permissible limit of 2.0g/kg in all grains across all States, the mean concentration of AfB1 did not.<#LINE#>Ozay, G., Seyhan, F., Pembeci, C., Saklar, S., Yilmax, A. (2008).@Factors influencing fungal and aflatoxin levels in Turkish hazelnuts (Corylus avellane L.) during growth, harvest, drying and storage: A 3-year study.@Taylor & Francis, 25(2), 209–218.@Yes$Munthali, W., Charlie, H., Kachulu, L., & Seetha, D. (2016).@How to reduce Aflatoxin contamination in groundnuts and maize a guide for extension workers.@http://oar.icrisat.org/id/eprint/9892@Yes$Kachapulula, P. W., Bandyopadhyay, R., & Cotty, P. J. (2019).@Aflatoxin contamination of non-cultivated fruits in Zambia.@Frontiers in Microbiology, 10(8).@Yes$Jallow, A., Xie, H., Tang, X., Qi, Z., & Li, P. (2021).@World wide aflatoxin contamination of agricultural products and foods: From occurrence to control.@Comprehensive Reviews in Food Science and Food Safety, 20(3), 2332–2381. https://doi.org/10.1111/1541-4337. 12734@Yes$Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020).@Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%.@Critical Reviews in Food Science and Nutrition, 60(16), 2773–2789.@Yes$Hamid, A. S., Tesfamariam, S. G., Zhang, Y., & Zhang, Z. G. (2013).@Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention (Review).@Oncology Letters, 5(4), 1087–1092.@Yes$Singh, P., Callicott, K. A., Orbach, M. J., & Cotty, P. J. (2020).@Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa.@Frontiers in microbiology, 11, 1236.@Yes$Ching’anda, C., Atehnkeng, J., Bandyopadhyay, R., Callicott, K. A., Orbach, M. J., Mehl, H. L., & Cotty, P. J. (2021).@Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization.@Frontiers in Fungal Biology,@Yes$Cui, X., Muhammad, I., Li, R., Jin, H., Guo, Z., Yang, Y., Hamid, S., Li, J., Cheng, P., & Zhang, X. (2017).@Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance Rates.@Frontiers in Pharmacology, 8(SEP). https://doi.org/10.3389/FPHAR. 2017.00650/FULL@Yes$Qiu, F., Shi, H., Wang, S., Ma, L., & Wang, M. (2019).@Safety evaluation of Semen Sojae Preparatum based on simultaneous LC–ESI–MS/MS quantification of aflatoxin B1, B2, G1, G2 and M1.@Biomedical Chromatography, 33(8). https://doi.org/10.1002/BMC.4541@Yes$Catanante, G., Rhouati, A., Hayat, A., & Marty, J. L. (2016).@An Overview of Recent Electrochemical Immunosensing Strategies for Mycotoxins Detection.@Electroanalysis, 28(8), 1750–1763. https://doi.org/10.1002/ ELAN.201600181@Yes$Olagunju, O. (2019).@Incidence of mycotoxigenic fungi during processing and storage of bambara groundnut (Vigna subterranea) composite flour.@Doctoral dissertation, Durban University of Technology, Durban, South Africa. http://eprints.abuad.edu.ng/616/@Yes$Baranyi, N., Kocsubé, S., Vágvölgyi, C., Varga, J. (2013).@Current trends in aflatoxin research.@Acta Biol. Szeged. 57, 95–107. 33.@Yes$Arapcheska, M., Jovanovska, V., Jankuloski, Z., Musliu, Z., Uzunov, R. (2015).@Impact of aflatoxins on animal and human health.@Int. J. Innov. Sci. Eng. Technol., 156–161. 34.@Yes$Reid, C., X. Sparks, D., L, Williams, W., P. Brown, A., E. (2016).@Single corn kernel aflatoxin B1 extraction and analysis method.@@Yes$Guo, P., Yang, W., Hu, H., Wang, Y., & Li, P. (2019).@Rapid detection of aflatoxin B 1 by dummy template molecularly imprinted polymer capped CdTe quantum dots.@Analytical and Bioanalytical Chemistry. https://doi. org/10.1007/S00216-019-01708-2@Yes$Piletska, E., Karim, K., Coker, R. (2008).@Development of the custom polymeric materials specific for aflatoxin B1 and ochratoxin A for application with the Toxi Quant T1 sensor tool.@Elsevier, 1217(16), 2543–2547. https://doi.org/10.1016/j.chroma.2009.11.091@Yes$Dhanasekaran, D., Shanmugapriya, S., Thajuddin, N., Panneerselvam, A. (2011). Aflatoxins and aflatoxicosis in human and animals. Aflatoxins-Biochemistry and Molecular Biology. InTech.@undefined@undefined@Yes$Yu, J., Fedorova, N., D. Montalbano, B., G. Bhatnagar, D., Cleveland, T., E. Bennett, J., W. Nierman, W., C. (2011).@Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-seq.@FEMS Microbiol. Lett. 322, 145– 149.@Yes$Abdel-Hadi, A., Schmidt-Heydt, M., Parra, R., Geisen, R., Magan, N., A. (2011).@Systems 2011 approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus.@J. R. Soc. Interface.@Yes$Donner, M., Lichtemberg, P.S., Doster, M., Picot, A., Cotty, P., J. Puckett, R., D. Michailides, T., J. (2015).@Community structure of Aspergillus flavus and A. parasiticus in major almond-producing areas of California, United States.@Plant Dis., 99, 1161–1169.@Yes$Udomkun, P., Wiredu, A., N. Nagle, M., Bandyopadhyay, R., Müller, J., & Vanlauwe, B. (2017).@Mycotoxins in sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook.@Food Control, 7(2), 110–122.@Yes$Warensjö Lemming, E., Montano Montes, A., Schmidt, J., Cramer, B., Humpf, H. U., Moraeus, L., & Olsen, M. (2020).@Mycotoxins in blood and urine of Swedish adolescents-possible associations to food intake and other background characteristics.@Mycotoxin Research, 36(2), 193–206. https://doi.org/10.1007/S12550-019-00381-9@Yes$Nyamete, F. A. (2013).@Potential of lactic acid fermentation in reducing aflatoxin b1 and fumonisin b1 in tanzanian maize-based complementary gruel.@https://search.proquest.com/openview/d6b6d88ececa04d8ccec5ba11d6733b8/1?pq-origsite=gscholar&cbl=18750@Yes$Binder, E., M, Tan, L., M, Chin, L., J, Handl, J., Richard, J (2007).@Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients.@Animal Feed Science & Technology, 137(3-4), 265-282.@Yes$Tumukunde, E., Ma, G., Li, D., & Yuan, J. (2020).@Current research and prevention of aflatoxins in China.@Ingentaconnect. Com, 13(2), 121–138. https://doi.org/10. 3920/WMJ2019.2503@Yes$Lee, J., Her, J-Y and Lee, K.-G, (2015).@Reduction of aflatoxins (B1, B2, G1, and G2) in soybean-based model systems.@Food Chemistry, 189, 45-51.@Yes$Cora, I., B. Angre, D., and Ronald, E., M. (2005).@Separation of aflatoxins by HPLC application.@Agilent Technology publication 5989-3634EN www.agilent.com /chem, Assessed on 16th August, 2006.@Yes$Crisan, E., V. (1973).@Effects of aflatoxin on germination and growth of lettuce.@Appl. Microbio, l(25), 342-345.@Yes$Ahammed, S., K, Gopal, K, Munikrishnaiah, M, Subramanyam, D (2008).@Effect of aflatoxin on shoot and root growth of soybean seedlings.@Legume Res., 31, 152-154.@Yes$Janardhan, A, Subramanyam, D, Praveen Kumar A, Reddi Pradeep M, Narasimha G (2011).@Aflatoxin impacts on germinating seeds.@Annu. Biol. Res., 2, 180-188.@Yes$Mohajeri, M., Behnam, Rezaee, M. and Sahebkar, A (2017).@Protective effects of curcumin against aflatoxicosis: A comprehensive review.@Wiley Online Library, 233(4), 3552–3577. https://doi.org/10.1002/jcp. 26212.@Yes$Digrak, M., Hakki, A., Ahmet, I., Selim, S. (1999).@Antibacterial and anti-fungal effects of various commercial plant extracts.@Intern J Pharmacognosy, 37, 216–2206.@Yes$Plahar, W., A. Annan, N., T. Nti, C., A. (2001).@Cultivar and processing effect on the pasting characteristics, tannin content and protein quality and digestibility of cowpea (Vigna unguiculata). Food Research Institute (CSIR) Accra, Ghana.@J Food Technol Afr., 6, 50–55.@Yes$Vincenzo, L., Roberto, T., Nunzia, C., Angela, C., Di, D. V., Vito, L. (2005).@Seed coat tannins and bruchid resistance in stored cowpea seeds.@J Sci Food Agri, 85, 839–846.@Yes <#LINE#>Determination of Bio-accumulated Cadmium, Chromium, Copper, Nickel and Lead in some common Vegetables and Quantification of Consumer Health Risk due to their long term dietary consumption<#LINE#>Alok @Awasthi <#LINE#>9-15<#LINE#>2.ISCA-RJCS-2023-004.pdf<#LINE#>Department of Chemistry, Govt. Degree College, Bakhha Khera, Unnao, U.P., India<#LINE#>5/5/2023<#LINE#>23/7/2023<#LINE#>Due to the ability of bio-accumulation, several plants selectively accumulate heavy metals in their edible parts via the soil-plants transfer mechanism. Regular intake of such metal contaminated vegetables as dietary component; heavy metals are deposited in human organs, sometimes beyond their safe limits that may initiate various human health implications. This study was undertaken to estimate the human health risk on regular consumption of five common vegetables- potato, onion, bottle gourd, pumpkin and spinach for long by the inhabitants of Rishikesh municipal area, Dehradun. The levels of studied metals in selected vegetable samples were determined on Atomic Absorption Spectrophotometer. Based on these observed levels of metals, “the daily intake of metals” for the studied vegetables was computed. Finally, the health consequences of regular consumption of vegetables under study for long were quantified in terms of the consumer health risk index (HRI). The overall order of levels of tested metals in vegetables was: lead > chromium > copper > nickel >cadmium. The order of daily intake of metals (DIM) on regular consumption of studied vegetables was: spinach (1.828) > bottle gourd (1.747) > pumpkin (1.607) > potato (1.556) > onion (1.543). The human health risk index (HRI) was evaluated as - Pb (123.3-179.6) > Cd (80.75- 144.5) > Ni (9.14- 12.54) > Cu (4.57- 7.12) > Cr (0.252 - 0.405).<#LINE#>Singh, Anita, Sharma, Rajesh Kumar, Agrawal, Madhoolika and Marshall, Fiona M. (2010).@Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India.@Tropical Ecology, 51(2S), 375-387.@Yes$Agrawal, S. B, Singh, Anita, Sharma, R. K., Agrawal, M. (2007).@Bioaccumulation of heavy metals in vegetables: A threat to human life.@Terrestrial and Aquatic Toxicology, 1(2), 13-22.@Yes$Singh V.P. (2005).@Toxic Metals and Environmental Issues.@Sarup & Sons, New Delhi.@Yes$Amin, M. A., Rahman, M. E., Hossain, S., Rahman, M., Rahman, M. M., Jakariya, M., & Sikder, M. T. (2020).@Trace metals in vegetables and associated health risks in industrial areas of Savar, Bangladesh.@Journal of Health and Pollution, 10(27), 200905.@Yes$Rai, Prabhat Kumar, Lee Sang Soo, Zhang Ming, Tsang Yiv Fai and Kim Ki- Hyum, (2019).@Heavy metals in Food crops: Health risks, fate, mechanism and management.@Environment International, 125, 365-385.@Yes$Sharma, R. K., Agrawal, M., & Marshall, F. (2007).@Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.@Ecotoxicology and environmental safety, 66(2), 258-266.@Yes$Khan, M. U., Malik, R. N., & Muhammad, S. (2013).@Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan.@Chemosphere, 93(10), 2230-2238.@Yes$Fao, J. (1989).@Toxicological evaluation of certain food additives and contaminants.@In Thirty Seventh Meeting of JECFA; WHO Food Additives Series (No. 28, p. 219).@Yes$Additives, F. (2001).@Evaluation of certain food additives and contaminants.@@Yes$Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008).@Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer.@Ecotoxicology and environmental safety, 69(3), 513-524.@Yes$Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005).@Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study.@Agriculture, ecosystems & environment, 109(3-4), 310-322.@Yes$Kulshrestha, S., Awasthi, A., & Dabral, S. K. (2012).@Studies on the assessment of toxic metals present in biological samples (Part-1).@International Journal of Research in Chemistry and Environment (IJRCE), 2(1), 195-199.@Yes$American Public Health Association. (1926).@Standard methods for the examination of water and wastewater.@Vol. 6, American Public Health Association..@Yes$United States. Environmental Protection Agency. Office of Emergency, & Remedial Response. (1989).@Risk Assessment Guidance for Superfund: pt. A. Human health evaluation manual (Vol. 1).@Office of Emergency and Remedial Response, US Environmental Protection Agency.@Yes$Jan, F. A. A. (2010).@Comparative Health Risk of Human Health Risks via Consumption of food crops grown on waste water irrigated soil (Peshawar) and relatively clean water irrigated soil (Lower Dir).@Journal of Hazardous Materials, 179(1-3), 612-621.@Yes$USEPA (US Environmental Protection Agency). (1997).@Exposure Factors.@Handbook, General Factors.@Yes$IRIS, U. (2006).@United states, environmental protection agency, integrated risk information system.@@Yes$Epa, U. (2001).@United States environmental protection agency.@Quality Assurance Guidance Document-Model Quality Assurance Project Plan for the PM Ambient Air, 2, 12.@Yes$US-EPA (2013).@Reference dose (RfD): Description and use in health risk assessments, Background Document 1A, Integrated risk information system (IRIS).@United States Environmental Protection Agency: Washington, DC, 15 March 2013; [http://www epa.gov/iris/rfd.htm.]@No$Khan, M. U., Muhammad, S., & Malik, R. N. (2014).@Potential risk assessment of metal consumption in food crops irrigated with wastewater.@Clean–Soil, Air, Water, 42(10), 1415-1422.@Yes$Awashthi, S. K. (1999).@Prevention of food Adulteration Act no 37 of 1954.@Central and State rules as amended for, 3.@Yes$World Health Organization (2004).@Joint FAO/WHO Expert standards program codex Alimentation commission.@Geneva: WHO.@Yes$Arora, M., Kiran, B., Rani, S., Rani, A., Kaur, B., & Mittal, N. (2008).@Heavy metal accumulation in vegetables irrigated with water from different sources.@Food chemistry, 111(4), 811-815.@Yes$Singh, S., Zacharias, M., Kalpana, S., & Mishra, S. (2012).@Heavy metals accumulation and distribution pattern in different vegetable crops.@Journal of Environmental Chemistry and Ecotoxicology, 4(10), 170-177.@Yes$Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012).@Heavy metals in vegetables and potential risk for human health.@Scientia agricola, 69, 54-60.@Yes$Kumar, A., & Seema, V. K. (2017).@Human health risk of heavy metals in vegetables grown in contaminated soil irrigated with sewage water.@American Journal of Food Science and Nutrition, 4(4), 23-35.@Yes$Kumar Vinod and Thakur Roushan K. (2018).@Health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated areas of Jagjeetpur, Haridwar India.@Archives of Agriculture and Environmental Science, 3(1), 73-80.@Yes$Kulshrestha, Shail, (2021).@Soil –Plant Transfer of Heavy Metals in eight Winter Vegetables and its Impact on Consumer Health Risk due to their Dietary Intake.@Poll Res., 40(3), 355-363.@Yes$Ramteke, Shobhana, Sahu, Bharat Lal, Dahariya, Nohar Singh, Patel, Khageshwar Singh, Blazhev Borislav, Matini Laurent. (2016).@Heavy Metal Contamination of Vegetables.@Journal of Environmental Protection, 7: 996-1004.@Yes$Kulshrestha, Shail (2022).@Bio-accumulation of Heavy Metals in some North Indian Leafy Vegetables and Quantification of consumer health risk due to their dietary intake.@Poll Res., 41(3), 980-988.@Yes$Kamal, A.K.I., Islam, M.R., Hassan, M. et al. (2016).@Bioaccumulation of Trace Metals in Selected Plants within Amin Bazar Landfill Site, Dhaka.@Environmental Processes, 3, 179-194. doi.org/10.1007/s40710-016-0123-9@Yes <#LINE#>Green Synthesis, Characterization, and the Antibacterial Activity Study of Zinc Oxide Nanoparticles Using Lemon Peel<#LINE#>Kamaluddeen @S.K.,Ismail @A. <#LINE#>16-22<#LINE#>3.ISCA-RJCS-2023-005.pdf<#LINE#>Department of Applied Chemistry Federal University Dutsin-Ma, Katsina State, Nigeria@Department of Applied Chemistry Federal University Dutsin-Ma, Katsina State, Nigeria<#LINE#>15/5/2023<#LINE#>16/6/2023<#LINE#>The widespread use of synthetic materials for the synthesis of nanoparticles has led to an increase in environmental pollution. Hence, green synthesis has recently emerged as a sustainable alternative as it utilizes biodegradable materials like lemon peels. The present study aimed to examine the green synthesis, characterization, and antibacterial activity of zinc oxide nanoparticles using lemon peels as a natural precursor. The nanoparticles were synthesized using a simple, cost-effective, and environmentally friendly method. The synthesized nanoparticles were characterized using various techniques, such as UV-Vis spectroscopy, FTIR, and Particles Size Analysis using Zetasizer Nano series. The results indicated that zinc oxide nanoparticles with a size average of 48.77nm were synthesized using the method employed. Antibacterial studies of the synthesized zinc oxide nanoparticles revealed excellent antibacterial activity against the gram-positive and gram-negative bacteria tested, Staphylococcus aureus and Escherichia coli, respectively. The zones of inhibition for the gram-positive bacteria were 13mm at 20mg/ml and 15mm at 40mg/ml, while those for the gram-negative were 10mm at 20mg/ml and 12 mm at 40mg/ml. The study demonstrated the potential of lemon peel extract as a green, sustainable, and effective source for the synthesis of zinc oxide nanoparticles with excellent antimicrobial activity. The results of this study contribute to the development of eco-friendly and sustainable nanotechnology with broad biomedical applications.<#LINE#>Yang, W., Peters, J. I., & Williams III, R. O. (2008).@Inhaled nanoparticles—a current review.@International journal of pharmaceutics, 356(1-2), 239-247.@Yes$Imani, M. M., & Safaei, M. (2019).@Optimized synthesis of magnesium oxide nanoparticles as bactericidal agents.@Journal of Nanotechnology, 2019.@Yes$Asadian, E., Ghalkhani, M. and Shahrokhian, S. (2019).@Electrochemical sensing based on carbon nanoparticles: a review, Sens.@Actuators B Chem., 293.183–209.@Yes$Ozel, F., Kockar, H. and Karaagac, O. (2015).@Growth of iron oxide nanoparticles by hydrothermal process: Effect of Reaction Parameters on the Nanoparticle size.@Journal of Super conductivity and novel magnetism, 28, 823-829. DOI: 10.1007/s10948-014-2707-9.@Yes$Muhammad, I., and Justina, P. (2020).@Synthesis, characteristics, and applications in analytical and other sciences.@Microchemical Journal, 154, 104623.@Yes$Feng, L., Cao, M., Ma, X., Zhu, Y., Hu, C. (2012).@Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal.@J. Hazard. Mater., 217–218, 439–446.@Yes$Kelly, K.L, Coronado, E., Zhao, L.L. and Schatz, G.C. (2003).@The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.@J. Phys. Chem. B., 107, 668–677.@Yes$Kumar, R., Umar, A., Kumar, G., Nalwa, H.S. (2017).@Antimicrobial properties of ZnO nanomaterials: A review.@Ceram. Int., 43, 3940–3961.@Yes$Hussain, I., Singh, N.B., Singh, A., Singh, H. and Singh, S.C. (2016).@Green synthesis of nanoparticles and its potential application.@Biotechnol. Lett., 38.545–560.@Yes$Palza, H. (2015).@Antimicrobial polymers using metal nanoparticles.@International Journal of Molecular Sciences, 15, 2099–2116.@Yes$Kannan, B.N., and Natarajan, S. (2010).@Biological synthesis of metal nanoparticles by microbes.@Adv. Colloid Interface Sci., 156(1-2), 1–13.@Yes$Daizy, P. (2010).@Honey Mediated Green Synthesis of Silver Nanoparticles.@Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1078-1081.@Yes$Sajid, M., and Płotka-Wasylka J (2020).@Nanoparticles: Synthesis, Charasteristics, and Applications in analytical and other Sciences.@Microchemical Journal., 154.1046233.@Yes$Manoranjan A. (2012).@Investigation on the effect of zinc oxide nanoparticles in the aggregation of hen egg lysozyme.@A research thesis, 13-20.@Yes$Deepti, K. and Pradeep, T. (2009).@J. Crys, Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds.@J. of Crystal Growth Grow, 311, 3889-3897.@Yes$Li, M., Bala, H., Lv, X., Ma, X., Sun, F., Tang, L., Wang, Z. (2007).@Direct synthesis of monodispersed ZnO nanoparticles in an aqueous solution.@Mater. Lett., 61, 690-693.@Yes$Yadav, A., Prasad, V., Kathe, A.A., Sheela, R., Deepti, Y., Sundaramoorthy, C. (2006).@Vigneshwaran, functional finishing in cotton fabrics using zinc oxide nanoparticles.@Bull. Mater. Sci., 29(6), 641-645.@Yes$Luque, P. A., Soto-Robles, C. A., Nava, O., Gomez-Gutierrez, C. M., Castro-Beltran, A., Garrafa-Galvez, H. E., ... & Olivas, A. (2018).@Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract.@Journal of Materials Science: Materials in Electronics, 29, 9764-9770.@Yes <#LINE#>Soda-Isopropanol Pulping: An environmentally friendly pulping for Nypafrutican Petioles<#LINE#>Aniekan E. @Akpakpan <#LINE#>23-26<#LINE#>4.ISCA-RJCS-2023-010.pdf<#LINE#>Department of Chemistry, Faculty of Physical Sciences, Akwa Ibom State University, Nigeria<#LINE#>3/7/2023<#LINE#>29/8/2023<#LINE#>This work evaluates the potentials of a secondary alcohol as environmentally friendly pulping liquor for Nypafrutican petioles. The pulping was done at 120oC and 150oC with a pulping liquor-to-sample ratio of 10:1. The effects of pulping temperature, pulping time and concentration of the pulping liquor on the pulp yield and residual Klasonlignin of the pulp were also evaluated. The results revealed that the higher the pulping temperature, time, and the pulping liquor concentration, the lower the pulp yield and residual lignin, implying higher rate of delignification of Nypafrutican petioles.<#LINE#>Lonnberg, B., Laxen, T. and Sjoholm, R. (1987).@Chemical pulping of softwood chips by alcohols cooking.@Paperi ja Puu., 69, 9, 757-762.@Yes$Akpabio, U.D. and Akpaakpan A. E. (2012).@Pulp and Paper from Agricultural waste: Plantain pseudostem wastes and screw pine leaves.@International Journal of Modern Chemistry, 2(3), 100-107.@Yes$Ivahnov, A., Sypalova, Y., Pokryshkin, S. and Kozhevnikov, A. (2022).@Organosolv delignification of birch wood (Betula pendula): DMSO/water pulping optimization.@Holzforschung, 76 (11-12), 1023-1031@Yes$Rowell, R. M., Young, R., & Rowell, J. (1994).@Agro-based in Papermaking and Composites.@@Yes$Vaidya, A. A., Murton, K. D., Smith, D. A., Dedual, G. (2022).@A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose.@Biomass Conversion and Biorefinery, 12, 5427–5442.@Yes$Muurinen, E., (2000).@Organosolv Pulping: A review and distillation study related to peroxyacid.@Academic Dissertation. Faculty of Technology, University of Oulu, pp: 16-86.@Yes$Amiri H. and Karimi K. (2015).@Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment.@Bioprocess Biosyst Eng, 38(10), 1959–1972.@Yes$Ferreira, J. A. and Taherzadeh, M. J. (2020).@Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment.@Bioresour Technol, 299, 122695.@Yes$Akpabio,U. D., Effiong, I. E. and Akpakpan, A. E. (2012).@Preparation of Pulp and Cellulose Acetate from Nypa Palm Leaves.@International Journal of Environment and Bioenergy, 1(2), 82-102.@Yes$Aniekan, E. Akpakpan, Ukana, D. Akpabio and Ime B. Obot (2012).@Evaluation of Physicochemical Properties and Soda Pulping of Nypafruticans Frond and Petiole.@Elixir Journal of Applied Chemistry, 45, 7664-7668.@Yes$Jimenez L, Maestre F, Torre M. J. and Perez I (1997a)@Organosolv pulping of wheat straw by use of methanol-water mixtures.@Tappi J., 80(12), 148-154.@Yes$Akgul, M. and A. Tozluolu, (2010).@Alkaline-ethanol pulping of cotton stalks.@Scientific Research and Essays, 5(10), 1068-1074.@Yes$Sahin H.T., (2003).@Base-catalyzed organosolv pulping of jute.@Journal of Chemical Technology and Biotechnology, 78(12), 1267-1273.@Yes$Sakai K and Uprichard J. M. (1987).@Isopropanol-sulphite pulping studies on radiata pine.@Appita, 40(3), 193-200.@Yes$Santos T.M, Rigual V, Oliet M, Alonso M.V, Dominguez J.C. and Rodriguez F. (2019).@Two-step fractionation of Pinus radiata by autohydrolysis and organosolv delignification for enzymatic hydrolysis.@J. Chem. Technol Biotechnol, 94(12), 3951–3959.@Yes$Fahmy, M., Sohel, M. I., Vaidya, A. A., Jack, M.W., Suckling, I.D. (2019).@Does sugar yield drive lignocellulosic sugar cost? Case study for enzymatic hydrolysis of softwood with added polyethylene glycol.@Process Biochem., 80:103–111@Yes$Akpakpan, A. E., Akpabio, U. D., Ogunsile, B. O. and Eduok, U. M. (2011).@Influence of cooking variable on the soda and soda-ethanol pulping of Nypa fruit cans petiole. Australian Journal of Basic and Applied Sciences, 5(12), 1202-1208.@undefined@Yes$Akpakpan, A. E., B. O. Ogunsile, U. D. Akpabio and U. M. Eduok (2012).@Comparative Study on the Soda-Ethanol and Soda-Butanol Pulping of Nypafruiticans Petioles.@International Journal of Advance Scientific Research and Technology, 1(2), 312-324.@Yes$Technical Association of the Pulp and Paper Industry (TAPPI), (1999).@Kappa number of pulp-T236cm.@99, 1-4.@Yes$Iglesias, G., M. Bao, J. Lamas and A. Vega (1996).@Soda pulping of Miscanthus sinesnsis: effect of operational variable on pulp yield and lignin solubilisation.@Bioresource Technology, 58, 17-23.@Yes <#LINE#>Exploring the synthesis, of transition metal complexes derived from 5-nitrosalicyaldehyde benzoylhydrazone characterization and their antimicrobial activities<#LINE#>Ja’afaru @Bello,Adamu Gambo @Abdulbasid <#LINE#>27-32<#LINE#>5.ISCA-RJCS-2023-014.pdf<#LINE#>Federal University Dutsin-ma, Applied Chemistry, P.M.B 5001 Dutsin-ma, Katsina Nigeria@Federal University Dutsin-ma, Applied Chemistry, P.M.B 5001 Dutsin-ma, Katsina Nigeria<#LINE#>22/7/2023<#LINE#>1/8/2023<#LINE#>Synthesis as well as Characterization of a Hydrazine derivative Schiff Base (L^) Derived from 5-Nitrosalicylaldehyde and Benzhydrazides, along with their transition divalent metal chelates of Ni, Cu, and Co. The complex ion were characterized using Melting Temperatures, FT-IR Spectrum Analysis, Magnetic Susceptibility, and UV-Vis Spectroscopy. These vibrant and stable ketimine and chelates remain undissolved in pure water but readily dissolve in organic solvents such as Dimethyl sulfoxide, acetone, and ethanol. The magnetic and spectral measurements suggest an octahedral geometry for the metal ions. The spectral data of the ligand displayed a prominent band at 1580c/m, confirming the presence of the imine group after synthesis. Interestingly, in the chelates, this peaks shifted to a higher spatial frequency, suggesting coordination of the imine nitrogen with the metal, thus establishing complexation through the N-atom of the imine moiety. The antimicrobial efficacy of the chelation compounds and ligating molecule was evaluated using the disc diffusion method against the bacterial isolates, namely Pseudomonas - aeruginosa, Enterobacter - cloacae, Klebsiella - pneumoniae, as well as Staphylococcus - aureus (G -ve and G +ve respectively), the fungi isolates, Aspergillus - niger as well as Phytopthera - infestans. Comparing the inhibitory effect of the analysis of the ligand (L1) and its respective chelate molecule demonstrated that the chelates displayed enhanced antimicrobial potency compared to the unbound ligand.<#LINE#>Akbas, E., Celik, S., Ergan, E., & Levent, A. (2019).@Synthesis, characterization, quantum chemical studies and electrochemical performance of new 4, 7-dihydrotetrazolo [1, 5-a] pyrimidine derivatives.@Journal of Chemical Sciences, 131, 1-10.@Yes$Júnior, W. B., Alexandre-Moreira, M. S., Alves, M. A., Perez-Rebolledo, A., Parrilha, G. L., Castellano, E. E., ... & Beraldo, H. (2011).@Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H2LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H2LASSBio-1064) and their zinc (II) complexes.@Molecules, 16(8), 6902-6915.@Yes$Özdemir, A., Turan-Zitouni, G., Asım Kaplancıklı, Z., Revial, G., Demirci, F., & İşcan, G. (2010).@Preparation of some pyrazoline derivatives and evaluation of their antifungal activities.@Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 565-571.@Yes$Govindasami, T., Pandey, A., Palanivelu, N., & Pandey, A. (2011).@Synthesis, characterization and antibacterial activity of biologically important vanillin related hydrazone derivatives.@international journal of organic chemistry, 1(03), 71.@Yes$Savini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S., & Pisano, M. B. (2004).@New α-(N)-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity.@European journal of medicinal chemistry, 39(2), 113-122.@Yes$Vicini, P., Incerti, M., La Colla, P., & Loddo, R. (2009). Anti-HIV evaluation of benzo [d] isothiazole hydrazones. European Journal of Medicinal Chemistry, 44(4), 1801-1807.@undefined@undefined@Yes$Lovejoy, D. B., & Richardson, D. R. (2002).@Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells.@Blood, The Journal of the American Society of Hematology, 100(2), 666-676.@Yes$Nikolova-Mladenova, B. I., & Angelova, S. E. (2017).@Synthesis of 5-nitrosalicylaldehyde based hydrazones and DFT-calculations of their structure and reactivity.@Bulg. Chem. Comm., 49, 800-806.@Yes$Gürbüz, D., Çinarli, A., Tavman, A., & Tan, A. S. B. (2015).@Synthesis, characterization and antimicrobial activity of some transition metal complexes of N-(5-chloro-2-hydroxyphenyl)-3-methoxy-salicylaldimine.@Bulletin of the Chemical Society of Ethiopia, 29(1), 63-74.@Yes$Yusha’u, M., & Salisu, F. U. (2011).@Inhibition activity of detarium microcarpum extracts on some clinical bacterial isolates.@Biological and Environmental Science Journal for the tropics, 8(4), 113-117.@Yes$National Committee for Clinical Laboratory Standards (NCCLS). (2008).@Performance standards for Antimicrobial susceptibility testing, 9th informational supplements.@Wayne, PA: National Committee for Clinical Laboratory Standards. M 100-59.@No$Koley, M. K., Sivasubramanian, S. C., Varghese, B., Manoharan, P. T., & Koley, A. P. (2008).@Synthesis and characterization of two stable paramagnetic octahedral chromium (IV) complexes with dianionic tridentate SNO donor ligands and of a chromium (III) complex with a ONO donor ligand.@Inorganica Chimica Acta, 361(5), 1485-1495.@Yes$Shivakumar, K., Shashidhar, Vithal Reddy, P., & Halli, M. B. (2008).@Synthesis, spectral characterization and biological activity of benzofuran Schiff bases with Co (II), Ni (II), Cu (II), Zn (II), Cd (II) and Hg (II) complexes.@Journal of Coordination Chemistry, 61(14), 2274-2287.@Yes <#LINE#>Co-Polymer Resin for Polyvinyl Acetate Modification with Hydroxylated Sesame Seed Oil for Potential Use in the Coating Industry<#LINE#>Naibi A. @Haruna,Kalu M. @Kalu,Emmanuel K. @Chinedu,Bapetel S. @Tugga,Fatima @Garba,Ethan @William,Mtswen @Saa-Aondo,I.I @Nkafamiya <#LINE#>33-41<#LINE#>6.ISCA-RJCS-2023-015.pdf<#LINE#>Department of Science Laboratory, Adamawa State College of Agriculture, Ganye, P.M.B 2088, Adamawa State, Nigeria@Department of Chemistry, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria@Department of Chemistry, Modibbo Adama University, P.M.B 2076, Yola Adamawa State, Nigeria@Department of Science Laboratory, Adamawa State College of Agriculture, Ganye, P.M.B 2088, Adamawa State, Nigeria@Department of Chemistry, Modibbo Adama University, P.M.B 2076, Yola Adamawa State, Nigeria@Department of Basic Sciences, Adamawa State College of Agriculture, Ganye, P.M.B 2088, Adamawa State, Nigeria@Department of Chemistry, Modibbo Adama University, P.M.B 2076, Yola Adamawa State, Nigeria@Department of Chemistry, Modibbo Adama University, P.M.B 2076, Yola Adamawa State, Nigeria<#LINE#>31/8/2023<#LINE#>28/9/2023<#LINE#>Polymer is inevitably an essential part of human needs, naturally polymers can be found as cellulose, chitin, carbohydrate, nucleic acid, cotton, rubber, etc. which are of great importance to human being, such as food, cloth, shelter, transportation, and even for our well-being. IUPAC define polymer as substance composed of macromolecules. The use and manufacturing of environmentally friendly products are required due to the rising costs of products made from petroleum, those products' pose negative effects on the environment and government restrictions aimed at reducing ozone depletion. The aim of this research work is to develop a binder by blending hydroxylated sesame seed oil (HSSO) with polyvinyl acetate that can be used by the paint and coating industries. The study investigated the possibility of using hydroxylated oil to modify conventional polyvinyl acetate (PVA) to be utilized in the coatings industry. Extracting, epoxidizing, and hydroxylating sesame seed oil were done. Hydroxylated sesame seed oil (HSSO) was mixed with ordinary polyvinyl acetate in varying ratios (10 to 60% of hydroxylated oil) to create the HSSO/PVA copolymer binder. The different blend ratios are employed to ensure that none of the properties of the copolymer are compromised at the expense of another since polymers frequently have a molecular weight where each characteristic demonstrates its best value. A variety of composition ratios of the copolymer resin (HSSO/PVA) were studied for their significant physical characteristics. Investigated were physical characteristics such viscosity, density, turbidity, refractive index, gel time, moisture uptake, water solubility, and melting point. PVA and HSSO interacted chemically, according to FT-IR study of copolymer resin (HSSO/PVA). The blend of HSSO/PVA is soluble in water between 10 and 40%, and as the concentration of HSSO in the copolymer matrix increases, it is also observed that turbidity, moisture uptake, melting point, viscosity and density decrease. However, gel time and refractive index increase as HSSO concentration in the copolymer matrix increases. Improvements in flexibility, moisture absorption, and glossitivity—three significant drawbacks of traditional PVA—are revealed by the results. Moisture uptake, density, turbidity, viscosity, and melting point.<#LINE#>Adeosun, S. O., Lawal, G. I., Balogun, S. A. & Akpan, E. I. (2012).@Review of Green Polymer Nanocomposites.@Journal of Minerals & Materials Characterization & Engineering, vol. 11.@Yes$Osemeahon, S. A., & Dimas, B. J. (2020).@Removal of crude oil from aqueous medium by sorption on Sterculis setigera.@Asian Journal of Applied Chemistry Research, 5(3), 1-12.@Yes$Gidigbi, J. A., Osemeahon, S. A., Ngoshe, A. M. & Babanyaya, A. (2019).@Coating Industry.@International Journal of Recent Innovations in Academic Research, vol. 3 www.ijriar.com.@No$Kalu, K. M., Emmanuel, M., Chinedu, E. K., Akinterinwa, A., Titus, U., Haruna, N. A., & Aliyu, B. A. (2023).@Extraction, synthesis and characterization of an alkyd resin from sesamum indicum seed oil.@Open Access Library Journal, 10(7), 1-18.@Yes$Goud, V. V., Patwardhan, A. V., Dinda, S., & Pradhan, N. C. (2007).@Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin.@Chemical Engineering Science, 62(15), 4065-4076.@Yes$Nkafamiya, I. I., Osemeahon, S. A., Modibbo, U. U., & Aminu, A. (2010).@Nutritional status of non-conventional leafy vegetables, Ficus asperifolia and Ficus sycomorus.@African Journal of Food Science, 4(3), 104-108.@Yes$Habibu Uthman (2011).@Production of Trowel Paints using Polyvinyl Acetate Synthesized from Vinyl Acetate Monomer as a Binder.@Leonardo Journal of Sciences, 19, 49–56.@Yes$Fadawa, F. G., Osemeahon, S. A., Dass, P. M., & Aliyu, B. A. (2018).@Characterization of composites from dimethylol urea and hydroxylated black seed oil for possible application as an emulsion paint binder.@Trends in Science & Technology Journal.@Yes$Osemeahon, S. A., & Barminas, J. T. (2007).@Development of amino resin for emulsion paint formulation: reactive blending of methylol urea with soybean oil.@African Journal of Biotechnology, 6(6).@Yes$Majumder, S. M. M. U. H. (1990).@Studies on the physico-chemical properties of rubber (Hevea brasiliensis) seed oil and identification of different higher fatty acids of the oil and analysis of the seed cake [in Bangladesh].@Part II: Science.@Yes$Ladino, G. O., Eromosele, I. C., & Folarin, O. M. (2013).@Formation and characterization of paint based on alkyd resin derivative of Ximenia americana (wild olive) seed oil.@Environment and Natural Resources Research, 3(3), 52.@Yes$Ikhuoria, E. U., Maliki, M., Okieimen, F. E., Aigbodion, A. I., Obaze, E. O., & Bakare, I. O. (2007).@Synthesis and characterisation of chlorinated rubber seed oil alkyd resins.@Progress in organic coatings, 59(2), 134-137.@Yes$Onukwli, O. D., & Igbokwe, P. K. (2008).@Production and characterization of castor oil-modified alkyd resins.@Journal of Engineering and Applied Science, 3(2), 161-165.@Yes$Uzoh, C. F., & Nwabanne, J. T. (2016).@Investigating the effect of catalyst type and concentration on the functional group conversion in castor seed oil alkyd resin production.@Advances in Chemical Engineering and Science, 6(2), 190-200.@Yes$Sudharsan Reddy, K., Prabhakar, M. N., Kumara Babu, P., Venkatesulu, G., Rao, K., Sajan, U., ... & Subha, M. C. S. (2012).@Miscibility studies of hydroxypropyl cellulose/poly (ethylene glycol) in dilute solutions and solid state.@International journal of carbohydrate chemistry, 2012.@Yes$Petrović, Z. S., Zlatanić, A., Lava, C. C., & Sinadinović‐Fišer, S. (2002).@Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids—kinetics and side reactions.@European Journal of Lipid Science and Technology, 104(5), 293-299.@Yes$Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., & Yang, L. (2008).@Studies on the kinetics of in situ epoxidation of vegetable oils.@European Journal of Lipid Science and Technology, 110(4), 341-346.@Yes$Yelwa, J. M., Osemeahon, S. A., Nkafamiya, I. I., & Abdullahi, S. (2017).@Synthesis and Characterization Of Hydroxylated Sunflower Seed Oil/Poly Vinyl Acetate Copolymer as a Binder for Possible Application in The Coating Industry.@International Journal of Innovative Research and Advanced Studies (IJIRAS), 4, 417-8.@Yes$Shashidhara, Y. M., & Jayaram, S. R. (2010).@Vegetable oils as a potential cutting fluid—an evolution.@Tribology international, 43(5-6), 1073-1081.@Yes$Chen, J., Soucek, M. D., Simonsick, W. J., & Celikay, R. W. (2002).@Synthesis and photopolymerization of norbornyl epoxidized linseed oil.@Polymer, 43(20), 5379-5389.@Yes$Biresaw, G., & Carriere, C. J. (2004).@Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters.@Composites Part A: applied science and manufacturing, 35(3), 313-320.@Yes$Al‐Manasir, N., Kjøniksen, A. L., & Nyström, B. (2009).@Preparation and characterization of cross‐linked polymeric nanoparticles for enhanced oil recovery applications.@@Yes$Iqbal, Z., Qasim, S., & Rafi, N. (2021).@Copolymerized Urea Formaldehyde Based Binder and their Characterization.@Journal of Chemistry and Chemical Sciences, 11(12), 137-149.@Yes$Desai, S. D., Patel, J. V., & Sinha, V. K. (2003).@Polyurethane adhesive system from biomaterial-based polyol for bonding wood.@International Journal of Adhesion and Adhesives, 23(5), 393-399.@Yes$Kažys, R., & Rekuvienė, R. (2011).@Viscosity and density measurement methods for polymer melts.@Ultragarsas/ Ultrasound, 66(4), 20-25.@Yes$Hussain, A. I., & Nasr, H. E. (2010).@The role of carboxylic acid on the characterization and evaluation seed emulsion of styrene/butyl acrylate copolymers lattices as paint.@Nature Sci, 8(8), 94-103.@Yes$Mutyala, K. C., Singh, H., Evans, R. D., & Doll, G. L. (2016).@Effect of diamond-like carbon coatings on ball bearing performance in normal, oil-starved, and debris-damaged conditions.@Tribology Transactions, 59(6), 1039-1047.@Yes$Emile, G. (2003).@Moisture transfer properties of coated gypsum.@@Yes <#LINE#>Elaboration of Benin clay based geopolymer: Application to congo red adsorption in an aqueous medium<#LINE#>Ferdinand Sèdjro Didier @GOUDJO,Philémon Mindétonhou @ZANOU,Comlan Achille @DEDJIHO,Arouna @YESSOUFFOU,Pascal Gbètondji @DAZOGBO,Sèmiyou Ayélé @OSSENI,Waris Kéwouyèmi @CHOUTI <#LINE#>42-51<#LINE#>7.ISCA-RJCS-2023-016.pdf<#LINE#>Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin @Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin and Laboratory of Water and Environnemental Sciences and Techniques (LSTEE), National Water Institute (INE), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin and Applied Hydrology Laboratory (LHA), National Water Institute (INE), University of Abomey-Calavi (UAC), 01BP526 Cotonou, Benin@Applied Hydrology Laboratory (LHA), National Water Institute (INE), University of Abomey-Calavi (UAC), 01BP526 Cotonou, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin and Laboratory of Water and Environnemental Sciences and Techniques (LSTEE), National Water Institute (INE), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin and Kaba Chemistry and Applications Research Laboratory, Faculty of Sciences and Technologies of Natitingou/UNSTIM, Natitingou, Benin@Laboratory of Physical Chemistry, Materials and Molecular Modeling / Unit of Inorganic Chemistry, Materials Engineering and Environnent (LCP3M / UCIIME), Faculty of Science and Technology (FAST), University of Abomey-Calavi (UAC), 01BP 526 Cotonou, Benin<#LINE#>31/8/2023<#LINE#>28/9/2023<#LINE#>In this work, clay based geopolymer was prepared and applied for anionic dye (congo red) removal in water. Clay (kaolin) from Adjozounme in Ketou from Benin was used as aluminosilicate material and NaOH solution was alkaline activator in the molar ratio n(NaOH)/n(NaAlO2)/n(Na2SiO3, 5H2O) = 0.3/0.3/0.8 respectively. Then we added 0.5g of CTAB and 1.5g of metakaolin obtained by calcining kaolin at 800°C. Thus, two geopolymer samples were developed by varying the polymerization time (48 hours and 72 hours). X-ray diffraction (XRD) analysis showed that the two geopolymer sample could be amorphous. Measurements of parameters such as geopolymer mass, pH and kinetics revealed that this congo red can be removed up to 80% from water with a maximum adsorption capacity of 129.31mg/g under optimal conditions of 60 minutes of contact at pH ≤ 4. Adsorption is described by pseudo-second order kinetics. The implementation of this sector is essential to reduce the costs of treating industrial effluents.<#LINE#>Benaissa A. (2011).@Etude de la dégradation photo-catalytique d’un colorant synthétique et d’un tensioactif. Thèse de Doctorat en Sciences en Génie des procèdes.@Université Mentouri Constantine. pp 10, 15, 36.@Yes$Dąbrowski, A., Podkościelny, P., Hubicki, Z., & Barczak, M. (2005).@Adsorption of phenolic compounds by activated carbon—a critical review.@Chemosphere, 58(8), 1049-1070.@Yes$Ouelaa S. (2018).@Etude de biosorption de Rouge Congo en milieu aqueux sur un déchet organique naturel: coquilles de cacahuètes.@Mémoire master académique, Université Kasdi Marbah Ouargla, pp 11-12.@No$Ouari W. (2017).@Oxydation des colorants par POAs sur catalyseurs à base d@Mémoire master, Université de Tlemcen, pp, 16, 17.@No$Koprivanac, N., Bosanac, G., Grabaric, Z., & Papic, S. (1993).@Treatment of wastewaters from dye industry.@Environmental technology, 14(4), 385-390.@Yes$Yessoufou, A. (2017).@Etude diagnostique de la pollution métallique, produits pharmaceutiques et de soins personnels (ppsp) en milieux aquatiques: Cas des sédiments du lac nokoué, du déversoir d’eaux usées d’hôpital et des boues de la station d’épuration sibeau au bénin.@Doctoral dissertation, Thèse de doctoat, Uuniversité d’abomey-calavi, Abomey Calavi.@Yes$Dupont, L., Foissy, A., Mercier, R., & Mottet, B. (1993).@Effect of calcium ions on the adsorption of polyacrylic acid onto alumina.@Journal of Colloid and Interface science, 161(2), 455-464.@Yes$Laibi, A. B., Gomina, M., Sorgho, B., Sagbo, E., Blanchart, P., Boutouil, M., & Sohounhloule, D. K. (2017).@Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction.@International Journal of Biological and Chemical Sciences, 11(1), 499-514.@Yes$Davidovits, J. (2008).@Geopolymer chemistry and applications, 2011: Institute Geopolymer.@Saint Quentin, France.@Yes$Yu, Z., Song, W., Li, J., & Li, Q. (2020).@Improved simultaneous adsorption of Cu (II) and Cr (VI) of organic modified metakaolin-based geopolymer.@Arabian Journal of Chemistry, 13(3), 4811-4823.@Yes$Samantasinghar, S., & Singh, S. P. (2018).@Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer.@Construction and Building Materials, 170, 225-234.@Yes$Rasaki, S. A., Bingxue, Z., Guarecuco, R., Thomas, T., & Minghui, Y. (2019).@@Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review.@Yes$Singhal, A., Gangwar, B. P., & Gayathry, J. M. (2017).@CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal.@Applied Clay Science, 150, 106-114.@Yes$Barbosa, T. R., Foletto, E. L., Dotto, G. L., & Jahn, S. L. (2018).@Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions.@Ceramics International, 44(1), 416-423.@Yes$Thiry, M., Carrillo, N., Franke, C., & Martineau, N. (2013).@Technique de préparation des minéraux argileux en vue de l@@Yes$Meriem, M. E. R. A. B. T. E. N. E. (2019).@Elaboration de liants géopolymères à partir d’aluminosilicates et déchets naturels.@@Yes$Yahya, Z., Abdullah, M. M. A. B., Hussin, K., Ismail, K. N., Abd Razak, R., & Sandu, A. V. (2015).@Effect of solids-to-liquids, Na2SiO3-to-NaOH and curing temperature on the palm oil boiler ash (Si+ Ca) geopolymerisation system.@Materials, 8(5), 2227-2242.@Yes$Bahia M. (2015).@Adsorption des polluants organiques et inorganiques sur des substances naturelles: Kaolin, racines de Calotropisprocera et Noyaux de dattes.@Thèse de doctorat. Université de Lorraine, p81.@Yes$Agbahoungbata M. Y. (2017).@Élaboration de matériaux adsorbants et composites à base d’argile, du moringaoleifera et du TiO2 pour l’amélioration des propriétés photocatalytiques du TiO2 utilisé dans le traitement des eaux usées.@Thèse de Doctorat de l’Université d’Abomey-Calavi, Ecole Doctorale Sciences Exactes et Appliquées. Spécialité Chimie Inorganique. pp 71, 111.@No$Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007).@Sorption isotherms: A review on physical bases, modeling and measurement.@Applied geochemistry, 22(2), 249-275.@Yes$Davidovits, J. (1991).@Geopolymers: inorganic polymeric new materials.@Journal of Thermal Analysis and calorimetry, 37(8), 1633-1656.@Yes$Bouna, L., El Fakir, A. A., Benlhachemi, A., Draoui, K., Ezahri, M., Bakiz, B., ... & Elalem, N. (2020).@Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay.@Applied Clay Science, 196, 105764.@Yes$Crini, G., Montiel, A. J., & Badot, P. M. (2007).@Traitement et épuration des eaux industrielles polluées: Procédés membranaires, bioadsorption et oxydation chimique.@Presses Univ. Franche-Comté.@Yes$Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006).@Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics.@Colloids and surfaces a: physicochemical and engineering aspects, 272(1-2), 89-104.@Yes$Ho, Y. S., & McKay, G. (1999).@Pseudo-second order model for sorption processes.@Process biochemistry, 34(5), 451-465.@Yes$Mittal, A., Malviya, A., Kaur, D., Mittal, J., & Kurup, L. (2007).@Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials.@Journal of hazardous materials, 148(1-2), 229-240.@Yes$Fardjaoui, N. E. H. (2018).@Synthèse des aluminosilicates de type géopolymères et zéolite LTA à partir des kaolins. Application à l’adsorption des métaux lourds (Cu (II), Cr (VI)) et des colorants textiles (jaune bezanyl, vert nylomine).@Doctoral dissertation.@Yes @Review Paper <#LINE#>Natural products as corrosion inhibitors for mild steel in H2SO4 solution: A Review<#LINE#>R.T. @Vashi <#LINE#>52-59<#LINE#>8.ISCA-RJCS-2023-006.pdf<#LINE#>Chemistry Department, Navyug Science College, Rander Road, Surat, India<#LINE#>19/5/2023<#LINE#>7/6/2023<#LINE#>Corrosion is the destructive attack of a metal by chemical or electrochemical reaction with its environment. A percentage of inhibition was carried out by various methods like WL and electrochemical methods such as PDP and EIS. Natural products were used for the protection of MS materials from corrosion as they are biodegradable and eco-friendly. Nature of surface films produce on metal was studied by using various techniques like FT-IR, UV-Visible spectroscopy, EDX, AFM, GC-MS and SEM. The present review paper covers the research works (Period 2017-2018) carried out by various researchers on corrosion inhibition of MS in H2SO4 solutions by using a Natural products as green inhibitors.<#LINE#>Revie R. W. (2008).@Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering.@John Wiley & Sons: Hoboken, NJ, USA.@Yes$James A. O., Oforka N. C. &Abiola K. (2007).@Inhibition of Acid Corrosion of Mild Steel by Pyridoxal and Pyridoxol Hydrochlorides.@Int. J. Electrochem. Sci., 2, 278-284.@Yes$Tezeghdenti M., Etteyeb N., Dhouibi L. & Kanoun O. (2018).@Sustainable use of natural resources as alternative for the hazardous corrosion inhibitor of mild steel/dilute sulfuric acid interface: weight loss, EIS, AFM AND FTIR STUDIES.@Arch. Metall. Mater., 63(2), 697-707. DOI: 10.24425/122396.@Yes$Karungamye P. N. and Ananda Murthy H. C. (2017).@Methanolic Extracts of Adansoniadigitata (Baobab) Fruit Pulp and Seeds as Potential Green Inhibitors for Mild Steel Corrosion in 0.5 M H2SO4 Solution.@Indian J. of Adv. in Chem. Sci., 5(4), 295-305, DOI: 10.22607/IJACS.2017. 504010.@Yes$Bhardwaj N., Prasad D. & Haldhar R. (2018).@Study of the Aegle marmelos as a Green Corrosion Inhibitor for Mild Steel in Acidic Medium: Experimental and Theoretical Approach.@J. of Bio- and Tribo-Corros., 4, 61. https://doi.org/10.1007/s40735-018-0178-4.@Yes$Sameh A., Sihem A., Fadila B. & Kardas G. (2018).@A study of the effect of Agave Americana extract inhibitor on the corrosion of mild steel in 0.5 M H2SO4.@Mater. Res. Express, 6 (1), 016504. DOI 10.1088/2053-1591/aae32c.@Yes$Haldhar R., Prasad D., Saxena A. & Kaur A. (2018).@Corrosion resistance of mild steel in 0.5 MH2SO4 solution by plant extract of Alkanatinctoria: Experimental and theoretical studies.@European Phy. J. Plus, 133, Article No. : 356, DOI 10.1140/epjp/i2018-12165-0.@Yes$Godwin-Nwakwasi E. U., Elachi. E. E., Ezeokonkwo M. A. & Onwuchuruba L. E. (2017).@A Study of the Corrosion Inhibition of Mild Steel in 0.5 M Tetraoxosulphate (VI) acid by Alstoniaboonei Leaves Extract as an Inhibitor at Different Temp.s.@Inter. J. Adv. Eng., Manag. and Sci., 3(12). https://dx.doi.org/10.22161/ijaems.3.12.9.@Yes$Obike A. I., Ikenga C. L., Uwakwe K. J. & Nwoke N. O. (2017).@Inhibitive Action and Adsorption Characteristics of Alternanthera bettzickiana Extracts on the Corrosion of Mild Steel in Acidic Media.@Inter. Res. J. Pure & Appl. Chem., 15(3), 1-11.@Yes$Haldhar R., Prasad D. & Saxena A. (2018).@Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M Sulfuric acid: Experimental and theoretical investigation.@J. Environ. Chem. Engg., 6(4), 5230-5238. http://doi.org/10.1016/j.jece.2018.08.025.@Yes$Karki N., Chaudhary Y. & Yadav A.P. (2018).@Thermodynamic, Adsorption and Corrosion Inhibition Studies of Mild Steel by Artemisia vulgaris Extract from Methanol as Green Corrosion Inhibitor in Acid Medium.@J. Nepal Chem. Soc., 39, 76-85. https://doi.org/10.3126/ jncs.v39i0.27041.@Yes$Saxena A., Prasad D. & Haldhar R. (2018).@Use of Asparagus racemosus extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4.@J. Mater. Sci., 53(11), 8523-8535. DOI:10.1007/s10853-018-2123-9.@Yes$Prabakaran M., Kim S. H., Mugila N., Venkatesan H., Parameswari K., ChitraS. & ChungIll-Min. (2017).@Aster koraiensis as nontoxic corrosion inhibitor for mild steel in sulfuric acid.@J. Ind. Eng. Chem., 52, 235–242. DOI:10.1016/j.jiec.2017.03.052.@Yes$Peter A. and Sharma S. (2017).@Use of Azadirachta indica (AZI) as green corrosion inhibitor against mild steel in acidic medium: anti-corrosive efficacy and adsorptive behaviour.@Int. J. Corros. Scale Inhib., 6(2), 112-31.@Yes$Perumal S., Muthumanickam S., Elangovan A., Sayee Kannan R. & Mothilal K. K. (2017).@Inhibitive effect of Bauhinia tomentosa leaf extract on acid corrosion of mild steel.@Int. J. Chem. Tech. Res., 10(13), 203-213.@Yes$Shivakumar M., Dharmaprakash M. S., Manjappab S. & Nagashree K. L. (2017).@Corrosion Inhibition Performance of Lignin Extract from Black Liquor on Mild Steel in 0.5 M H2SO4 acidic media.@Port. Electrochim. Acta, 35(6), 351-359. DOI: 10.4152/pea.201706351.@Yes$Verma D., Khan F. & Agrawal S. (2017).@Inhibition Effect of Bombax ceiba Flower Extract as Green Corrosion Inhibitor of Mild Steel in 0.5 M H2SO4 Medium.@Asian J. Chem., 29(12), 2615-2618. https://doi.org/10.14233/ ajchem.2017.20718.@Yes$Sexena A., Prasad D. & Haldhar R. (2017).@Use of Butea monosperma extracts as green corrosion inhibitor for mild steel in 0.5 M H2SO4.@Int. J. of Electrochem. Sci., 12, 8793-8805.@Yes$Ndukwe A. I. and Anyakwo C. N. (2017).@Corrosion Inhibition Model for Mild Steel in Sulphuric Acid by Crushed leaves of Clerodendrum Splendens (Verbenaceae).@Int. J. Sci. Eng. and Appl. Sci., 3(3), 39-49.@Yes$Gobara M., Zaghloul B., Baraka A., Elsayed M., Zorainy M., Kotb M.M. & Elnabarawy, H. (2017).@Green corrosion inhibition of mild steel to aqueous sulfuric acid by the extract of Corchorus olitorius stems.@Mater. Res. Express., 4(4), 046504. DOI: 10.1088/ 2053-1591/aa664a.@Yes$Kalaiselvi K., Chung I.-M., KimS.-H. & Prabakaran M. (2018).@Corrosion resistance of mild steel in sulphuric acid solution by Coreopsis tinctoria extract: electrochemical and surface studies.@Anti-Corros. Methods and Mater., 65(4),408-416. https://doi.org/10.1108/ACMM-12-2017-1866.@Yes$Kadiri L., Galai M., Ouakki M., Essaadaoui Y., Ouass A., Cherkaoui M., Rifi El. & Lebkiri A. (2018).@Coriandrum Sativum. L Seeds Extract as a Novel Green Corrosion Inhibitor for Mild Steel in 1.0 M Hydrochloric and 0.5 M Sulfuric Solutions.@Anal. Bioanal. Electrochem., 10(2), 249-268.@Yes$Saxena A., Prasad D. & Haldhar R. (2018).@Investigation of corrosion inhibition effect and adsorption activities of Cuscutareflexa extract for mild steel in 0.5 M H2SO4.@Bioelectrochem., 124, 156–164.@Yes$Begum A. S. and Nasser A. J. A. (2018).@Aqueous extract of Cycleapeltata leaves as corrosion inhibitor for mild steel in 1.0 M H2SO4 by employing isotherms.@European J. of Biomedical and Pharma. Sci., 5(2), 859-863.@Yes$Ameh P. O., Kolo A. M., Ahmed A. & AjanakuI. K. (2017).@Electrochemical study of the corrosion inhibition of Delonix regia for mild steel in sulphuric acid medium.@J. Ind. Environ. Chem., 1(1), 15-21.@Yes$Zheng X., Gong M., Li Q. & Guo L. (2018).@Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya Japonica Lindl) leaves extract.@Sci. Rep., 8(9140), 1-15. http://doi.org/10.1038/s41598-018-27257-9.@Yes$Sethuraman M. G., Aishwarya V., Kamal C. & Immanuel Edison T. J. (2017).@Studies on Ervatinine-The anticorrosive phytoconstituent of Ervatamiacoronaria.@Arab. J. Chem., 10, S522- S530.@Yes$Ojha L., Kaur K., Kaur R. & Bhawsar J. (2017).@Corrosion Inhibition Efficiency of Fenugreek Leaves Extract on Mild Steel Surface in Acidic Medium.@J. Chem. and Pharm. Res., 9(6), 57-64.@Yes$Bagga M. K., Gadi R. & Singh G. (2017).@Ficusracemosa as corrosion inhibitor for mild steel in acid.@Emerg. Mater. Res., 6(1), 117-123. https://doi.org/10.1680/jemmr.15.000 55.@Yes$Haldhar R., Prasad D., Saxena A. & Kumar A. (2018).@Experimental and theoretical studies of Ficusreligiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution.@Sustain. Chem. Pharm., 9, 95–105. DOI:10.1016/ j.scp.2018.07.002.@Yes$Ivan O. C., Hitler L., Joseph J., Oyetola O., Udochukwu A. O., Maraga T. N. & Isa P. A. (2018).@Phytochemical Screening and Corrosion Inhibition of the Ethanolic Leave Extracts of Gardenia aqualla Stapf & Hutch In 1M H2SO4 Acid Solution.@American J. Appl. Chem., 6(1), 1-5. doi: 10.11648/j.ajac.20180601.11.@Yes$Ikeuba A. I. and Okafor P. C. (2018).@Green Corrosion protection for Mild Steel in acdic media: Saponins and crude extracts of Gongronemalatifolium.@Pigment Resin Tech., 48, 57-64. https://doi.org/10.1108/PRT-03-2018-00 20.@Yes$Olawale O., Idefoh C. K., Ogunsemi B. T. & Bello J. O. (2018).@Evaluation of groundnut leaves extract as corrosion inhibitor on mild steel in 1 M sulphuric acid using response surface methodology.@Int. J. Mech. Eng. Technol., 9(11), 829-841.@Yes$Manickam M., Jaganathan M. & Sivakumar D. (2017).@Gum Tragacanth powder as a green corrosion inhibitor for mild steel in 1 N sulfuric acid solution.@Int. J. of Innovative Sci. and Res. Tech., 2(8), 132-140.@Yes$Zheng X., Gong M. & Li Q. (2017).@Corrosion inhibition of mild steel in sulfuric acid solution by Houttuynia cordata extract.@Int. J. Electrochem. Sci., 12, 6232–6244. https://doi.org/10.20964/2017.07.03.@Yes$Ofuyekpone O., Akaluzia R. O. & Edibo S. (2017).@Investigating the influence of immersion time and inhibitor concentration on the inhibiting potential of Imperratacylindrica as Corrosion Inhibitor of mild steel.@Int. J. of Res. in Eng. and Innov., 1(6),147-152.@Yes$Udowo V. M., Uwah I. E., Magu T. O. & Thomas U. E. (2017).@Evaluation of the corrosion inhibition effect of Ipomoea batatas leaves extract on mild steel in sulphuric acid.@World Sci. News, 77(2), 350-357.@Yes$Abakedi O. U. and Sunday G. A (2017).@Jatropha tanjorensis leaf extract as an environmentally - friendly mild steel corrosion inhibitor in H2SO4 solution.@Chem. Res. J., 2(3), 91-97.@Yes$Muthukrishnan P., Jeyaprabha B. & Prakash P. (2017).@Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion.@Arabian J. Chem., 10, S2343–S2354.https://doi.org/10. 1016/j.arabjc.2013.08.011.@Yes$Elgahawi H., {Gobara M., Baraka A., Elthalabawy W.} (2017).@Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution Using Extraction of Linum Usitatissimum Seeds.@Aerospace Sci.& Avia. Techn., ASAT-17- April 11 - 13.@Yes$Jyothi S. and Ravichandran J. (2017).@Corrosion inhibition of mild steel in sulphuric acid by methanol extract of Luffa aegyptiaca leaves – electrochemical and statistical view.@J. Adhesion Sci. and Techn. http://dx.doi.org/10.1080/ 01694243.2017.1298301.@Yes$Gusti D. R., Alif E. A. & Efdi M. (2017).@Corrosion Inhibition of Ethanol Extract of Cassava (Manihot esculenta) Leaves on Mild Steel in Sulfuric Acid.@Int. J. of Chem. Tech. Res., 10(2), 163-171.@Yes$Bhawsar J. and Jain P. (2018).@Investigation of Mentha spicata extract as Green Corrosion Inhibitor for Mild Steel in 2M Sulphuric Acid Medium.@Res. J. Pharm. and Tech., 11(10), 4627-4634. DOI: 10.5958/0974-360X.2018.00846. 6.@Yes$Abakedi O. U. (2017).@Mild steel corrosion inhibition by Microdesmispuberula root extract in acidic medium.@Int. J. Chem. Sci., 1(1), 49-53.@Yes$Abakedi O. U. and James M. A. (2018).@Microdesmispuberula stem bark extract as green inhibitor for mild steel corrosion in sulphuric acid solution.@Chem. Res. J., 2018, 46-52.@Yes$Sumita A. and Nikhila G. (2018).@Adsorption and Thermodynamic Study of Corrosion Inhibition Properties of Mimosa pudica on Mild Steel in 2M H2SO4..@Int. J. Chem Tech Res., 11(3), 129-139.@Yes$Subasree N., Arockiaselvi J., Kamaraj P. & Arthanareeswari M. (2018).@Study of Mild Steel Corrosion in sulphuric acid medium by Moringa oleifera leaf extract by electrochemical and surface analysis studies.@Int. J. Chem. Tech. Res., 11(2), 317-325.@Yes$Salami L and Umar M. (2018).@Kinetics study of corrosion of mild steel in sulphuric acid using musasapientum peels extract as inhibitor.@J. Nigerian Soc. Chem. Eng., 33(2), 105-109.@Yes$Haldhar R., Prakash D. & Saxena A. (2018).@Myristica fragrance as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution.@J. Environ. Chem. Engg., 6(2), 2290-2301.@Yes$Haldhar R., Prasad D. & Saxena A. (2018).@Myristicafragrans Extract as an Eco-friendly Corrosion Inhibitor for Mild Steel in 0.5 M H2SO4 Solution.@Biochem Pharmacol., 1-40. DOI: https://doi.org/10.1016/j.jece. 2018.03.023.@Yes$Iroha N. B. and Hamilton-Amachree A. (2018).@Adsorption and Anticorrosion Performance of OcimumCanum Extract on Mild Steel in Sulphuric Acid Pickling Environment.@American J. of Mater. Sci., 8(2), 39-44, DOI:10.5923/j. materials. 20180802.03.@Yes$Adindu C. B., Chidiebere M. A, Ibe F. C., Ogukwe C. E. & Oguzie E. E. (2017).@Protecting Mild Steel from Acid Corrosion Using Extract from Ocimumgratissimum Leaves.@Int. Lett. Chem. Phys. Astron., 73, 9-21. https://doi.org/10.18052/www.scipress.com/ILCPA.73.9.@Yes$Verma D. K., Khan F., Verma C., Agrawal S. & Quraishi M. A. (2017).@Stem extract of Opuntia cochenillifera as green and sustainable corrosion inhibitor of mild steel in 0.5 MH2SO4 solutions.@Int. J. Nano Corr. Sci. and Engg., 4(1), 31-54.@Yes$Riaz A. K., Mushira B. A., Jameel, Joany R. M.&Susai R. (2018).@Green Approach to Corrosion Inhibition of Mild Steel in Acid Medium by Aqueous Extract of Pedalium murex L. Leaves.@Der Pharma Chem.,10(S1), 21-28.@Yes$Anuchi S. O. and Ngobiri N. C. (2018).@Corrosion Inhibition of Mild Steel in a H2SO4 Solution by Piper Guineense Squeezed Extract.@Port. Electrochim. Acta, 36(4), 285-291 DOI: 10.4152/pea.201804285.@Yes$Bhuvaneswari T. K., Vasantha V. S. & Jeyaprabha C. (2018).@PongamiaPinnata as a Green Corrosion Inhibitor for Mild Steel in 1 N Sulfuric Acid Medium. Silicon.@10, 1793-1807. DOI:10.1007/s12633-017-9673-3.@Yes$Louis H., Japari J., Sadia A., Philip M.&Bamanga A. (2017).@Photochemical screening and corrosion inhibition of Poupartiabirrea back extracts as a potential green inhibitor for mild steel in 0.5 M H2SO4 medium.@World News Natural Sci., 10, 95-100.@Yes$Pramudita M., Sukirno and Nasikin M. (2018).@Rice Husk Extracts Ability to Reduce the Corrosion Rate of Mild Steel.@Int. J. Chem. Eng. and Appli., 9(4),143-146.@Yes$Saxena A., Prasad D., Haldhar R., Singh G. & Kumar A. (2018).@Use of Saracaashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4.@J. Mol. Liq., 258, 89–97.@Yes$NdukweA. I. and Anyakwo C. N. (2017).@Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H2SO4) by Leaf-Pastes of Sida Acuta Plant.@J. Civil, Constr. and Environ. Eng., 2(5), 123-133. doi: 10.11648/j. jccee.20170205.11.@Yes$Saxena A., Prasad D., Haldhar R., Singh G. & Kumar A. (2018).@Use of Sidacordifolia extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4.@J. Environ. Chem. Eng., 6(1), 694-700. https://doi.org/10.1016/j.jece.2017. 12.064.@Yes$Abakedi O. U. (2017).@Inhibitory effect of Solenostemon monostachyus leaf extract on mild steel corrosion in H2SO4 solution.@Int. J. Innovative Environ. Studies Res., 5(2), 10-16.@Yes$Priya K. S., Prathibha B. S., Vasudha V. G. & Nagaswarupa, H. P. (2018).@Spathodea Campanulata as a Corrosion Inhibitor for Mild Steel in 1N H2SO4 Media.@Mater. Today, Proce., 5(10), Part 3, 22595-22604, https://doi.org/10.1016/j.matpr.2018.06.633.@Yes$Akpan I. A., Abakedi O. U. & James M. A. (2018).@Inhibition of Mild Steel Corrosion in Acidic Medium by Telfairia occidentalis Rind Extract.@Asian J. Appl. Chem. Res., 1(3), 1-10, Article no. AJACR.42725.@Yes$Samsath Begum A., Jamal Abdul Nasser A. & Rajendran S. (2017).@Corrosion inhibition by aqueous extract of tephrosiavillosa leaves.@World J. Pharma. Res., 6 (17), 1072-1100.@Yes$Chaudhary S. and Tak R. K. (2017).@Thermodynamic Study of Mild Steel Corrosion Inhibition in Sulphuric Acid Medium by Tribulus terrestris Fruit Extract.@J. Chem. Bio. Phy. Sci., Sec. A, 7(4), 871-881. DOI:10.24214/jcbps.A. 7.4.87181.@Yes$Haldhar R., Prasad D., Saxena A. & Singh P. (2018).@Valeriana wallichii root extract as a green & sustainable corrosion inhibitor for mild steel in acidic environments: experimental and theoretical study.@Mater. Chem. Frontiers, 2(6), 1225-1237. DOI:10.1039/C8QM00120K.@Yes$Nya N. E., Ikeuba A. I., Okafor P. C., Ugi B. U., Bassey V. M. & Obike A. I. (2018).@Mild Steel Corrosion Mitigation in Sulphuric Acid via Benign Isolated Phytochemicals from Viscum album.@J. Mater. Sci. Chem. Eng., 6, 132-146. DOI:10.4236/msce.2018.64014.@Yes$Ugwuoke J. C. and Amalu N. I. (2017).@Inhibitive Influence of Carica Papaya and Azadirachta Indica Leaves Extracts on the Corrosion of Mild Steel in H2SO4 Environment.@Int. J. Eng. Inventions, 6(6), 49-57.@Yes$Nandini G. K. M., Rishab A. B., Umabharathi P., Naveen Kumar M., & Vetrivel G. (2018).@Investigation on the Role of Various Eco-Friendly Materials which acts as a Corrosion Inhibitor for Mild Steel and HYSD Bars.@Int. J. Res. Appl. Sci.& Eng.Techn., 6(XII), 616-624.@Yes <#LINE#>Industrial Ecosystem: To reduce Global warming<#LINE#>Rachit @Tandon,Devendra Kumar @Singh,Anshul @Agarwal <#LINE#>60-64<#LINE#>9.ISCA-RJCS-2023-011.pdf<#LINE#>My Green Tech. India (GAUCRAFT), Dayalbagh, Agra, UP, India@Department of Chemistry, Agra College, Dr. Bhimrao Ambedkar University, Agra, UP, India@Department of Applied Science (Chemistry), Faculty of Engineering and Technology (FET), Agra College, Agra, UP, India<#LINE#>3/7/2023<#LINE#>23/8/2023<#LINE#>Green House Gases affect our environment and causes Global warming. That the some international and national endeavor to the as in to alleviate of enhances to the assemblage to chlorofluocarbon gasses’ effects by to idea of the carbon base credits. The carbon base market component has a target that allows the market mechanism to derived industrial and commercial processes towards reducing emissions and reduce the carbon intensively approach. This idea can be solved by the concept of Industrial Ecosystem. The industrial system has a deep connection with the natural ecosystem, which remains forever. Which offers a perspective in eco-adaptation and ecosystem. Because in the industrial ecological system it is very important and necessary to consider industries as an interactive system instead of separate components. It is imperative to connected industrial waste producers to an operating web of disposal sinks that also decrease the total amount of industrial waste material lost to the waste intermediate Processes.<#LINE#>Krishnamurthy Rohini (2023).@A crucial global meeting to approve the Synthesis Report of the Intergovernmental Panel on Climate Change (IPCC) has begun in Switzerland from March 13th- 17th, 2023.@The report provides an overview of the state of knowledge on the science of climate change.@Yes$Adger, W. N., Arnell, N. W. & Tompkins, E. L. (2005).@Successful adaptation to climate change across scales.@Global environmental change, 15(2), 77-86.@Yes$Leal Filho, W., Azeiteiro, U. M., Balogun, A. L., Setti, A. F. F., Mucova, S. A. R., Ayal, D., Totin, E., Lydia, A. M., Kalaba, F. K., and Oguge, N. O. (2021).@The influence of ecosystems services depletion to climate change adaptation efforts in Africa.@Elsv., Sci. of the Total Environm., 779, pp 146414.@Yes$Feliciano, D., Recha, J., Ambaw, G., MacSween, K., Solomon, D., & Wollenberg, E. (2022).@Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia.@Climate policy, 22(4), 427-444.@Yes$Battisti, D. S., & Naylor, R. L. (2009).@Historical warnings of future food insecurity with unprecedented seasonal heat.@Science, 323(5911), 240-244.@Yes$Schuurmans C. J. E. (2021).@The world heat budget: expected changes Climate Change.@CRC Press pp. 1- 15, ISBN 9781003069935. https://www. Taylorfrancis.com> 9781003069935-1.@Yes$Weisheimer, A. and Palmer, T. (2005).@Changing frequency of occurrence of extreme seasonal temperatures under global warming: Geophysical Research Letters.@J. Advan. Earth & space Sci., 32(20).@Yes$Yadav, M. K., Singh, R., Singh, K., Mall, R., Patel, C., Yadav, S. and Singh, M. (2015).@Assessment of climate change impact on productivity of different cereal crops in Varanasi India.@J. Associat. Agrometeorolog., 17(2), 179–184. https://www.agrimetassociation.org.@Yes$Leppänen, S., Saikkonen, L., & Ollikainen, M. (2014).@Impact of Climate Change on cereal grain production in Russia. Agricultural Goods and Bads: Essays on Agriculture and Environmental Externalities.@@Yes$Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L., & Stenek, V. (2021).@Climate change risk to global port operations.@Nature Climate Change, 11(1), 14-20.@Yes$Jurgilevich, A., Räsänen, A., Groundstroem, F., & Juhola, S. (2017).@A systematic review of dynamics in climate risk and vulnerability assessments.@Environmental Research Letters, 12(1), 013002.@Yes$Murshed, M. (2020).@An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia.@Environmental Science and Pollution Research, 27(29), 36254-36281. https://doi.org/10.1007/s11356-020-09497-3.@Yes$Hussain, M., Butt, A. R., Uzma, F., Ahmed, R., Irshad, S., Rehman, A. and Yousaf, B. (2020).@A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan.@Environm. Monitor. & Assess., 192(1), 48. https://doi.org/ 10.1007/s10661-019-7956-4.@Yes$Sovacool, B. K., Griffiths, S., Kim, J., Bazilian, M. (2021).@Climate change and industrial F-gases:- a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions.@Renew. & Sustain. Energ. Revi. Elsev., 141(C). https://doi.org/10.1016/j.rser.110759@Yes$Usman, M., & Balsalobre-Lorente, D. (2022).@Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load?.@Energ. Poli. Elsev., 162(C). https://doi.org/j.enpol.2022.112780.@Yes$Murshed, M., Nurmakhanova, M., Al-Tal, R., Mahmood, H., Elheddad, M., & Ahmed, R. (2022).@Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth mitigate ecological footprints in South Asia?.@Energy Sources, Part B: Economics, Planning, and Policy, 17(1), 2038730.@Yes$Sovacool, B. K. (2021).@Reckless or righteous? Reviewing the sociotechnical benefits and risks of climate change geoengineering.@Energy Strategy Reviews, 35, 100656.@Yes$Wilson-Rocheford, k., & McGuinness, M. (2015).@UNGC, Accenture. A call to climate action. New York.@https://www.unglobalcompact.org/lirary/newsroom. accenture/3551.com.@No$Wu, Y., Gu, F., Ji, Y., Guo, J., & Fan, Y. (2020).@Technological capability, eco-innovation performance, and cooperative R&D strategy in new energy vehicle industry: Evidence from listed companies in China.@Journal of Cleaner Production, 261, 121157.@Yes$Cecere, G., Corrocher, N., Gossart, C., & Ozman, M. (2014).@Technological pervasiveness and variety of innovators in Green ICT: A patent-based analysis.@Research Policy, 43(10), 1827-1839.@Yes$Levinthal, D. A. and Warglien, M. (1999).@Landscape design, designing for local action in complex worlds.@Organ. Sci., 10(3), 342-357. https://doi.org./10.1287/orsc. 10,3,342.@Yes$Wang, Y., Huscroft, J. R., Hazen, B.T., M. Zhang, M. (2018).@Green information, green certification and consumer perceptions of remanufctured automobile parts.@Res. Conser. & Recycl., 128(1F), 187-19. https://doi.org/ j.resconrc.2016.07.015.@Yes$Shabanpour, R., Mousavi, S. N. D., Golshani, N., Auld, J., & Mohammadian, A. (2017).@Consumer preferences of electric and automated vehicles.@In 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 716-720). IEEE.@Yes$Zhao, R., Geng, Y., Liu, Y., Tao, X. and Xue, B. (2018).@Consumers@J. Clean. Product., 171 (3), 1664-1671. https://doi.org./10.1016/j.jclepro.2017.10.10. 143.@Yes$Giles, F. W. (2004).@From Sectoral Systems of Innovation to Socio-Technical Systems.@Res. Poli., 33, 897–920. https://doi:10.1016/j.respol.2004.01.015.@Yes$Markard, J., Raven, R., & Trufer, B. (2012).@Sustainability Transition: An Emerging Field of Research and Its Prospects.@Res. Poli., 41, 955–967. https://doi.org/10.1016/j.respol.2012.02.013.@Yes$Akbar, U., Lee, Q-L., Akmal, M. A., Shakib, M., W. Iqbal, W., (2021).@Nexus between agro-ecological efficiency and carbon emission transfer: evidence from China. Climate.@Science. pollut. Res., 28, 18995-19007. https//doi:10.1007/ s11356-020-09614-2.@Yes$Rahman, M. M., Alam, K., & Velayutham, E. (2021).@Is industrial pollution detrimental to public health? Evidence from the world’s most industrialized countries.@BMC Public Health, 21(1), 1-11.@Yes$Uzunali, A., and Yazici, T. (2022).@What is a carbon footprint? Environ Dev Sustain.@Spri. Nature, pp 1-23. https://doi: 10.1007/s10668-022-02500-6.@No$Wright, L. A., Kemp, S., & Williams, I. (2011).@Carbon footprinting’: towards a universally accepted definition.@Carbon management, 2(1), 61-72.@Yes$Carbon Credit. (2012).@Collins English Dictionary - Complete & Unabridged.@11th Edition. Retrieved October 04, 2012 from CollinsDictionary.com.@No$Singh, S. K., Dixit, K., & Sundaram, S. (2014).@Algal-based CO2 sequestration technology and global scenario of carbon credit market: a review.@Am J Eng Res, 3(4), 35-37.@Yes$Singh, S. K., Jha, M. K., Bansal, A., & Singh, A. P. (2014).@Carbon credit market and algae-based CO2 sequestration technology: A review.@@Yes$Chisti, Y. (2008).@Biodiesel from microalgae beats bioethanol.@Trends in biotechnology, 26(3), 126-131.@Yes$United States. Environmental Protection Agency. Office of Policy, Planning, and Evaluation. (1994).@Inventory of US greenhouse gas emissions and sinks.@US Environmental Protection Agency, Office of Policy, Planning and Evaluation.@Yes$Ehrenfeld, J. R. and Gertler, N. (1997).@Industrial ecology in practice. The evolution of interdependence at Kalundborg.@J. Indust. Ecol., 1(1), 67–79.@Yes$loquis (2023).@Kalundborg Industrial Park.@https://www.loquis.com/en/loquis/2418869/kalundborg Eco industrial park. (Accessed 2023-07-01)@Yes