@Research Paper <#LINE#>New one-pot synthetic route and spectroscopic characterization of Hydroxo-bridged Stepped-cubane Copper(II) complexes<#LINE#>Olufunso O. @Abosede,Joshua A. @Obaleye <#LINE#>1-9<#LINE#>1.ISCA-RJCS-2022-005.pdf<#LINE#>Department of Chemistry, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria@Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria<#LINE#>16/3/2022<#LINE#>18/1/2023<#LINE#>A new convenient and efficient route for the synthesis of two very important hydroxo-bridged stepped-cubane copper complexes viz: [Cu4(bpy)4Cl2(OH)4]Cl2.6H2O (1) and [Cu4(phen)4Cl2(OH)4]Cl2.6H2O (2) have been obtained. This synthetic route from the mononuclear CubpyCl2complex is easier, more reproducible and afforded the complex in a much higher yield than the other two previously reported procedures which were equally serendipitously discovered. The purity and formation of the complexes were confirmed with elemental (C,H,N) analysis and the details of the UV-Vis, Fourier transform infrared, electrospray ionization mass spectra of both complexes and the single crystal X-ray crystallography of 1 are presented and discussed. X-ray crystallography confirms the absolute structure of the complexes. The complexes were formed via the connection of four copper atoms to four hydroxide bridging ligands and four bipyridyl ligands with two chloride ligands. There are two coordinate environments around two pairs of copper atoms (CuN2ClO2 and CuN2O3) and each copper atom is pentacoordinate with square pyramidal geometry.<#LINE#>Moustakas, M. (2021).@The Role of Metal Ions in Biology, Biochemistry and Medicine.@Materials (Basel, Switzerland), 14(3), 549. https://doi.org/10.3390/ ma14030549@Yes$Tsang, T., Davis, C.I. and Brady, D.C. (2021).@Copper Biology.@Curr Biol., 31(9), R421-R427. https://doi.org/10.1016/j.cub.2021.03.054@Yes$Wang, P., Yuan, Y., Xu, K., Zhong, H., Yang, Y., Jin, S., Yang, K. and Qi, X. (2021).@Biological applications of copper-containing materials.@Bioactive materials, 6(4), 916-927.@Yes$Sagar, S., Sengupta, S., Mota, A.J., Chattopadhyay, S.K., Ferao, A.E., Riviere, E., Lewis, E., Naskar, S. (2017).@Cubane-like tetranuclear Cu(II) complexes bearing a Cu4O4 core: crystal structure, magnetic properties, DFT calculations and phenoxazinone synthase like activity.@Dalton Trans., 46, 1249-1259.@Yes$Paul, A., Mistri, S., Bertolasi, V. and Manna, S.C. (2019).@DNA/protein binding and molecular docking studies of two tetranuclear Cu(II) complexes with double-open-cubane core like structure.@Inorg. Chim. Acta, 495, 119005, https://doi.org/10.1016/j.ica.2019.119005.@Yes$Ardizzoia, G.A. and Brenna, S. (2016).@Hydroxo-bridged copper(II) cubane complexes.@Coord. Chem. Rev., 311, 53-74. https://doi.org/10.1016/j.ccr.2015.11.013.@Yes$Vafazadeh, R. and Willis, A.C. (2015).@Tetra(μ3-hydroxo) Bridged Copper(II) Tetranuclear Cubane Complexes: Synthesis, Crystal Structure, and DNA Binding Studies.@J. Coord. Chem., 68(13), 2240-2252.@Yes$Mehrani, A., Sorolla, M.G., Makarenko, T. and Jacobson, A.J. (2021).@A New 1-1-4 Pattern of Magnetic Exchange Interactions in A Cubane Core Tetranuclear Copper (II) Complex.@Polyhedron, 199, 115088.@Yes$Thakurta, S., Roy, P.P., Butcher, R.J., Fallah, M.S., Tercero, J., Garribba, E. and Mitra, S. (2009).@Ferromagnetic Coupling in a New Copper(II) Schiff Base Complex with Cubane Core: Structure, Magnetic Properties, DFT Study and Catalytic Activity.@Eur. J. Inorg. Chem., 29, 4385-4395. https://doi.org/10.1002/ ejic.200900493@Yes$Asadi, Z., Zarei, L., Golchin, M., Skorepova, E., Eigner, V. and Amirghofran, Z. (2020).@A Novel Cu(II) Distorted Cubane Complex Containing Cu4O4 Core as the First Tetranuclear Catalyst for Temperature Dependent Oxidation of 3,5-Di-Tert-Butyl Catechol and in Interaction with DNA & Protein (BSA).@Spectrochim Acta A Mol Biomol Spectrosc. 227, 117593. https://doi.org/10.1016 /j.saa.2019.117593@Yes$Jiang, X., Li., J., Yang., B., Wei., X., Dong, B., Kao, Y., Huang, M., Tung, C. and Wu, L. (2018).@A Bio-inspired Cu4O4Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution.@Angew. Chem. Int. Ed., 57, 7850–7854. https://doi.org/10.1002/anie.201803944@Yes$Gao, W., Wang, J., Shi, N., Chen, C., Fan, Y. and Wang, W. (2019).@Electrocatalytic Water Oxidation Studies of a Tetranuclear Cu(II) Complex with Cubane-like Core Cu4(μ3-O)4.@New J. Chem., 43, 4640-4647. https://doi.org/10.1039/ C8NJ06263C@Yes$Karmakar, A., Oliver, C.L., Roy, S. and Öhrström L. (2015).@The Synthesis, Structure, Topology and Catalytic Application of a Novel Cubane-Based Copper(II) Metal–Organic Framework Derived From a Flexible Amido Tripodal Acid.@Dalton Trans., 44, 10156-10165. https://doi.org/ 10.1039/ C4DT03087G@Yes$Sletten, J., Sørensen, A., Julve, M., and Journaux, Y. (1990).@A Hydroxybridged Tetranuclear Copper(II) Cluster of the Cubane Type. Preparation and Structural and Magnetic Characterization of tetrakis [2,2’-bipyridyl) hydroxocopper(ii)] hexafluorophosphate.@Inorg. Chem., 29, 5054-5058. Https://doi.org/10.1021/ic00350a010@Yes$Zheng, Y. and Lin, J. (2002).@Hydroxo-bridged Tetranuclear CuII Complexes :{[Cu(bpy)(OH)]4Cl2]Cl2. 6H2O and {[Cu(phen)(OH)]4(H2O)2]Cl4.4H2O.@Z. Anorg. Allg. Chem., 628, 203-208. https://doi.org/10.1002/ zaac.200300003@Yes$Carballo, R., Covelo, B., Vazquez-Lopeza, E.M., Garcıa-Martınez, E. and Castineiras, A. (2002).@A New Preparative Route of the Stepped-Cubane Tetranuclear Copper(II) Compound, [Cu4(μ2-OH)2(μ3-OH)2Cl2(bipy)4] Cl2•6H2O.@Z. Anorg. Allg. Chem., 628, 907-908.@Yes <#LINE#>Eco friendly synthesis method of AgNP nanoparticles from eletarria cardamomum husk extract and its antibacterial activities<#LINE#>K.N. @Porchelvi,G. @Keerthana <#LINE#>10-14<#LINE#>2.ISCA-RJCS-2022-020.pdf<#LINE#>Department of Chemistry, Agurchand Manmull Jain College, Affiliated to the University of Madras, Meenambakkam. Chennai-600061, India@Department of Chemistry, Agurchand Manmull Jain College, Affiliated to the University of Madras, Meenambakkam. Chennai-600061, India<#LINE#>11/9/2022<#LINE#>12/2/2023<#LINE#>Silver nanoparticles were synthesised by many methods. Our focus of interest is green synthesise method. Elettaria cardamomum extract has the potential to reduce silver nitrate resulting in the formation of AgNPs. Various characterisation techniques used were UV-Vis spectroscopy, Infrared spectroscopy, scanning electron microscope, X-ray diffraction studies and particle size analyser. The morphology, size distribution, and crystalline nature were revealed by the above studies. Phytochemical analysis of the Elettaria cardamomum husk extract was done for the presence of natural products. Further studies confirmed its ability against gram +ve and gram -ve bacteria. The gram +ve bacteria like Bacillus subtilis, staphylococcus aureaus and gram - ve bacteria like Escherichia coli and proteus vulgaris.<#LINE#>Luisi, P. L., Magid, L. J., & Fendler, J. H. (1986). Solubilization of enzymes and nucleic acids in hydrocarbon micellar solution. Critical Reviews in Biochemistry, 20(4), 409-474.@undefined@undefined@Yes$L. S. Nair and C. T. Laurencin,(2007) Silver Nanoparticles: Synthesis and Therapeutic Applications, Journal of Biomedical Nanotechnology, 3(4): 301-316@undefined@undefined@Yes$Karnani, R. L., & Chowdhary, A. (2013). Biosynthesis of silver nanoparticle by eco-friendly method. Indian journal of Nanoscience, 1(1), 25-31.@undefined@undefined@Yes$Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262.@undefined@undefined@Yes$Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874.@undefined@undefined@Yes$Preethi, K. C., Kuttan, G., & Kuttan, R. (2006). Antioxidant Potential of an Extract of Calendula officinalis. Flowers in Vitro. and in Vivo. Pharmaceutical biology, 44(9), 691-697.@undefined@undefined@Yes$Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development–a food industry perspective. Trends in Food Science & Technology, 17(10), 547-556.@undefined@undefined@Yes$Crozier, P. A., & Hansen, T. W. (2015). In situ and operando transmission electron microscopy of catalytic materials. Mrs Bulletin, 40(1), 38-45.@undefined@undefined@Yes$Gurunathan, S., Han, J. W., Kim, E. S., Park, J. H., & Kim, J. H. (2015). Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. International journal of nanomedicine, 2951-2969.@undefined@undefined@Yes$Crozier, P. A., & Hansen, T. W. (2015). In situ and operando transmission electron microscopy of catalytic materials. Mrs Bulletin, 40(1), 38-45. doi: 10.1557/mrs.2014.304. HDL: 2286/R.I.35693.@undefined@undefined@Yes$Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface science, 145(1-2), 83-96. Doi: 10.1016/j.cis.2008.09.002.@undefined@undefined@Yes$Li, L. S., Hu, J., Yang, W., & Alivisatos, A. P. (2001). Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano letters, 1(7), 349-351. Doi:10.1021/n1015559r. 34@undefined@undefined@Yes$Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., ... & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328-335.Doi: 10.1016/j.colsurfb.2009.07.048.@undefined@undefined@Yes$de Aragão, A. P., de Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araújo, M. C., Santiago, J. d. A. S., et al. (2019). Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab. J. Chem. 12, 4182–4188. doi:10.1016/j.arabjc.2016.04.014@undefined@undefined@Yes$Escárcega-González, C. E., Garza-Cervantes, J. A., Vazquez-Rodríguez, A., Montelongo-Peralta, L. Z., Treviño-Gonzalez, M. T., Díaz Barriga Castro, E., ... & Morones-Ramirez, J. R. (2018). In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. International journal of nanomedicine, 2349-2363.@undefined@undefined@Yes$Gandhi, H., & Khan, S. (2016). Biological Synthesis of Silver Nanoparticles and Its Antibacterial Activity. Journal of Nanomedicine and Nanotechnology, 7(2), 1000366. doi:10.4172/2157-7439.1000366@undefined@undefined@Yes$Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 73(6), 1712-1720.@undefined@undefined@Yes$Sangaonkar, G. M., & Pawar, K. D. (2018). Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Colloids and Surfaces B: Biointerfaces, 164, 210-217.@undefined@undefined@Yes$Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental science and pollution research, 23, 4489-4497.@undefined@undefined@Yes$Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abomughaid, M. M., Al Ali, A., ... & Dizge, N. (2022). Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials, 12(12), 2013.@undefined@undefined@Yes$Sharma, A., Sagar, A., Rana, J., & Rani, R. (2022). Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters, 10(1), 2.@undefined@undefined@Yes$Yassin, M. T., Mostafa, A. A. F., Al-Askar, A. A., & Al-Otibi, F. O. (2022). Facile green synthesis of silver nanoparticles using aqueous leaf extract of Origanum majorana with potential bioactivity against multidrug resistant bacterial strains. Crystals, 12(5), 603.@undefined@undefined@Yes$Asfere, Y., Kebede, A., & Zinabu, D. (2020). In-vitro antimicrobial activities and phytochemical screening of selected plant extracts against some medically and agriculturally important pathogens. European Journal of Medicinal Plants, 31(10), 167-189.@undefined@undefined@Yes$Atwaa, E. S. H., Shahein, M. R., Radwan, H. A., Mohammed, N. S., Aloraini, M. A., Albezrah, N. K. A., ... & Elmahallawy, E. K. (2022). Antimicrobial activity of some plant extracts and their applications in homemade tomato paste and pasteurized cow milk as natural preservatives. Fermentation, 8(9), 428. doi: 10.1080/07391102.2022.2130987@undefined@undefined@Yes$Ads, E. N., Hassan, S. I., Rajendrasozhan, S., Hetta, M. H., Aly, S. H., & Ali, M. A. (2022). Isolation, structure elucidation and antimicrobial evaluation of natural pentacyclic triterpenoids and phytochemical investigation of different fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS analysis. Molecules, 27(6), 1805. doi: 10.3390/molecules27061805@undefined@undefined@Yes <#LINE#>Quantum-chemical study of the coordination of some aromatic derivatives of semicarbazone<#LINE#>Urbain A. @Kuevi,François @Aïdoté,Gaston A. @Kpotin,Guy S.Y. @Atohoun <#LINE#>15-22<#LINE#>3.ISCA-RJCS-2022-023.pdf<#LINE#>Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin@Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin@Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin@Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire (LACTHESMO), Université d’Abomey-Calavi, Bénin<#LINE#>26/10/2022<#LINE#>30/1/2023<#LINE#>Semicarbazone is a molecule having the R1R2C=N-NR3-C(=O)-NR4R5 general formula. The oxygen atom with its two free electron pairs in on hand, and each nitrogen atom with its one free electron pair in the other hand are potential coordination sites. The simplest molecule in this series is the semicarbazone which formula is H2C=N-NH-C(=O)NH2. Some semicarbazones, such as nitrofurazone, and some thiosemicarbazones are known to have many properties: antiviral, antibacterial, antitrypanosomal, anticonvulsant, antitumor, anticancer. They are usually mediated by an association with copper or iron. Indeed transition metal complexes with given chemical structures are useful alternatives in the treatment of certain diseases since coordination of active ingredients deeply modifies both the physiological properties of metals and ligands in the meaning of overall improvement of these properties. The present work focuses on quantum study of the complexation of some aromatic derivatives of semicarbazone. The purpose of this study is to determine the most favorable coordination site of each of these ligands. It was found that the oxygen atom appears more favorable to the coordination of the aromatic derivatives of semicarbazone. Complexes of these ligands with the Zn (II) were modeled. The calculations were made the DFT/B3LYP level with the 6-31G (d, p) orbital basis set.<#LINE#>Esmaeili, L. (2019).@Complexes du cuivre avec applications biomédicales: syntheses, characterization et inclusion dans des films biocompatible.@Unpublished doctoral dissertation, Montreal University, Quebec, Canada.@Yes$Mangue, J. (2019).@Syntheses de complexes de cuivre bio-inspirés pour la réduction catalytique de l’oxyde nitreux et du dioxygène.@Unpublished doctoral dissertation, Communaute Universite Grenoble Alpes, Grenoble, France.@Yes$Henni, A. (2013).@Synthèses et Caractérisations des Ligands.@Complexes de Zinc et Complexes de Zinc-Alcalino-terreux, mémoire de magister, Tlemcen, university Abou Bekr Belkaid, 7-38.@Yes$Ebnou, F., Ebeid, K., M’ Haiham, M., Dhia, M. B. & Sanhourya, M. A. (2020).@Synthèse et caractérisation des complexes de cobalt (II) et de nickel (II) avec des ligands du type (R2N) 3P (E)(R2N= pipéridinyl ou morpholinyl; E= S ou Se).@Proceeding of the JIC2019, 2, 1-7.@Yes$Allab, Y. (2020).@Préparation de complexe avec des métaux de transition stabilité, synthèse, activité et application.@Doctoral dissertation.@Yes$Büchel, K. H., Moretto, H. H., & Werner, D. (2008).@Industrial inorganic chemistry.@John Wiley & Sons. https://doi.org/10.1002/9783527613328@Yes$Bäuerlein Edmund & Arias Jose. Luis. (2007).@Handbook of biomineralization: biological aspects and structure formation.@Eggshell Growth and Matrix Macromolecules, 309-327, Online ISBN: 9783527619443. https://doi.org/10.1002/9783527619443@Yes$Bäuerlein, E., & Arias, J. L. (2007).@Biological aspects and structure formation.@Wiley-Vch, 1(19), 331-347.@Yes$Bäuerlein Edmund & Frankel Richard (2007).@Handbook of biomineralization: biological aspects and structure formation, Magnetic Microstructure of Magnetotactic Formation in Magnetospirilium.@126-144, Online ISBN: 9783527619443. https://doi.org/10.1002/9783527619443@Yes$Andersen, O. (1999).@Principles and recent developments in chelation treatment of metal intoxication.@Chem. Rev., 99(9), 2683–2710. https://doi.org/10.1021/cr980453a@Yes$Wong, E. & Giandomenico, C. M. (1999).@Current status of platinum-based antitumor drugs.@Chem. Rev., 99(9), 2451-2466. https://doi.org/10.1021/cr980420v@Yes$Shaw, C. F. (1999).@Gold-based therapeutic agents.@Chem. Rev., 99(9), 2589–2600.@Yes$Caravan, P. & Ellison, J. J. (1999).@Gadolinium (III) chelates as MRI contrast agents:  structure, dynamics, and applications.@Chem. Rev., 99(9), 2293–2352. https://doi.org/10.1021/cr980440x@Yes$Picot, D. (2008).@Modelisation de la reaction d@Doctoral dissertation, Ecole Polytechnique X.@Yes$Sakirigui, A., Sika, K. C., Koffi, A. E., Fatondji, R. H., Fagbohoun, L., Yovo, F., ... & Gbénou, J. D. (2021).@Comparative antimicrobial activity of Cymbopogon citratus essential oil and thiosemicarbazones derived from this oil.@GSC Advanced Research and Reviews, 9(3), 064-092.@Yes$Amani J. (2017).@Synthèse, Caractérisation et Activité biologique des complexes à base de thiosemicarbazone. Chimie inorganique.@Unpublished doctoral dissertation, Université libannaise de Beyrouth, Université d@Yes$Frisch, A. (2009).@Gaussian (version 09W) [software].@Gaussian Inc., Pittsbourgh PA.@No$Gómez-Jeria, J. S. (2014).@D-Cent-QSAR (version 1) [software].@Santiago, Chile, 2014@No$Mason, R. (1961).@The magnetic anisotropy and electron distribution in succinimide.@Acta Crystallographica, 14(7), 720-724.@Yes$Potapov Victor and Tatarintchik Sopia (1988).@Chimie organique.@(Ed. Mir), Moscou, p 37@No$Sakurai, H., Yoshikawa, Y., & Yasui, H. (2008).@Current state for the development of metallopharmaceutics and anti-diabetic metal complexes.@Chemical Society Reviews, 37(11), 2383-2392.@Yes$Kuevi, U. A., Kpotin, G. A., Atohoun, G. S., & Mensah, J. B. (2018).@Theoretical Study of the Coordination of Semicarbazone and Its Methylated Derivatives.@International Journal of Chemistry, 10(1), 1.@Yes <#LINE#>Current scenario of limnological characteristics of Pushkar lake, Rajasthan, India<#LINE#>Pooja @Tak,Rounak @Choudhary,Vivek @Sharma,Subroto @Dutta <#LINE#>23-28<#LINE#>4.ISCA-RJCS-2022-030.pdf<#LINE#>Department of Environmental Science, Maharshi Dayanand Saraswati University, Ajmer, India@Department of Environmental Science, Maharshi Dayanand Saraswati University, Ajmer, India@Department of Environmental Science, Maharshi Dayanand Saraswati University, Ajmer, India@Department of Environmental Science, Maharshi Dayanand Saraswati University, Ajmer, India<#LINE#>19/12/2022<#LINE#>3/1/2023<#LINE#>Lakes are a unique entity, where physical, historical, cultural, social, administrative, or functional elements come together to create a tourist reality that is both spatial and practical. For locals, lakes and reservoirs in dry and semi-arid environments are a major source of water. In recent decades, there has been concern about how people interact with water bodies. All tourist activities in the town of Pushkar depend on Pushkar Lake. The lake experiences an increase in biochemical oxygen demand (BOD), alkalinity, water hardness, chlorine, fluoride, and nitrate levels as a result of the millions of people who bathe there and participate in other religious activities almost all year long. Samples were gathered in PET bottles using conventional methods. To estimate the quality of drinking water, Horton's Water Quality Index (WQI) was used. All of the analysis techniques adhered to the prescribed protocols as per the techniques described in APHA. This research reveals that the water in Pushkar Lake was slightly alkaline. The total alkalinity of water depends on the kind and quality of its constituents, including bicarbonate, carbonate, and hydroxide. The range of TDS values ranged from 332ppm to 462.37ppm. Pushkar Lake had a minimum total hardness of 185.75mg/lt during the study period. The Pushkar Lake's WQI value, which ranged from 94.67 to 124.01, indicated that the water was unfit for drinking. Pushkar Lake's primary source of hardness is the addition of calcium and magnesium through surface run-off during the rainy season. Because of its spiritual significance, Pushkar Lake is revered and visited by pilgrims. Due to the lake's small size and delicate ecology, an increase in tourist activities has had a detrimental effect on its water quality. To address the problem, regular monitoring of water quality is also necessary.<#LINE#>Das, J. and Acharya, B.C. (2003).@Hydrology and assessment of lotic water quality in Cuttack city, India.@Water, Air, Soil Pollution, 150, 163-175.@Yes$Prasad, S. N., Ramachandra, T. V., Ahalya, N., Sengupta, T., Kumar, A., Tiwari, A. K., Vijayan, V. S. & Vijayan, L. (2002).@Conservation of wetlands of India-a review.@Tropical Ecology, 43(1), 173-186.@Yes$Reddy, M. S., & Char, N. V. V. (2006).@Management of lakes in India.@Lakes & Reservoirs: Research & Management, 11(4), 227-237.@Yes$Tiwana, A. J. (1992).@Water resource management quality and quality aspects.@Proc. Int. Con. Rural works and sanitation in developing countries, IWWA, Nagpur, India, 6-17.@Yes$Sharma, R., & Sharma, K. C. (1993).@A note on trophic state of Anasagar lake, Ajmer.@Geobios new report, 10, 158-159.@Yes$Mishra, P. C., & Patel, R. K. (2001).@Study of the pollution load in the drinking water of Rairangpur, a small tribal dominated town of North Orissa.@Indian J Environ Ecoplan, 5(2), 293-298.@Yes$Naik, S., & Purohit, K. M. (2001).@Studies on water quality of river Brahmani in Sundargarh district, Orissa.@Indian J Environ Ecoplan, 5(2), 397-402.@Yes$Tiwari, T. N., & Mishra, M. A. (1985).@A preliminary assignment of water quality index of major Indian rivers.@Indian J Environ Prot, 5(4), 276-279.@Yes$Khan, K., Lu, Y., Saeed, M. A., Bilal, H., Sher, H., Khan, H., Ali, J., Wang, P., Uwizeyimana, H., Baninla, Y., Li, Q., Liu, Z., Nawab, J., Zhou, Y., Su, C., & Liang, R. (2018).@Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan.@Journal of Environmental Sciences, 72, 1-12. http://dx.doi.org/10. 1016/j.jes.2017.12.008.@Yes$Bhatt, N. A., Tank, P. R., Kavindra, J. and Sharma, B. K. (2018).@Age, growth and harvestable size of Catla catla (Ham.) from Khodiyar Dam, Dhari, Gujarat.@Journal of entomology and zoology studies, 6(2), 623-628.@Yes$Ranade, P. S. (2008).@Managing Lake Tourism: Challenges Ahead.@Conference on Tourism in India, , 15- 17 May, IIMK. 543-554.@Yes$Sharma, S., Yadav, R. K., Saini, Y. A. S. H. O. D. A., & Sharma, S. H. W. E. T. A. (2011).@Water quality status of Pushkar lake as a primary data for sustainable development.@South Asian Journal of Tourism and Heritage, 4(2), 184-192.@Yes$Clesceri, L. S. (1998).@Standard methods for examination of water and wastewater.@American public health association, 9.@Yes$Trivedy, R. K., & Goel, P. K. (1984).@Chemical and biological methods for water pollution studies.@Environmental publications.@Yes$Maiti, S. K. (2001).@Water and wastewater analysis.@@Yes$Horton, R. K. (1965).@An index number system for rating water quality.@J Water Pollut Control Fed, 37(3), 300-306.@Yes$Chaterjee, C., & Raziuddin, M. (2002).@Determination of water quality index (WQI) of a degraded river in Asanol Industrial area, Raniganj, Burdwan, West Bengal.@Nature Environment and Pollution Technology, 2, 181-189.@Yes$Microsoft Corporation (2018).@Microsoft Excel.@Retrieved from https://office.microsoft.com/excel.@Yes$Mathur, P., Agarwal, S., and Nag, M. (2008).@Assessment of Physico-chemical Characteristics and Suggested Restoration Measures for Pushkar Lake, Ajmer, Rajasthan (India).@Proceedings of Taal 2007: The 12th World Lake Conference: 1518-1529.@Yes$Sharma, K. C., Chouhan, C. S., Charan, P. D., and Nag, M. (2009).@Water Quality And Restoration Practices of Lake Budha Pushkar Pushkar- A Threatened Water Body of Ajmer, Rajasthan.@The Ecoscan, 3 (1&2), 53-58.@Yes$Verma, S., and Summarwar, S. (2012).@Abalysis of Water of Pushkar Lake before, during and after the Pushkar Fair.@Int. J. LifeSc. Bt & Pharm. 1(4), 35-41.@Yes @Review Paper <#LINE#>Green chemistry aspects in Analytical Chemistry applications<#LINE#>Sudha @Tantry,Ajay @Kumar <#LINE#>29-39<#LINE#>5.ISCA-RJCS-2022-021.pdf<#LINE#>SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India@SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India<#LINE#>23/10/2022<#LINE#>20/2/2023<#LINE#>Analytical chemistry, an important branch of chemistry, deals with the analysis of a huge number of samples in different forms for various purposes. Unfortunately, the analytical methods very often contribute to environmental problems. The irony is because many analytical procedures use hazardous and toxic chemicals. Thus the concept of ‘green chemistry’ needs to be viewed in the context of ‘green analytical chemistry’ (GAC). The green analytical chemistry emphasizes that the development of any new analytical method/process has to comply with relevant green chemistry principles to reduce the adverse impact of analysis on human health and the environment. This mini-review article outlines various aspects of GAC; concepts of green analysis, green sample preparation, instrumentation, green solvents, and selective green analysis examples. This paper further emphasizes implementing the GAC concept in an analytical laboratory in real sense. This requirement demands; i) appropriate measurements of the environmental impact and greenness of analytical methods/ procedures at each stage, ii) popularization of the existing green chemistry metrics/tools and iii) new software/tool for easy evaluation of the greenness of various parameters of different processes on different scales.<#LINE#>Anastas, P. T., & Warner, J. C. (1998).@Principles of green chemistry.@Green chemistry: Theory and practice, 29, 14821-42.@Yes$Williamson, T. C., & Anastas, P. T. (Eds.). (1998).@Green chemistry: Frontiers in benign chemical syntheses and processes.@Oxford University Press.@Yes$Mut Günzler, I. I., & Williams, A. (2001).@Handbook of analytical techniques.@Evolution, 1, 1-2.@Yes$Song J. & Han B. (2015).@Green chemistry: a tool for the sustainable development of the chemical industry.@National Science Review, 2(3), 255-256. https://doi.org/10.1093/nsr/nwu076@Yes$KARAGÖLGE, Z., & Bahri, G. Ü. R. (2016).@Sustainable chemistry: green chemistry.@Journal of the Institute of Science and Technology, 6(2), 89-96. https://doi.org/10.21597/jist.2016218851@Yes$Manahan, S. E. (2006).@Green Chemistry and the Ten Commandments of Sustainability 2nd Ed, Chem.@Char Research, Inc. Publishers Columbia, Missouri U.S.A. p-347-363. ISBN: 0-9749522-4-9@Yes$Wardencki, W., Curylo, J. and Namieœnik, J. (2005).@Green Chemistry - Current and Future Issues.@Polish J. of Environ. Studies, 14(4), 389-395.@Yes$Gałuszka, A., Migaszewski, Z., & Namiesnik, J. (2013).@The 12 principles of green analytical chemistry and the@Significance mnemonic of green analytical practices.@Yes$Ivankovic, A., Dronjic, A., Bevanda, A. M., & Talic, S. (2017).@Review of 12 Principles of Green Chemistry in Practice.@International J. of Sustainable and Green Energy, 6(3), 39-48.@Yes$Keith, L.H., Gron, L.U. and Young, J. L. (2007).@Green Analytical Methodologies.@Chem. Rev., 107(6), 2695−2708@Yes$Tobiszewski, M., Mechlińska, A., & Namieśnik, J. (2010).@Green analytical chemistry—theory and practice.@Chemical Society Reviews, 39(8), 2869-2878.@Yes$Curyło, J., Wardencki, W., & Namieśnik, J. (2007).@Green Aspects of Sample Preparation--a Need for Solvent Reduction.@Polish Journal of Environmental Studies, 16(1).@Yes$Koel, M. & Kaljurand, M. (2006).@Application of the principles of green chemistry in analytical chemistry.@Pure Appl. Chem., 78, 1993–2002. https://doi.org/10.1351/pac200678111993@Yes$Guardia, M.D. and Garrigues, S. (2020).@Past, Present and Future of Green Analytical Chemistry.@Green Chemistry Series No. 66 in Challenges in Green Analytical Chemistry: 2nd Edition Edited by Salvador Garrigues and Miguel de la Guardia The Royal Society of Chemistry.pp-1-18.@Yes$Kaya, S.I., Cetinkaya, A., & Ozkan, S.A. (2022).@Green analytical chemistry approaches on environmental analysis.@Trends in Environ. Anal. Chem. 33, e00157. https://doi.org/10.1016/ j.teac.2022.e00157@Yes$Sankula, K., Kota, S. and Nissankarrao, S. (2014).@Supercritical Fluid Technology: Green Chemistry for the 21st Century.@The Pharma Innovation Journal, 3(5), 19-24.@Yes$Caputo, G., Fernandez, I.G., Saldana, M.D.A., & Galia, A. (2013).@Advances and Perspectives of Supercritical Fluid Technology.@J. of Chem., 13, 1-3. http://dx.doi.org/10.1155/2013/243653@Yes$Hayes, R., Warr, G.G., & Atkin, R. (2015).@Structure and Nanostructure in Ionic Liquids.@Chem. Rev., 115, 6357–6426. https://doi.org/10.1021/cr500411q@Yes$Jarosova, R., Wang, Y., Swain, G. M. and Blanchard, G. J. (2018).@Ionic Liquids. A Unique and Useful Class of Materials.@Chem. Educator, 23, 265–272.@Yes$Wilkes, J.S. (2002).@A short history of ionic liquids--from molten salts to neoteric solvents.@Green Chem., 4, 73-80. https://doi.org/10.1039/B110838G@Yes$Pham, T. P. T., Cho, C. W., & Yun, Y. S. (2010).@Environmental Fate and Toxicity of Ionic Liquids: A Review.@Water Res., 44, 352−372. https://doi.org/10.1016/j.watres.2009.09.030@Yes$Ho, T. D., Zhang, C., Hanto, L.W., & Anderson, J. L. (2014).@Ionic Liquids in Analytical Chemistry: Fundamentals, Advances, and Perspectives.@Anal. Chem., 86, 262−285.@Yes$Pandey, S. (2006).@Analytical applications of room-temperature ionic liquids: A review of recent efforts.@Analytica Chimica Acta, 556(1), 38-45. https://doi.org/10.1016/j.aca.2005.06.038@Yes$Kharissova, O.V., Kharisov, B.I., Oliva González, C.M., Méndez, Y.P. & López, I. (2019).@Greener synthesis of chemical compounds and materials.@R. Soc. Open Sci. 6, 191378. http://dx.doi.org/10.1098/rsos.191378@Yes$Tobiszewski, M., Mechlinska, A., Zygmunt, B., & Namiesnik, J. (2009).@Green analytical chemistryin sample preparation for determination of trace organic pollutants.@Trends in Anal. Chem., 28(8), 943.@Yes$Polyakova, Y. and Row, K.H. (2007).@Analysis of linear regressions applied to water-methanol eluents modified with ionic liquid.@J. Liq. Chromatogr. Related Technol., 30, 2557-2573.@Yes$Liu, J. F., Jonsson, J. A. and Jiang, G. (2005).@Application of ionic liquids in analytical chemistry.@TrAC, Trends Anal. Chem., 24, 20-27.@Yes$Antonio, V. H., Javier, H., & Miguel, A. R. (2008).@Ionic liquids as mobile phase additives for the high performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples.@Anal. Bioanal. Chem, 392, 1439-1446. https://doi.org/10.1007/s00216-008-2442-9@Yes$Mandal, S., Swagata, M., Ghosh, S. K., Pintu Sar, Ghosh, A., Saha, R., & Saha, B. (2016).@A review on the advancement of ether synthesis from organic solvent to water.@RSC Adv., 6, 69605–69614.@Yes$Marsh, K. N., Boxall, J. A. & Lichtenthaler, R. (2004).@Room temperature ionic liquids and their mixtures, a review.@Fluid Phase Equilibr., 219(1), 93-98. https://doi.org/10.1016/j.fluid.2004.02.003@Yes$Villa, R., Alvarez, E., Porcar, R. Eduardo, G.V., Luis, S.V. & Lozano, P. (2019).@Ionic liquids as an enabling tool to integrate reaction and separation processes.@Green Chem., 21, 6527.@Yes$Phalke, P. and Kavade, S. (2013).@Review on Hyphenated Techniques.@Internat. J. of Chem. Stud., 1(3), 157-165.@Yes$Devi, T., Rani, T., & Pravalika, P. (2016).@A Review on Hyphenated Separation Techniques Used in Pharmaceutical Analysis.@IOSR J. of Pharmacy and Biological Sci., 11, 65-74. DOI: 10.9790/3008-1106026574@Yes$Patel, K. N., Patel, J. K., Patel, M. P., Rajput, G. C., & Patel, H. A. (2010).@Introduction to hyphenated techniques and their applications in pharmacy.@Pharmaceutical methods, 1(1), 2-13.@Yes$Kusch, P. (2012).@Pyrolysis-gas chromatography/mass spectrometry of polymeric materials.@Advanced Gas Chromatography-Progress in Agricultural, Biomedical and Industrial Applications, Germany.@Yes$Yuzawa, T., Watanabe, C., Nemoto, N., & Ohtani, H. (2013).@Rapid evaluation of photo, thermal and oxidative degradation of high impact polystyrene by a xenon lamp-based online ultraviolet irradiation-pyrolysis-GC/MS system.@Polym. Degrad. and Stab., 98(2), 671–676. http://id.nii.ac.jp/1476/00005780/@Yes$Michalski, R., Szopa, S., Jablonska, M. & Lyko, A. (2012).@Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium.@The Scientific World J., Article ID 902464, 1-17.@Yes$Wardencki, W. and Namiesnik, J. (2002).@Some Remarks on Gas Chromatographic Challenges in the Context of Green Analytical Chemistry.@Polish J. of Environ. Studies, 11, 185-187.@Yes$Korany, M.A., Mahgoub, H., Haggag, R.S., Ragab, M.A.A. & Elmallah, O. A. (2017).@Green chemistry: Analytical and chromatography.@J. of Liq. Chromat. & Related Technol., 40(16), 839-852.@Yes$Jain, A., Pillai, A.K.K.V., Sharma, N., & Verma, K. K. (2010).@Headspace single-drop microextraction and cuvetteless microspectrophotometry for the selective determination of free and total cyanide involving reaction with ninhydrin.@Talanta, 82, 758-765.@Yes$Sharma, N., Jain, A., Singh, V.K. & Verma, K. K. (2011).@Solid-phase extraction combined with headspace single-drop microextraction of chlorophenols as their methyl ethers and analysis by high-performance liquid chromatography-diode array detection.@Talanta, 83, 994–999. https://doi.org/10.1016/j.talanta.2010.11.003@Yes$Hakkarainen, M. (2010).@Multiple headspace single-drop micro-extraction for quantitative determination of lactide in thermally-oxidized polylactide.@Polym. degrad. and stab., 95, 270-273.@Yes$Sharma, N., Pillai, A.K.K.V., Pathak, N., Jain, A. & Verma, K.K. (2009).@Liquid-phase microextraction and fibre-optics-based cuvetteless CCD-array micro-spectrophotometry for trace analysis.@Anal. Chim. Acta 648, 183–193.@Yes$Prat, D., Haylera, J. and Wells, A. (2014).@A Survey of Solvent Selection Guides.@Green Chem., 16, 4546-4551.@Yes$Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., Kleine, H. P., Knight, C., Nagy, M.A., Perry, D.A., & Stefaniak, M. (2008).@Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation.@Green Chem. 10, 31-36. https://doi.org/10.1039/B711717E@Yes$Alder, C.M., Hayler, J.D., Henderson, R.K., Redman, A.M., Shukla, L., Shuster, L.E. & Sneddon, H.F. (2016).@Updating and further expanding GSK’s solvent sustainability guide.@Green Chem., 18, 3879@Yes$Adams, J. P., Alder, C. M., Andrews, I., Bullion, A. M., Campbell-Crawford, M., Darcy, M. G., ... & Walker, M. D. (2013).@Development of GSK@Green chemistry, 15(6), 1542-1549.@Yes$Armenta, S., Garrigues, S., Guardia, M. D. & Turrillas, F.A.E. (2018).@Green Analytical Chemistry.@Encyclopedia of Analytical Science, 3rd Edition, 1-3. https://doi.org/10.1016/B978-0-12-409547-2.13980-0@Yes$Armenta, S., Garrigues, S., Turrillas, F.A.E, & Guardia, M.D. (2019).@Green extraction techniques in green analytical chemistry.@Trends in Anal. Chem., 116, 248-253. https://doi.org/10.1016/j.trac.2019.03.016@Yes$Tobiszewski, M. (2016).@Metrics for green analytical chemistry.@Analytical methods, 8(15), 2993-2999.@Yes$Tobiszewski, M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015).@Green chemistry metrics with special reference to green analytical chemistry.@Molecules, 20(6), 10928-10946.@Yes$Saroj, S, Shah, P., Jairaj, V. & Rathod, R.. (2018).@Green Analytical Chemistry and Quality by Design: A Combined approach towards Robust and Sustainable Modern Analysis.@Current Anal. Chem., 14, 367 – 381. http://dx.doi.org/10.2174/1573411013666170615140836@Yes$Martínez, J., Cortés, J.F., & Miranda, R. (2022).@Green Chemistry Metrics, A Review.@Processes 10, 1274. https://doi.org/10.3390/pr10071274@Yes$Derbenev, I. N., Dowden, J., Twycross, J., & Hirst, J. D. (2022).@Software tools for green and sustainable chemistry.@Current Opinion in Green and Sustainable Chemistry, 100623.@Yes$Sajid, M., & Płotka-Wasylka, J. (2022).@Green analytical chemistry metrics: A review.@Talanta, 238, 123046. https://doi.org/10.1016/j.talanta.2021.123046@Yes$Bryan, M. C., Dunn, P. J., Entwistle, D., Gallou, F., Koenig, S.G., Hayler, J.D., Hickey, M.R., Hughes, S., Kopach, M. E., Moine, G., Richardson, P., Roschangar, F., Steven, A., & Weiberth, F.J. (2018).@Key Green Chemistry research areas from a pharmaceutical manufacturers’ perspective revisited.@Green Chemistry, 20(22), 5082-5103.@Yes$Pena-Pereira, F., Lavilla, I. & Bendicho, C. (2021).@Greening sample preparation: An overview of cutting edge contributions.@Curr. Opin. Green Sustain. Chem., 30, 100481. https://doi.org/10.1016/j.cogsc.2021.100481@Yes$Billiard, K.M., Dershem, A.R., & Gionfriddo, E. (2020).@Implementing Green Analytical Methodologies Using Solid-Phase Microextraction: A Review.@Molecules, 25(22), 5297. https://doi.org/10.3390/molecules25225297@Yes$Carasek, E., Bernardi, G., Morelli, D., & Merib, J., (2021).@Sustainable green solvents for microextraction techniques: Recent developments and applications.@J. Chromatography A 1640.@Yes$Jayabun, S., Pathak, S., & Sengupta, A. (2021).@Analytical application of ionic liquid in determination of trace metallic constituents in U matrix by ICP-OES: A@Journal of Molecular Liquids, 343, 117584. https://doi.org/10.1016/j.molliq.2021.117584@Yes$Mielko, K. A., Pudełko-Malik, N., Tarczewska, A., & Młynarz, P. (2021).@NMR spectroscopy as a “green analytical method” in metabolomics and proteomics studies.@Sustainable Chemistry and Pharmacy, 22, 100474.@Yes$Tantry, S., Tharpa, K., Kumar, A., Kumar, A., & Thimmappa, B. H. S. (2021).@Reagent Activated Cotton Fiber for Rapid Determination of Aldehydes in Diverse Matrices.@Nature Environment & Pollution Technology, 20(3).@Yes$Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V. (2019).@Metal-organic frameworks in green analytical chemistry.@Separations, 6(3), 33.@Yes$Madikizela, L. M., Tavengwa, N. T., Tutu, H., & Chimuka, L. (2018).@Green aspects in molecular imprinting technology: From design to environmental applications.@Trends in Environmental Analytical Chemistry, 17, 14-22.@Yes