@Research Paper <#LINE#>Cytogenotoxic characterization of Porto – Novo lagoon waters in Benin<#LINE#>Arthur Romuald @CAKPO,Igor @AKODEDJROHOUN,Ferdinand @GOUDJO,Etienne @SAGBO,Mohamed M. @SOUMANOU <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2022-022.pdf<#LINE#>Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey - Calavi BP : 4521 Cotonou, République du Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey - Calavi BP : 4521 Cotonou, République du Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey - Calavi BP : 4521 Cotonou, République du Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey - Calavi BP : 4521 Cotonou, République du Bénin@Laboratoire d’Etude et de Recherche en Chimie Appliquée (LERCA), Ecole polytechnique d’Abomey-Calavi (EPAC), Université d’Abomey- Calavi<#LINE#>23/10/2022<#LINE#>25/1/2023<#LINE#>Toxic waste constitutes today a real problem of public health because they are rejected into our rivers without a preliminary treatment. The genetic inheritance of the species halieutics is affected by this pollution what can generate a contamination of the trophic chain. The agricultural and industrial activities produce worn water and several chemical pollutants which are poured in our rivers constituting sources of chemical pollution thus. This pollution is a danger to the development of the local fisheries. Rain water and the urban rejections can also be potential sources of chronic pollution of the rivers. Once the cytogenotoxicity of water and fish of the Porto-Novo lagoon determined, that will make it possible to know the cytogenotoxic map of the lagoon so that a project of depollution of this lagoon is achieved. This study has as principal objectives, the chemical depollution of the lagoon, its valorization in order to booster rocket the productivity of the resources halieutics. This will allow the increase in the local consumption of the products halieutics then the reduction of the importation of fish and other products of fishing frozen in Benin, in order to allowing the development of the local fisheries. The results obtained made it possible to determine the cytogenotoxicity of water and fish fished in the lagoon what revealed a toxicity which varies according to the fish species studied and the sites considered. The reproduction of the various species halieutics is prevented by this toxic pollution which makes the products of fishing unsuitable for consumption. The productivity of the species halieutics will increase when the lagoon is cleansed what will booster the marketing and the local consumption of the local products of fishing. The destruction of the watery ecosystems will be slowed down by this depollution and the conservation of the biodiversity of fauna and the flora of Porto-Novo lagoon would be a reality.<#LINE#>Cakpo, R. A. (2012).@Etude de la toxicité des eaux d’une lagune tropicale et contamination du poisson par le plomb : Cas du tilapia (Sarotherodon melanotheron) de la lagune de Porto-Novo (Sud Bénin).@Mémoire de DEA de l’Université d’Abomey-Calavi; 54.@Yes$Cakpo, R. A. (2015).@Study of chemical pollution, the toxicity of the sediments and fishes and the cytogenotoxicity of waters and fishes of a tropical lagoon: case of the lagoon of Porto-Novo (South of Benin).@Thesis, Formation Doctorale Chimie et Applications (FAST), UAC, Bénin; 151.@No$Fatima, Z. B., Salah, S., Abdelghani, C., Samir, B. and Mustapha, S. (2006).@Impact des rejets industriels sur l’environnement : cas de l’accumulation du chrome dans les différents compartiments aquatiques le long du littoral Casablanca – Mohammadia.@Water Qual. Res. J. Canada, 41(4), 418-426.@Yes$Grover, I. S. and Kaur, S. (1999).@Genotoxicity of wastewater samples from sewage and industrial effluent defected by the Allium root anaphase aberration and micronucleus assays.@Mutat. Res., 426, 183-188.@Yes$Gnohossou, P. (2006).@La faune benthique d@Doctoral dissertation.@Yes$Odeigah, P. G. C., Nurudeen, O., & Amund, O. O. (1997).@Genotoxicity of oil field wastewater in Nigeria.@Hereditas, 126(2), 161-167.@Yes$Bakare, A. A., Mosuro, A. A., & Osibanjo, O. (2000).@Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa(L.).@Journal of Environmental Biology, 21(3), 263-271.@Yes$El-Shahaby, A. O., Abdel-Migid, H. M., Soliman, M. I. and Mashaly, I. A. (2003).@Genotoxicity screening of industrial wastewater using the allium cepa chromosome aberration assays.@Pakistan J. Biol. Sci., 6, 23-28.@Yes$Chauhan, L. K. S., Saxena, P. N., & Gupta, S. K. (1999).@Cytogenetic effects of cypermethrin and fenvalerate on the root meristem cells of Allium cepa.@Environmental and experimental botany, 42(3), 181-189.@Yes$Samuel, O. B., Osuala, F. I., & Odeigah, P. G. (2010).@Cytogenotoxicity evaluation of two industrial effluents using Allium cepa assay.@African Journal of Environmental Science and Technology, 4(1).@Yes$Júnior, H. M., Da Silva, J., Arenzon, A., Portela, C. S., de Sá Ferreira, I. C. F., & Henriques, J. A. P. (2007).@Evaluation of genotoxicity and toxicity of water and sediment samples from a Brazilian stream influenced by tannery industries.@Chemosphere, 67(6), 1211-1217.@Yes$Cotelle, S., Masfaraud, J. and Ferard, J. (1999).@Assessment of the genotoxicity of contamined soil with the Allium Nicia – micronucleis and the Tradescantia – micronucleus assays@. Muta. Res, 426, 167-171.@Yes$Odeigah, P. G., Ijimakinwa, J., Lawal, B., & Oyeniyi, R. (1997).@Genotoxicity screening of leachates from solid industrial wastes evaluated with the Allium test.@Alternatives to Laboratory Animals, 25(3), 311-321.@Yes$Kong, M. S., & Ma, T. H. (1999).@Genotoxicity of contaminated soil and shallow well water detected by plant bioassays.@Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 426(2), 221-228.@Yes$Scott, D., Galloway, S. M., Marshall, R. R., Ishidate Jr, M., Brusick, D., Ashby, J. & Myhr, B. C. (1991).@Genotoxicity under extreme culture conditions: a report from ICPEMC Task Group 9.@Mutation Research/Reviews in Genetic Toxicology, 257(2), 147-205.@Yes$Fiskesjo, G. (1988).@The allium test – an alternative in environmental studies: The relative toxicity of metal ions.@Mutation. Res., 197, 243 – 260.@Yes$Daniels, C. B., & Means, J. C. (1989).@Assessment of the genotoxicity of produced water discharges associated with oil and gas production using a fish embryo and larval test.@Marine Environmental Research, 28(1-4), 303-307.@Yes$Bakare, A. A., Mosuro, A. A., & Osibanjo, O. (1999).@Cytotoxic effects of landfill leachate on Allium cepa L.@Biosci. Res. Com, 11(1), 1-13.@Yes$Bálint, T., Ferenczy, J., Kátai, F., Kiss, I., Kráczer, L., Kufcsák, O., ... & Nemcsók, J. (1997).@Similarities and differences between the massive eel (Anguilla anguillaL.) devastations that occurred in Lake Balaton in 1991 and 1995.@Ecotoxicology and Environmental Safety, 37(1), 17-23.@Yes$Scheren, P.A.G.M., Kroeze, C., Janssen, .J.J.G., Hordijk, L. and Ptasinski, K.J. (2004).@Integrated pollution assessment of the Ebrié Lagoon, Ivory Coast, West Africa.@Journal of Marine water System, 44, 1-12.@Yes$Lah, B., Gorjane, G., Nekrep, F.V. and Marinsek- Logar, R. (2004).@Comet assay of waste water genotoxicity using yeast cells.@Bull. Environ. Contam. Tox., 72, 607-616.@Yes$Migid, H. M. A., Azab, Y. A., & Ibrahim, W. M. (2007).@Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent.@Ecotoxicology and environmental safety, 66(1), 57-64.@Yes$Grisolia, C. K. & Cordeiro, C. M. T. (2000).@Variability in micronucleus induction with different mutagens applied to several species of fish.@Genetics and Molecular Biology, 23, 235-239.@Yes$Rank, J., & Nielsen, M. H. (1998).@Genotoxicity testing of wastewater sludge using the Allium cepa anaphase-telophase chromosome aberration assay.@Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 418(2-3), 113-119.@Yes$Rank, J. (2003).@The method of Allium anaphase-telophase chromosome aberration assay.@Ekologija, 1(1), 38-42.@Yes$Rencüzoğullari, E., Kayraldiz, A., İla, H. B., Çakmak, T., & Topaktaş, M. (2001).@The cytogenetic effects of sodium metabisulfite, a food preservative in root tip cells of Allium cepa L.@Turkish Journal of Biology, 25(4), 361-370.@Yes$Rank, J., & Nielsen, M. H. (1994).@Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater.@Mutation Research/Environmental Mutagenesis and Related Subjects, 312(1), 17-24.@Yes <#LINE#>Fractionation, bioavailability and mobility of phosphorus in agricultural soils of the Mékrou River watershed<#LINE#>Désiré PANEWAI @AYOLA,Waris Kéwouyèmi @CHOUTI,Comlan Achille @DEDJIHO,Paulin @AMLAN,Lyde @TOMETIN,Nafiou E. @CHITOU <#LINE#>8-16<#LINE#>2.ISCA-RJCS-2022-025.pdf<#LINE#>Laboratoire Kaba de Recherche en Chimie et Applications (LaKReCA), ENS- Natitingou, Bénin and Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin and Laboratoire d’Hydrologie Appliquée (LHA), Institut National de l’Eau, Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin@Laboratoire Kaba de Recherche en Chimie et Applications (LaKReCA), ENS- Natitingou, Bénin@Laboratoire de Chimie Inorganique et de l’Environnement (LaCIE), Faculté des Sciences et Techniques (FAST), Université d’Abomey-Calavi, 01 BP 526 Cotonou, Bénin<#LINE#>14/11/2022<#LINE#>13/1/2023<#LINE#>The object of this study is to assess the phosphorus content, its different forms, its mobility and its bioavailability in the soils of the Mékrou River watershed. The measurement of pH, the determination of total phosphorus and its different fractions are the main axis of our work. As a result, the soils of the Mékrou basin are generally acidic with an average water pH of 6.46. These soils are rich in phosphorus with a general average concentration of 4155.58µg/g (i.e., 1813.55µg/g in P2O5): these soils are polluted (1813.55µg/g>500µg/g) (Dyer, 1894). Total phosphorus concentrations increase (from 4027.83µg/g in December 2021 to 4283.34µg/g in February 2022) as the dry season progresses and when approaching the Mékrou River (from 3957.90µg/g, 10m soils, at 4353.26µg/g, 5m soils). Fractionation presents soil phosphorus in six forms: Labil-P (0.35% Total-P), Fe-P (1.64% Total-P), Al-P (0.21% Ptotal), Ca-P (0.19% of Total-P), Org-P (38.94% of Total-P) and residual-P (58.64%). The assimilable phosphorus (Labil-P) is very low and varies slightly depending on the pH of the soil; it is weakly mobile and very poorly bioavailable.<#LINE#>RGPH-4 (2013).@Cahier des villages et quartiers de ville du département de l’Atacora.@38.@No$Mama, D. (2010).@Méthodologie et résultats du diagnostic de l@Doctoral Dissertation, Limoges.@Yes$Pellerin, S., Dorioz, J-M. and Morel, C. (2005).@Bilan environnemental du phosphore.@In: sols et environnement (Girard M.C., Walter C, Rémy J-C, Berthelin, J., Morel J-L eds), 628-649. Dunod, Paris. Pellerin, S. S., Dorioz, J. M., & Morel, C. (2005). Bilan environnemental du phosphore.@Yes$Frossard, E., Julien, P., Neyroud, J. A., & Sinaj, S. (2004).@Le phosphore dans les sols: état de la situation en Suisse: le phosphore dans les sols, les engrais, les cultures et l@Office fédéral de l@Yes$Nobile, C. (2017).@Phytodisponibilité du phosphore dans les sols agricoles de La Réunion fertilisés sur le long-terme avec des résidus organiques: la dose d’apport est-elle le seul déterminant à prendre en compte?.@Doctoral dissertation, Université de la Réunion.@Yes$Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., ... & Leinweber, P. (2015).@Innovative methods in soil phosphorus research: A review.@Journal of plant nutrition and soil science, 178(1), 43-88.@Yes$Bonzongo, J-C., Bertru G. & Martin, G. (1989).@Les méthodes de spéciation du phosphore dans les sédiments: Critiques et propositions pour l’évaluation des fractions minérales et organiques.@Arch. Hydrobiol., 116, 61-69.@Yes$Golterman, H. L. (1973).@Natural phosphate sources in relation to phosphate budgets: a contribution to the understanding of eutrophication. Phosphorus in Fresh Water and the Marine Environment.@Progress in Water Technology, 2, 3-17.@Yes$Taoufik, M., Kemmou, S., Idrissi, L. L., & Dafir, J. E. (2004).@Comparaison de deux méthodes de spéciation du phosphore dans des sédiments de la partie aval du basin Oum Rabiaa (Maroc).@Water Quality Research Journal, 39(1), 50-56.@Yes$Tometin, L. (2008).@Etude de la biodisponibilité et de la mobilité du phosphore des sédiments responsable du phénomène d’eutrophisation du lac nokoué.@Mémoire d’obtention du DEA, faculté des sciences et techniques, formation Doctorale Chimie et Application (UAC); 116.@No$Dèdjiho, C. A. (2011).@Évaluation de la chaine trophique d’une aire marine protégée en relation avec sa physico-chimie: cas de Gbèzoumè dans la commune de Ouidah.@Mémoire de DEA. FAST/UAC, Bénin.@Yes$Chouti, W. K., Atchichoe, W., Tometin, L., & Daouda, M. (2017).@Biodisponibilité et mobilité du phosphore des sédiments de la lagune de Porto-Novo.@Journal of Applied Biosciences, 114, 11276-11288.@Yes$Kombienou, P. D., Arouna, O., Azontondé, A. H., Mensah, A. G. & Sinsin, B. A. (2015).@Caractérisation du niveau de fertilité des sols de la chaine de l’Atakora au nord-ouest Bénin.@Article INRAB. Journal of animal & Plant Sciences. 25(2), 3836-3856.@No$Amonmide, I., Dagbenonbakin, G., Agbangba, C.E. and Akonkpe, P. (2019).@Contribution à l’évaluation du niveau de fertilité des sols dans les systèmes de culture à base de coton au Bénin.@Article INRAB, 15@No$Anato, I.F. (2021).@Influence des activités agricoles sur la qualité chimique des sols cultivés dans le sous bassin béninois du fleuve Niger.@Mémoire master, 2. 62.@No$AFNOR (1994).@Qualité des sols.@AFNOR Edition, 250 pages.@No$Dédjiho, C. A. (2014).@Etude diagnostique de la pollution chimique des plans d’eau du complexe lagunaire du Sud-Ouest du Bénin: cas du lac Ahémé-Gbèzoumè.@Doctoral dissertation, Thèse de doctorat unique, Université d’Abomey-Calavi., 139.@Yes$Vanchikova, E. V., Shamrikova, E. V., Korolev, M. A., Kyzyurova, E. V., & Mikhailov, V. I. (2021).@Application of Model Systems Containing Exchangeable Iron (III) to Study Acidity Characteristics of Strongly Acid Soils (pH KCl< 3.3).@Eurasian Soil Science, 54, 189-200.@Yes$Koulibaly, B. (2011).@Caractérisation de l’acidification des sols et gestion de la fertilization des agrosystèmes cotonniers au Burkina.@Thèse de doctorat, Université de Ouagadougou, 155.@Yes$Pernes-Debuyer, A. & Tessier D. (2002).@Influence du pH sur les propriétés des sols : l’essai à longue durée des 42 parcelles à Versailles.@Journal of Water Science, 15, 27-39.@Yes$Dyer, B. (1894).@On the analytical determination of probably available mineral plant food in soils.@J. Chem Soc. 65, 115-167.@Yes$Rydin E. and Welch E.B. (1998).@Aluminum dose require to inactivate phosphate in lake sediments.@Water Res.@Yes$Prüter, J., Leipe, T., Michalik, D., Klysubun, W., & Leinweber, P. (2020).@Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach.@Journal of Soils and Sediments, 20, 1676-1691.@Yes$Salvia-Castellvi, M., Scholer, C. & Hoffmann, L. (2002).@Comparaison de différents protocoles de spéciation séquentielle du phosphore dans des sédiments de rivière.@Revue des sciences de l@Yes <#LINE#>Development of an efficient electrochemical sensor for the determination of cyanide ions in aqueous media<#LINE#>Abdoulkadri Ayouba @Mahamane,Abdoul-Fataou Moumouni @oumarou,Hassane @Adamou,Bachir Mijitaba @Sahirou,Rabani @Adamou <#LINE#>17-28<#LINE#>3.ISCA-RJCS-2022-026.pdf<#LINE#>Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger@Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger@Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger@Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger@Department of Chemistry, Faculty of Science and Technology, Abdou Moumouni University of Niamey, Niger<#LINE#>27/11/2022<#LINE#>18/1/2023<#LINE#>The aim of this work is to develop an efficient electrochemical sensor based on a glassy carbon electrode coated with a thin film of mercury for the determination of cyanide ions in aqueous media. The sensor is characterised by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse anodic stripping voltammetry (DPASV), to understand its behaviour and evaluate its performances. Cyclic voltammetry measurements indicate a "Nernst" type system with decreasing reversibility at pH 10. Impedance techniques indicate an easier charge transfer on the glassy carbon electrode modified with the mercury film compared to the bare glassy carbon electrode. The optimal parameters (Analytical and Differential pulse voltammetry) for cyanide determination are identified. The limits of detection (LOD) and quantification (LOQ) obtained are 0.013mg.L-1 and 0.043mg.L-1 respectively. In addition, the new sensor has good linearity, good repeatability with a calculated Relative Standard Deviation (RSD) equal to 1.88%. The studied sensor was successfully employed for the analysis of cyanide ions in well water samples using the standard addition method and the results obtained are satisfactory.<#LINE#>Albiter, E., Barrera-Andrade, J. M., Calzada, L. A., García-Valdés, J., Valenzuela, M. A., & Rojas-García, E. (2022).@Enhancing free cyanide photocatalytic oxidation by rGO/TiO2 P25 composites.@Mater, 15(15), 5284.@Yes$Hernández Bello, C. Y., Figueroa-Uribe, A. F. & Hernández-Ramírez, J. (2021).@Biochemical suffocants: carbon monoxide and cyanide.@Rev. Fac. Med. Hum, 22(3), 614-624.@Yes$Panigrahi, N., Haranath, S. P., Aleem, M. A., Srinivas, Y., Sirga, S., & Ramkumar, S. K. (2019).@Cyanide Toxicity!! Colour of Blood Says It All.@Indian J. Crit. Care Med., 23(3), 155-156.@Yes$Hassane, H. A., Adamou, R., Ahmed, M. M., & Abdoulaye, A. (2015).@Optimization of the spectrophotometric determination of Aqueous Cyanide: Application on Samira (Niger) Gold Mine Groundwater Analysis.@Asian J. Chem., 8(7), 481-492.@Yes$Tigreros, A., & Portilla, J. (2022).@Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions.@Eur. J. Org. Chem., e202200249.@Yes$Gheibi, M., Eftekhari, M., Akrami, M., Emrani, N., Hajiaghaei-Keshteli, M., Fathollahi-Fard, A. M., & Yazdani, M. (2022).@A sustainable decision support system for drinking water systems: resiliency improvement against cyanide contamination.@Infrast., 7(7), 88.@Yes$Tran, Q. B., Khum-in, V., & Phenrat, T. (2022).@Assessing Potential Health Impacts of Cyanide-Contaminated Seepage in Paddy Field Near a Gold Mine in Thailand: Cyanide Speciation and Vapor Intrusion Modeling.@Expos. Health, 14(2), 459-473.@Yes$J., Moyo, D., Isunju, J. B., Bose-O’Reilly, S., Steckling-Muschack, N., Becker, J., & Mamuse, A. (2022).@Health and safety risk mitigation among artisanal and small-scale gold miners in Zimbabwe.@Int. J. Environ. Res. Public Health, 19(21), 14352.@Yes$Hassane, A., Abdoulkadri, A. M., & Adamou, R. (2018).@New method for complete recovery of total cyanide in water and soil and its application at the Samira gold mine (Niger).@African Journal of Pure and Applied Chemistry, 12(8), 62-74.@Yes$Cacciuttolo, C., & Cano, D. (2022).@Environmental Impact Assessment of Mine Tailings Spill Considering Metallurgical Processes of Gold and Copper Mining: Case Studies in the Andean Countries of Chile and Peru.@Water, 14(19), 3057.@Yes$Shin, M. C., Kwon, Y. S., Kim, J. H., Hwang, K. & Seo, J. S. (2019).@Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS).@Analytical Science and Technology, 32(3), 88-95.@Yes$Anjani, K. N., Hamzah, B., & Abram, P. H. (2021).@Analysis of Cyanide Contents in Cassava Leaves (Manihot esculenta Crantz) Based on Boiling Time with Formation of Hydrindantin Complex by Using UV-Vis Spectrophotometry.@Jurnal Akademika Kimia, 10(1), 49-52.@Yes$Dagilienė, M., Markuckaitė, G., Krikštolaitytė, S., Šačkus, A., & Martynaitis, V. (2022).@Cyanide Anion Determination Based on Nucleophilic Addition to 6-[(E)-(4-Nitrophenyl) Diazenyl]-1′, 3, 3′, 4-Tetrahydrospiro [Chromene-2, 2′-Indole] Derivatives.@Chemosensors, 10(5), 185.@Yes$Tigreros, A., Rosero, H. A., Castillo, J. C., &Portilla, J. (2019).@Integrated pyrazolo [1, 5-a] pyrimidine–hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water.@Talanta, 196, 395-401.@Yes$Kumar, P. S., Lakshmi, P. R., & Elango, K. P. (2019).@An easy to make chemoreceptor for the selective ratiometric fluorescent detection of cyanide in aqueous solution and in food materials.@New J. Chem., 43(2), 675-680.@Yes$Attar, A., Cubillana-Aguilera, L., Naranjo-Rodríguez, I., de Cisneros, J. L. H. H., Palacios-Santander, J. M., & Amine, A. (2015).@Amperometric inhibition biosensors based on horseradish peroxidase and gold sononano particles immobilized onto different electrodes for cyanide measurements. Bioelectrochemistry, 101, 84-91.@undefined@Yes$Ma, J., & Dasgupta, P. K. (2010).@Recent developments in cyanide detection: a review.@Anal. Chim. Acta, 673(2), 117-125.@Yes$Metrohm (2001).@Determination of free cyanide by polarography.@Application Bulletin 110/3 e.@Yes$Riojas, A. A. C., Wong, A., Planes, G. A., Sotomayor, M. D., La Rosa-Toro, A., & Baena-Moncada, A. M. (2019).@Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples.@Sens. Actuators B Chem., 287, 544-550.@Yes$Junsomboon, J., & Jakmunee, J. (2018).@Determination of Cyanide in Concrete Roofing Tiles byDifferential Pulse Voltammetric Method.@Chiang Mai J. Sci., 45(7), 2740-2748.@Yes$Na, M. S., Kwon, Y. S., & Czae, M. Z. (1988).@Increased Sensitivity in Cyanide Measurement by Differential-Pulse Cathodic Stripping Voltammetry.@J. Korean Chem. Soc., 32(2), 130-134.@Yes$Kim, G. W., & Ha, J. W. (2022).@Single-Particle Study on Hg Amalgamation Mechanism and Slow Inward Diffusion in Mesoporous Silica-Coated Gold Nanorods without Structural Deformation.@The Journal of Physical Chemistry Letters, 13(11), 2607-2613.@Yes$Liu, Y., Xue, Q., Chang, C., Wang, R., Wang, Q., & Shan, X. (2022).@Highly efficient detection of Cd (II) ions by a stannum and cerium bimetal-modified laser-induced graphene electrode in water.@Chemical Engineering Journal, 433, 133791.@Yes$Maciel, C. C., de SM Freitas, A., Medrades, J. P., and Ferreira, M. (2022).@Simultaneous Determination of Catechol and Paraquat Using a Flexible Electrode of PBAT and Graphite Modified with Gold Nanoparticles and Copper Phthalocyanine (g-PBAT/AuNP/CuTsPc) LbL Film.@J. Electrochem. Soc., 169, 027505@Yes$Adeloju, S. B., & Gawne, K. M. (1986).@Determination of soluble cyanide in soil samples by differential pulse polarography.@Anal. Chim. Acta, 188, 275-280.@Yes$Mariame, C., El Rhazi, M., & Adraoui, I. (2009).@Determination of traces of copper by anodic stripping voltammetry at a rotating carbon paste disk electrode modified with poly (1,8-diaminonaphtalene).@J. Anal. Chem., 64(6), 632-636.@Yes$Borrill, A. J., Reily, N. E., & Macpherson, J. V. (2019).@Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst, 144(23), 6834–6849.@undefined@Yes$Centre d@Protocole pour la validation d’une méthode d’analyse en chimie.@DR-12-VMC, p 29.@No$Sherigara, B. S., Shivaraj, Y., Mascarenhas, R. J., & Satpati, A. K. (2007).@Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: assessment of quantification procedures by anodic stripping voltammetry.@Electrochim. Acta, 52(9), 3137-3142.@Yes$Imane, A., Mama, E. R., Aziz, M. A., & Coulibaly, M. (2006).@Applications analytiques des films minces de mercure protégés par du fibrinogène pour la détermination du plomb et du cadmium dans des échantillons d’eaux usées et d’eaux de mer.@Afr. sci., 2(3).@Yes$Cardoso, L. M., Mainier, F. B., & Itabirano, J. A. (2014).@Analysis voltammetry of cyanide and process electrolytic removal of cyanide in effluents.@Am. J. Environ. Sci., 4(6), 182-188.@Yes$Anh, N. B. H., & Sharp, M. (2000).@Determination of cyanide by cathodic stripping voltammetry at a rotating silver disk electrode.@Anal.Chim.Acta, 405(1-2), 145-152.@Yes <#LINE#>Antimicrobial prescribing behaviors in Covid 19 patients: A multicenter survey at Tertiary Care Hospitals of Chittagong division in Bangladesh<#LINE#>Jannatul @Ferdoush,FatihaTasmin @Jeenia,Fatema @Johora,Hamida Khalil @Munira,Sharif Mohammad Towfiq @Hossain,Rajat Sanker Roy @Biswas,MdNurul @Islam,Sabiha @Mahboob,Arup Kunar @Datta <#LINE#>29-34<#LINE#>4.ISCA-RJCS-2022-028.pdf<#LINE#>Department of Pharmacology, BGC Trust Medical College, Chattogram, Bangladesh@Department of Pharmacology & Therapeutics, Chattogram International Medical College & Hospital, Chattogram, Bangladesh@Department of Pharmacology & Therapeutics, Army Medical College Bogura, Bogura, Bangladesh@National Technical Advisor-clinical services, MBBS, ECTAD-FAO, Bangladesh@Department of Endocrine and Metabolism, Chattogram Maa-O-Shishu Hospital Medical College, Chattogram, Bangladesh@Department of Medicine, Chattogram Maa-O-Shishu Hospital Medical College, Chattogram, Bangladesh@School of Information Management, Nanjing University, Jiangsu province, China@CMH Bogura, Chattogram, Bangladesh@Department of Pediatrics, BGC Trust Medical College, Chattogram, Bangladesh<#LINE#>30/11/2022<#LINE#>15/1/2023<#LINE#>Inappropriate use of antimicrobials in the treatment of Covid-19 can result in patient harm and worldwide antimicrobial resistance. The study's objective was to explore the physician choices of empirical antimicrobial treatment in Covid-19Patients. A multicenter web-based survey was performed to explore the trend of empirical antimicrobial prescribing reported by physicians involved in Covid-19 care from June to December 2021. A questionnaire linked to a Google form was distributed via several online platforms to physicians working in the Covid specialist unit of tertiary care hospitals in Chittagong, Bangladesh. The questionnaire was distributed to 120 physicians, and 74 (89%) responded to the survey. According to 69% (n=51) of participants, there was no local antimicrobial guideline in the hospital. Almost half of the physicians (87%, n=64) mentioned that the severity of the condition was the most crucial component in starting antimicrobials. The majority of participants considered empirical antimicrobial coverage for Pseudomonas aeruginosa (68%, n=51), Klebsiella pneumonia (65%, n=48), and Streptococcus pneumoniae (57%, n=49). Meropenem and ceftriaxone were the most common antimicrobials prescribed in Patients in the Covid ward, reported by 54% (n=40) and 41% (n=30) participants, respectively. ICU patients' most commonly prescribed antimicrobials were Meropenem (84%, n=62) and Piperacillin/tazobactam (42%, n=31). According to 67% (n=49) of participants, the average length of antimicrobial treatment was seven days. The survey suggests that physicians' selections of empirical antimicrobials in Covid patients were predominantly broad-spectrum. An initial lack of national Covid management guidelines and overall inadequacy of regional or hospitalized-based antimicrobial guidelines are the confounding factors behind antimicrobial overprescribing. The study findings can be utilized to design interventions for effective antimicrobial stewardship, allowing physicians to prescribe appropriately.<#LINE#>Shi, Y., Wang, G., Cai, X. P., Deng, J. W., Zheng, L., Zhu, H. H., ... & Chen, Z. (2020).@An overview of COVID-19. Journal of Zhejiang University.@Science. B, 21(5), 343.@Yes$Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C., & Schouten, J. (2020). COVID-19: don@undefined@undefined@Yes$Rawson, T. M., Moore, L. S. P., Castro-Sanchez, E., Charani, E., Davies, F., Satta, G., Ellington, M. J., & Holmes, A. H. (2020).@Covid-19 and the potential long-term impact on antimicrobial resistance.@The Journal of antimicrobial chemotherapy, 75(7), 1681–1684.@Yes$Cong, W., Poudel, A. N., Alhusein, N., Wang, H., Yao, G., & Lambert, H. (2021).@Antimicrobial Use in COVID-19Patients in the First Phase of the SARS-CoV-2 Pandemic: A Scoping Review.@Antibiotics, 10(6), 745. MDPI AG.@No$Ferdoush, J., Parveen, K., Ata, M., Reza, F. H. & Rahman, M. S. (2016).@Knowledge, perception and preparedness of future prescribers about antimicrobial stewardship.@Bangladesh Journal of Pharmacology, 11(4), 928–934. https://doi.org/10.3329/bjp.v11i4.29507@Yes$Nazrina, S., Rahman, M. S. and Naznin, R. (2021).@Antimicrobial Dispensing Practice by Medicine Sellers in Dhaka City-A Cross-Sectional Study.@Community Based Medical Journal, 9, 11–18@Yes$Al-Niemat, S. I., Aljbouri, T. M., Goussous, L. S., Efaishat, R. A., & Salah, R. K. (2014).@Antibiotic Prescribing Patterns in Outpatient Emergency Clinics at Queen Rania Al Abdullah II Children@Oman medical journal, 29(4), 250–254.@Yes$Almaaytah, A., Mukattash, T. L. & Hajaj, J. (2015).@Dispensing of non-prescribed antibiotics in Jordan.@Patient preference and adherence, 9, 1389–1395. https://doi.org/10.2147/PPA.S91649@Yes$Haddadin, R. N., Alsous, M., Wazaify, M., & Tahaineh, L. (2019).@Evaluation of antibiotic dispensing practice in community pharmacies in Jordan: A cross sectional study.@PloS one, 14(4), e0216115.@Yes$Alkhaldi, S. M., Yaseen, N. A., Bataineh, E. A., Al-Rawashdeh, B., Albadaineh, M. A., Mubarak, S. M., Jaras, R. E. & Taha, H. A. (2021).@Patterns of antibiotic prescribing and appropriateness for respiratory tract infections in a teaching hospital in Jordan.@International journal of clinical practice, 75(6), e14113. https://doi.org/10.1111/ijcp.14113@Yes$Beović, B., Doušak, M., Ferreira-Coimbra, J., Nadrah, K., Rubulotta, F., Belliato, M., Berger-Estilita, J., Ayoade, F., Rello, J., & Erdem, H. (2020).@Antibiotic use in patients with Covid-19: A@The Journal of antimicrobial chemotherapy.@Yes$Parveen, M., Molla, M.M.A., Yeasmin, M., Nafisa, T., Barna, A.A. and Ghosh, A.K. (2020).@Evidences on Irrational Anti-Microbial Prescribing and Consumption among Covid-19 Positive Patients and Possible Mitigation Strategies: A Descriptive Cross Sectional Study.@Bangladesh Journal of Infectious Disease, 7(00), S3-S7.@Yes$Zhu, N., Aylin, P., Rawson, T., Gilchrist, M., Majeed, A., & Holmes, A. (2021).@Investigating the impact of Covid-19 on primary care antibiotic prescribing in North West London across two epidemic waves.@Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(5), 762–768. Advance online publication. https://doi.org/10.1016/j.cmi.2021.02.007@Yes$Girvin, B., Hsia, Y. and Turner, W. (2021).@Antimicrobial stewardship in Northern Ireland during Covid-19.@Prescriber, 32, 15–20.@Yes$Malcolm, W., Seaton, R.A, Haddock, G., Baxter, L., Thirlwell, S., Russell, P., Cooper, L., Thomson, A. and Sneddon, J. (2020).@Impact of the Covid-19 pandemic on community antimicrobial prescribing in Scotland.@JAC Antimicrob Resist, 2, 105@Yes$Van de Pol, A. C., Boeijen, J. A., Venekamp, R. P., Platteel, T., Damoiseaux, R. A. M. J., Kortekaas, M. F., & Van der Velden, A. W. (2021).@Impact of the Covid-19 Pandemic on Antibiotic Prescribing for Common Infections in the Netherlands: A Primary Care-Based Observational Cohort Study.@Antibiotics (Basel, Switzerland), 10(2), 196. https://doi.org/10.3390/antibiotics10020196@Yes$Peñalva, G., Benavente, R. S., Pérez-Moreno, M. A., Pérez-Pacheco, M. D., Pérez-Milena, A., Murcia, J. & Cisneros, J. M. (2021).@Effect of the coronavirus disease 2019 pandemic on antibiotic use in primary care.@Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(7), 1058–1060. https://doi.org/10.1016/j.cmi.@Yes$Hayat, K., Mustafa, Z. U., Ikram, M. N., Ijaz-Ul-Haq, M., Noor, I., Rasool, M. F., Ishaq, H. M., Rehman, A. U., Hasan, S. S., & Fang, Y. (2022).@Perception, Attitude, and Confidence of Physicians about Antimicrobial Resistance and Antimicrobial Prescribing Among Covid-19 Patients: A Cross-Sectional Study from Punjab, Pakistan. Frontiers in pharmacology, 12, 794453.@undefined@Yes$Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cao, B. (2020).@Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.@The lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5@Yes$Bendala Estrada, A. D., Calderón Parra, J., Fernández Carracedo, E., Muiño Míguez, A., Ramos Martínez, A., Muñez Rubio, E., Rubio-Rivas, M., Agudo, P., Arnalich Fernández, F., Estrada Perez, V., Taboada Martínez, M. L., Crestelo Vieitez, A., Pesqueira Fontan, P. M., Bustamante, M., Freire, S. J., Oriol-Bermúdez, I., Artero, A., Olalla Sierra, J., Areses Manrique, M., Carrasco-Sánchez, H. F. J., Núñez-Cortés, J. M. (2021).@Inadequate use of antibiotics in the Covid-19 era: effectiveness of antibiotic therapy.@BMC infectious diseases, 21(1), 1144.@Yes$World Health Organization, 2. (2020).@Clinical management of Covid-19: interim guidance.@27 May 2020 No. WHO/2019-nCoV/clinical/2020.5. World Health Organization.@Yes$Cochrane Rapid Reviews (2020).@Interim guidance from the Cochrane rapid reviews methods group.@@No$Lin, L., & Xu, C. (2020).@Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives.@Health science reports, 3(3), e178. https://doi.org/10.1002/hsr2.178@Yes$World Health Organization (2019).@Critically important antimicrobials for human medicine.@@Yes$Muller, A., Lopez-Lozano, J. M., Bertrand, X. & Talon, D. (2004).@Relationship between ceftriaxone use and resistance to third-generation cephalosporins among clinical strains of Enterobacter cloacae.@The Journal of antimicrobial chemotherapy, 54(1), 173–177.@Yes$Martin, E., Philbin, M., Hughes, G., Bergin, C. & Talento, A. F. (2021).@Antimicrobial stewardship challenges and innovative initiatives in the acute hospital setting during the Covid-19 pandemic. The Journal of antimicrobial chemotherapy, 76(1), 272–275. https://doi.org/10.1093/jac/ dkaa400@undefined@Yes$Hayat, K., Rosenthal, M., Gillani, A. H., Chang, J., Ji, W., Yang, C., Jiang, M., Zhao, M., & Fang, Y. (2020). Perspective of Key Healthcare Professionals on Antimicrobial Resistance and Stewardship Programs: A Multicenter Cross-Sectional Study From Pakistan.@Frontiers in pharmacology, 10, 1520. https://doi.org/10.3389/fphar.2019.01520@undefined@Yes$O@Antibiotic prescribing patterns in patients hospitalized with Covid-19: lessons from the first wave.@JAC-antimicrobial resistance, 3(2), dlab085. https://doi.org/10.1093/jacamr/dlab085@Yes$Liu, D., Li, L., Wu, X., Zheng, D., Wang, J., Yang, L., & Zheng, C. (2020).@Pregnancy and Perinatal Outcomes of Women With Coronavirus Disease (Covid-19) Pneumonia: A Preliminary Analysis.@AJR. American journal of roentgenology, 215(1), 127–132.@Yes$Guarino, M., Cossiga, V., Loperto, I. (2022).@Covid-19 in liver transplant recipients: incidence, hospitalization and outcome in an Italian prospective double-centre study.@Sci Rep, 12, 4831. https://doi.org/10.1038/s41598-022-08947-x@Yes$Molla, M. M. A., Yeasmin, M., Islam, M. K., Sharif, M. M., Amin, M. R., Nafisa, T., Ghosh, A. K., Parveen, M., Arif, M. M. H., Alam, J. A. J., Rizvi, S. J. R., Saif-Ur-Rahman, K. M., Akram, A., & Shamsuzzaman, A. K. M. (2021).@Antibiotic Prescribing Patterns at COVID-19 Dedicated Wards in Bangladesh: Findings from a Single Center Study.@Infection prevention in practice, 3(2), 100134. https://doi.org/10.1016/j.infpip.2021.100134@Yes$Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C. & Schouten, J. (2020).@Covide-19: don@undefined@Yes <#LINE#>Modeling and optimization of methyl violet 2B removal on activated carbon based neem hulls using Response Surface Methodology (RSM)<#LINE#>Adama @DIOP,Mamadou @FAYE,Djibril @DIEDHIOU,Codou Gueye @Mar-DIOP <#LINE#>35-45<#LINE#>5.ISCA-RJCS-2022-029.pdf<#LINE#>Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal@Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal and National Polytechnic Institute (INP), National School of Chemical and Technological Arts Engineers (ENSIACET, UMR 1010, Laboratory of Agro-Industrial Chemistry, BP 44362 - 31030 Toulouse Cedex 4, France@Laboratory of Water, Energy, Environnemental and Industrial Processes (LE3PI), Cheikh Anta Diop University (UCAD), Ecole Supérieure Polytechnique (ESP), B.P. 5085 Dakar-Fann, Senegal and University of Sine Saloum El Hadji Ibrahima Niass (USSEIN), UFR, Fundamental and Engineering Sciences (UF-SFI), BP 55 Kaolack, Senegal@Amadou Makhtar MBOW University (UAM), B.P. 45 927 Dakar-Nafa-VDN, Dakar, Senegal<#LINE#>7/12/2022<#LINE#>8/1/2023<#LINE#>The direct discharge of industrial effluents loaded with dyes into nature constitutes a major environmental pollution problem. Thus, the treatment of these wastewaters is now a necessity to protect of people and the environment. The aim of this study was to determine the optimal operating conditions of the adsorption removal of Methyl Violet (MV) in aqueous solution. The activated carbon adsorbent that used in this study is chemically prepared from neem seed hulls. The Surface Response Methodology (SRM), was used for the optimisation and modelling of the adsorption fixation process of MV on the prepared activated carbon elaborated adsorbent. The effects of the operating parameters such as the initial concentration of MV in the solution (40 - 80mg.L-1), the amount of activated carbon adsorbent (1-2g.L-1), the contact time (50-100 min) and the initial pH of the solution (4 - 8) have been studied. The results for ANOVA analysis has showed that the quadratic model is the best fitting model to describe the fixation of MV on the activated carbon the studied adsorbent. The results has also showed that the adsorption of MV on activated carbon the elaborated adsorbent is strongly influenced by the studied parameters. Indeed, the dose of an activated carbon gets the most significant effect on dye removal. The optimal conditions of MV adsorption correspond to an initial MV concentration of 40.75mg.g-1, an activated carbon dose of 1.78g.L-1, a pH of 4.06 and a adsorption time of 99.40 min and allow a MV removal yield of 99.53 %. Therefore, the MSR can be used to model the removal of MV as a function of the parameters studied and to determine the optimal operating conditions for MV fixation on neem seed shell activated carbon. This study has showed that an activated carbon based on neem hulls is a credible option for the treatment of industrial effluents loaded with dyes.<#LINE#>Parmar, P.; Shukla, A.; Goswami, D.; Patel, B. and Saraf, M. (2020).@Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design.@Chemical Engineering Journal Advances, 4, 100043.@Yes$Machrouhia, A.; Farnanea, M.; Tounsadib, H.; Kadmic, Y.; Favierd, L.; Qourzale, S.; Abdennouria, M. and Barkaa, N. (2019).@Activated carbon from Thapsia transtagana stems: central composite design (CCD) optimization of the preparation conditions and efficient dyes removal.@Health, 4(6).@Yes$Mehr, H.; Saffari, J.; Mohammadi, S. and Shojaei, S. (2020).@The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model.@International Journal of Environmental Science and Technology, 17(3), 1773-1782.@Yes$Machrouhi, A.; Alilou, H.; Farnane, M.; El Hamidi, S.; Sadiq, M.; Abdennouri, M.; Tounsadi, H. and Barka, N. (2019).@Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design.@Journal of Science: Advanced Materials and Devices 19, 4(4), 544-553.@Yes$Foroutan, R.; Peighambardoust, S. J.; Aghdasinia, H.; Mohammadi, R. and Ramavandi, B. (2020).@Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids.@Environmental Science and Pollution Research, 27(35), 44218-44229.@Yes$Sivarajasekar, N.; Mohanraj, N.; Sivamani, S. and Moorthy, G. I. (2017).@Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass.@Journal of Environment & Biotechnology Research, 6(1), 88-95.@Yes$Bonetto, L.; Ferrarini, F.; De Marco, C.; Crespo, J.; Guégan, R. and Giovanela, M. (2015).@Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent.@Journal of Water Process Engineering, 6, 11-20.@Yes$Gadekar, M. R. and Ahammed, M. M. (2019).@Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach.@Journal of environmental management, 231, 241-248.@Yes$Dao, M. U.; Le, H. S.; Hoang, H. Y.; Tran, V. A.; Doan, V. D.; Le, T. T. N. and Sirotkin, A. (2021).@Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties.@Environmental Research, 198, 110481.@Yes$Piaskowski, K.; Świderska-Dąbrowska, R. and Zarzycki, P. K. (2018).@Dye removal from water and wastewater using various physical, chemical, and biological processes.@Journal of AOAC International, 101(5), 1371-1384.@Yes$Mozumder, M. and Islam, M. (2021).@Development of treatment technology for dye containing industrial wastewater.@Journal of Scientific Research, 2(3), 567-567.@Yes$Maiti, S. and Prasad, B. (2020).@Minocha, A. K., Optimization of copper removal from wastewater by fly ash using central composite design of Response surface methodology.@SN Applied Sciences, 2(12), 1-14.@Yes$Atheba, P. and Drogui, P. (2018).@Trokourey, A., Adsorption kinetics and thermodynamics study of butylparaben on activated carbon coconut based.@Journal of Encapsulation and Adsorption Sciences, 8(2), 39.@Yes$Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z. N.; Lawan, I.; Wang, L. and Yuan, Z. (2021).@Adsorption of organic dyes from wastewater by metal-doped porous carbon materials.@Journal of Cleaner Production, 284, 124773.@Yes$Laskar, N. and Kumar, U. (2018).@Adsorption of Safranin (Cationic) dye from water by Bambusa tulda: Characterization and ANN modeling.@Environmental Engineering Science, 35(12), 1361-1375.@Yes$Wu, J.; Wang, T.; Wang, J.; Zhang, Y. and Pan, W.P. (2021).@A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity.@Science of the Total Environment, 754, 142150.@Yes$Ahsaine, H. A.; Anfar, Z.; Zbair, M.; Ezahri, M. and El Alem, N. (2022).@Adsorptive removal of methylene blue and crystal violet onto micro-mesoporous Zr3O/activated carbon composite: a joint experimental and statistical modeling considerations.@Journal of Chemistry, 1-14.@Yes$Shah, K. & Palmer, A. (2018).@Physico-chemical characteristics of Activated Carbon prepared from coconut shell.@Int. J. Latest Eng. Res. Appl, 3(1), 27-31.@Yes$Aicha, G. (2020).@Elimination de nickel (II) par un charbon activé à base le noix de l’abricot.@@Yes$Rahman, M. A.; Amin, S. R. and Alam, A. S. (2012).@Removal of methylene blue from waste water using activated carbon prepared from rice husk.@Dhaka University Journal of Science, 60(2), 185-189.@Yes$El Naga, A. O. A.; El Saied, M.; Shaban, S. A. and El Kady, F. Y. (2019).@Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon.@Journal of Molecular Liquids, 285, 9-19.@Yes$Hammari, A. M.; Abubakar, H.; Misau, M.; Aroke, U. and Hamza, U. (2020).@Adsorption Equilibrium and Kinetic Studies of Methylene Blue Dye Using Groundnut Shell and Sorghum Husk Biosorbent.@Journal of Environmental Bioremediation and Toxicology, 3(2), 32-39.@Yes$Andas, J. and Satar, N. A. A. (2018).@Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study.@Materials Today: Proceedings, 5(9), 17611-17617.@Yes$Faye, M. (2010).@Nouveau procédé de fractionnement de la graine de Neem (Azadirachta Indica A. Jussi) sénégalais: production d@@Yes$Okeola, O.; Odebunmi, E. and Ameen, O. (2012).@Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat.@Bulletin of the Chemical Society of Ethiopia, 26(2).@Yes$Mamane, O. S.; Boukari, M. S. D.; Chaibou, A. R.; Yacouba, M. M.; Alma, M. and Natatou, I. (2018).@Valorisation de coques de noix de Balanites aegyptiaca (L.) Del. et élimination du Chrome en solution.@Afrique Science,14(3), 167-181.@Yes$Gueye, M. (2015).@Développement de charbon actif a partir de biomasses lignocellulosiques pour des applications dans le traitement de l@@Yes$Vunain, E. and Biswick, T. (2019).@Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from Malawian baobab fruit shell wastes: Equilibrium, kinetics and thermodynamic studies.@Separation Science and Technology, 54(1), 27-41.@Yes$Kwaghger, A. and Ibrahim, J. (2013).@Optimization of conditions for the preparation of activated carbon from mango nuts using HCl.@American Journal of Engineering Research, 2(7), 74-85.@Yes$Das, D. and Das, N. (2015).@Optimization of parameters for praseodymium (III) biosorption onto biowaste materials using response surface methodology: equilibrium, kinetic and regeneration studies.@Ecological engineering, 81, 321-327.@Yes$Ramakrishna, G. and Susmita, M. (2012).@Application of response surface methodology for optimization of Cr (III) and Cr (VI) adsorption on commercial activated carbons.@Research Journal of Chemical Sciences.@Yes$Pavan Kumar, G.; Malla, K. A. and Yerra, B. (2019).@Srinivasa Rao, K., Removal of Cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks.@Applied Water Science, 9(3), 1-9.@Yes$Kouotou, D.; Manga, H. N.; Baçaoui, A.; Yaacoubi, A. and Mbadcam, J. K. (2013).@Optimization of activated carbons prepared by and steam activation of oil palm shells.@Journal of Chemistry.@Yes$Yasin, Y. (2013).@Mohamad, M.; Ahmad, F. B., The application of response surface methodology for lead ion removal from aqueous solution using intercalated tartrate-Mg-Al layered double hydroxides.@International Journal of Chemical Engineering.@Yes$Gebresemati, M.; Gabbiye, N. and Sahu, O. (2017).@Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology.@Journal of applied research and Technology, 15(1), 27-35.@Yes$Das, R.; Mukherjee, A.; Sinha, I.; Roy, K. and Dutta, B. K. (2020).@Synthesis of potential bio-adsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies.@Applied Water Science, 10(5), 1-18.@Yes$Singh, R. and Bhateria, R. (2020).@Optimization and Experimental Design of the Pb2+ Adsorption Process on a Nano-Fe3O4-Based Adsorbent Using the Response Surface Methodology.@ACS omega, 5(43), 28305-28318.@Yes$Mohammad, Y.; Shaibu-Imodagbe, E.; Igboro, S.; Giwa, A. and Okuofu, C. (2014).@Modeling and optimization for production of rice husk activated carbon and adsorption of phenol.@Journal of Engineering.@Yes$Javanbakht, V. and Ghoreishi, S. M. (20217).@Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite.@Adsorption Science & Technology, 35(1-2), 241-260.@Yes$Brahmi, L.; Kaouah, F.; Boumaza, S. and Trari, M. (2019).@Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones.@Applied Water Science, 9(8), 1-13.@Yes$Almahbashi, N.; Kutty, S.; Ayoub, M.; Noor, A.; Salihi, I.; Al-Nini, A.; Jagaba, A.; Aldhawi, B.; Ghaleb, A. (2021).@Optimization of preparation conditions of sewage sludge based activated carbon.@Ain Shams Engineering Journal, 12(2), 1175-1182.@Yes$Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M. and Taitai, A. (2017).@Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite.@Arabian Journal of Chemistry, 10, S3292-S3302.@Yes$Nojavan, A. and Gharbani, P. (2017).@Response surface methodology for optimizing adsorption process parameters of reactive blue 21 onto modified Kaolin.@Adv Environ Technol, 2, 89-98.@Yes$Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y. and Li, C. (2010).@Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis.@Desalination, 252(1-3), 149-156.@Yes$Wakkel, M.; Khiari, B.; Zagrouba, F. (2019).@Basic red 2 and methyl violet adsorption by date pits: adsorbent characterization, optimization by RSM and CCD, equilibrium and kinetic studies.@Environmental Science and Pollution Research, 26(19), 18942-18960.@Yes$Isam, M.; Baloo, L.; Kutty, S. R. M. and Yavari, S. (2019).@Optimisation and modelling of Pb (II) and Cu (II) biosorption onto red algae (gracilaria changii) by using Response Surface Methodology.@Water, 11(11), 2325.@Yes @Research Article <#LINE#>Physicochemical study of a binary liquid mixture by ultrasonic speed, isentropic compressibility and acoustic impedance from 288.15-318.15K<#LINE#>Naveen @Awasthi <#LINE#>46-59<#LINE#>6.ISCA-RJCS-2022-015.pdf<#LINE#>Department of Chemistry, Janta College Bakewar (206124), Etawah, UP, India<#LINE#>7/7/2022<#LINE#>11/12/2022<#LINE#>Ultrasonic study of intermolecular interactions between the solvents of different nature have been performed by ultrasonic speed (U), isentropic compressibility (βs) and acoustic impedance (Z). Ultrasonic speed and aforesaid acoustical parameters for binary liquid mixture of 2-butanol and dodecane were computed from 288.15-318.15K over the entire range of concentration and atmospheric pressure and compared with the literature values Paterson-Flory-Prigogine (PFP), Ramaswamy- Anbananthan (RS) and Glinski model (GLI) were used to study the intermolecular interactions between the poor interacting liquids at different temperatures. Standard deviations and numerical coefficients of mixing properties were estimated by Redlich Kister polynomial. McAllister multibody correlation model was used to correlate the experimental findings. Ramaswamy model deals a fair agreement with experimental values in comparison to statistical liquid state PFP model.<#LINE#>Awasthi N. (2021).@Prediction of molecular interactions in binary system from 288.15 to 318.15K by ultrasonic speed and isentropic compressibility.@Research Journal of Pharmaceutical, Biological and Chemical Sciences., 12(6), 27-19.@No$Baluja, S., & Oza, S. (2001).@Studies of some acoustical properties in binary solutions.@Fluid phase equilibria, 178(1-2), 233-238.@Yes$Pandey J.D., Vyas V., Jain P., Dubey G. P., Tripathi N., & Dey R. (1999).@Speed of sound, viscosity and refractive index of multicomponent systems: theoretical predictions from the properties of pure components.@Journal of molecular liquids., 81(2), 123-133.@Yes$Nath, G., Sahu, S. & Paikaray, R. (2009).@Study of acoustic parameters of binary mixtures of a nonpolar liquid with polar liquid at different frequencies.@Indian journal of physics, 83, 429-436.@Yes$Deosarkar S.D., Tawde P.D., & Arsule A.D. (2021).@An Insight into the Molecular Interactions of Ranitidine Hydrochloride in Aqueous-Alcoholic Mixtures at Different Temperatures through Ultrasonic Velocity Study.@Russian Journal of Physical Chemistry A.,95(13),2578-85.@Yes$Duraivathi C., Priya J.J., Poongodi J. & Jeyakumar H. J. (2022).@Ultrasonic study of molecular interactions in organic liquid with CCl4 at different temperature.@Materials Today: Proceedings, 49, 1968-72.@Yes$Abe, A., & Flory, P. J. (1965).@The thermodynamic properties of mixtures of small, nonpolar molecules.@Journal of the American Chemical Society, 87(9), 1838-1846.@Yes$Flory, P. J., Orwoll, R. A., & Vrij, A. (1964).@Statistical thermodynamics of chain molecule liquids. II. Liquid mixtures of normal paraffin hydrocarbons.@Journal of the American Chemical Society, 86(17), 3515-3520.@Yes$Prigogine I and Ballemans. A (1957).@Method V. A. Molecular theory of solutions.@Amsterdam: North –Holland Publ. Company.@Yes$Prigogine, I., & Saraga, L. (1952).@Test of monolayer model for surface tension of simple liquid.@J. chem. Phys, 49, 399-407.@Yes$Flory P.D., (1965).@Statistical thermodynamics of liquid mixtures.@Journal of the American Chemical Society, 87(9), 1833-1838.@Yes$Patterson D. & Rastogi A.K. (1970).@The surface tension of polymeric liquids and the principle of corresponding states.@J Phy Chem., 74, 1067-1071.@Yes$Ramaswamy, K., & Anbananthan, D. (1981).@Original article unavailable, Information taken from Ref.[3].@Acustica, 48, 281-282.@Yes$Gliński, J. (2003).@Determination of the conditional association constants from the sound velocity data in binary liquid mixtures.@The Journal of chemical physics, 118(5), 2301-2307.@Yes$McAllister, R. A. (1960).@The viscosity of liquid mixtures.@AIChE Journal, 6(3), 427-431.@Yes$Redlich, O., & Kister, A. T. (1948).@Algebraic representation of thermodynamic properties and the classification of solutions.@Industrial & Engineering Chemistry, 40(2), 345-348.@Yes$Troncoso, J., Valencia, J. L., Souto-Caride, M., González-Salgado, D., & Peleteiro, J. (2004).@Thermodynamic properties of dodecane+ 1-butanol and+ 2-butanol systems.@Journal of Chemical & Engineering Data, 49(6), 1789-1793.@Yes$Shukla, R. K., Kumar, A., Awasthi, N., Srivastava, U., & Srivastava, K. (2017).@Speed of sound and isentropic compressibility of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol with benzene from various models at temperature range 298.15–313.15 K.@Arabian Journal of Chemistry, 10(7), 895-905.@Yes$Shukla, R. K., Awasthi, N., Kumar, A., Shukla, A., & Pandey, V. K. (2011).@Prediction of associational behaviour of binary liquid mixtures from viscosity data at 298.15, 303.15, 308.15 and 313.15 K.@Journal of Molecular Liquids, 158(2), 131-138.@Yes$Shukla, R. K., Kumar, A., Srivastava, U., Awasthi, N., & Pandey, J. D. (2012).@Estimation of the surface tensions of benzonitrile, chlorobenzene, benzyl chloride and benzyl alcohol in mixtures with benzene by associated and non-associated processes at 298.15, 303.15 and 313.15 K.@Journal of solution chemistry, 41, 1112-1132.@Yes$Natarajan, R., & Ramesh, P. (2011).@Ultrasonic velocity determination in binary liquid mixtures.@Journal of Pure Applied and Industrial Physics, 1(4), 212-277.@Yes$Kiyohara, O., & Benson, G. C. (1979).@Ultrasonic speeds and isentropic compressibilities of n-alkanol+ n-heptane mixtures at 298.15 K.@The Journal of Chemical Thermodynamics, 11(9), 861-873.@Yes$Kumar, H., Kundi, V., Singla, M., & Sharma, S. (2013).@Mixing Properties of Binary Liquid Mixtures of Alkoxypropanols with Branched Alkanols at Different Temperatures.@Bulletin of the Chemical Society of Japan, 86(12), 1435-1446.@Yes @Review Paper <#LINE#>Inhibitive action of some natural products on the corrosion of mild steel in NaCl and Sea water solution-An overview<#LINE#>R.T. @Vashi <#LINE#>60-64<#LINE#>7.ISCA-RJCS-2022-003.pdf<#LINE#>Chemistry Department, Navyug Science College, Rander Road, Surat, India<#LINE#>31/1/2022<#LINE#>18/7/2022<#LINE#>Corrosion can be defined as a phenomenon of physico-chemical interaction of a metal and its environment, inducing degradation of the metal itself. A study of corrosion of Mild steel (MS) and it’s inhibition was carried out by using weight loss (WL), temperature effect, polarization and EIS methods. Natural products were used as inhibitors to controlled or minimized the corrosion as they are cheap, non-toxic and eco-friendly. Adsorptions of various phytochemicals present in natural products extract on metal surface obey different types of adsorption isotherms. Morphology of film produced on metal surface was carried out by different techniques like, SEM, GC–MS, Fourier-Transform Infrared (FT-IR), UV Spectroscopy, HPLC, EFM, EDX, XRD, Ellipsometry and AFM were used. Other techniques like Electric Noise (EN) analysis, Fluorescence, DFT and Quantum chemical computations were used. In this review, a work of MS corrosion in NaCl and Sea water solutions and it's inhibition by natural products were presented.<#LINE#>Sathiyanarayanan, S., Jeyaprabha, C., Muralidharan, S. & Venkatachari, G. (2006).@Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations.@Applied surface science, 252(23), 8107-8112.@Yes$Prabakaran, M., Kim, S. H., Hemapriya, V., Gopiraman, M., Kim, I. S., & Chung, I. M. (2016).@Rhus verniciflua as a green corrosion inhibitor for mild steel in 1M H2SO4.@RSC advances, 6(62), 57144-57153.@Yes$Devikala, S., Kamaraj, P., Arthanareeswari, M., & Patel, M. B. (2019).@Green corrosion inhibition of mild steel by aqueous Allium sativum extract in 3.5% NaCl.@Materials Today: Proceedings, 14, 580-589.@Yes$Nwankwo,M. O., Offor, P. O., Neife, S. I, Oshionwu, L. C. & Idenyi, N. E. (2014).@Amaranthus cordatus as a Green Corrosion Inhibitor for Mild Steel in H2SO4 and NaCl.@J. of Miner. and Mat. Char. and Eng., 2, 194-199, http://dx.doi.org/10.4236/jmmce.2014.23024.@No$Xuan, L. P., Anwar, M. A., T. Kurniawan, T., Ayu, H. M., Daud., R. & Asmara,Y. P. (2019).@Caffeine as a Natural Corrosion Inhibitor for Mild Steel in NaCl Solution.@J. of Sci. and Appl. Engg., 2(2), 63-72.@No$Singh, S. K., Kumar, A., Ji, G. & Prakash, R. (2022).@Electrochemical and Computational Examination of Camellia Sinensis Assamica Biomolecules Ability to Retard Mild Steel Corrosion in Sodium Chloride Solutions.@J. of Bio- and Tribo-Corros., 8(1), DOI:10.1007/s40735-021-00611-7.@Yes$Palaniappan, N., Cole, I., Caballero-Briones, F., Manickam, S., Thomas, K. J., & Santos, D. (2020).@Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium.@RSC advances, 10(9), 5399-5411.@Yes$Muzakir, M. M., Nwosu, F. O., & Amusat, S. O. (2019).@Mild steel corrosion inhibition in a NaCl solution by lignin extract of Chromolaena odorata.@Portugaliae Electrochimica Acta, 37(6), 359-372.@Yes$Adams, S. M., Abdulwahab, M., Ojiugo, N. U., Anianwu, F. O., Urama, N. A., & Okwudiba, I. N. (2020).@Novel Extract of Cyperus Esculentus Leaves as Green Corrosion Inhibitor for Mild Steel in 0.5 M NaCl Aqueous Solution.@Int. Adv. Res. J. in Sci., Eng. and Tech., 7(5), 135-141.@Yes$Koundal, V., Haldhar, R., Saxena, A., & Prasad, D. (2017).@Natural non poisonous green inhibitor of Glycyrrhiza glabra for mild steel in 3.5% NaCl.@In AIP Conference Proceedings, Vol. 1860, No. 1, p. 020063. AIP Publishing LLC.@Yes$Haddadi, S. A., Alibakhshi, E., Bahlakeh, G., Ramezanzadeh, B., & Mahdavian, M. (2019).@A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution.@Journal of molecular liquids, 284, 682-699.@Yes$Pradityana, A., & Shahab, A. (2014).@Application of Myrmecodia pendans extract as a green corrosion inhibitor for mild steel in 3.5% NaCl solution.@In Applied Mechanics and Materials, 93, 684-690. Trans Tech Publications Ltd.@Yes$Rana, M., Joshi, S., & Bhattarai, J. (2017). Extract of different plants of Nepalese origin as green corrosion inhibitor for mild steel in 0.5 M NaCl solution. Asian Journal of Chemistry, 29(5), 1130-1134.@undefined@undefined@Yes$Sathiyanathan, R., Maruthamuthu, S., Selvanayagam, M., Mohanan, S., & Palaniswamy, N. (2005).@Corrosion inhibition of mild steel by ethanolic extracts of Ricinus communis leaves.@@Yes$Akbarzadeh, S., Ramezanzadeh, B., Bahlakeh, G., & Ramezanzadeh, M. (2019).@Molecular/electronic/atomic-level simulation and experimental exploration of the corrosion inhibiting molecules attraction at the steel/chloride-containing solution interface.@Journal of Molecular Liquids, 296, 111809.@Yes$Premkumar, P., Kannan, K., & Natesan, M. (2008).@Thyme extract of Thymus vulgar L. as volatile corrosion inhibitor for mild steel in NaCl environment.@Asian journal of chemistry, 20(1), 445.@Yes$Vorobyova, V. & Skiba, M. (2022).@Potential of tomato pomace extract as a multifunction inhibitor corrosion of mild steel.@Waste and Biomass Valorization, 13(7), 3309-3333.@Yes$Edraki, M., Mousazadeh Moghadam, I., Banimahd Keivani, M., & Fekri, M. H. (2019).@Turmeric extract as a biocompatible inhibitor of mild steel corrosion in 3.5% NaCl solution.@Quarterly Journal of Iranian Chemical Communication, 7(2), 90-159.@Yes$Sangeetha, M., Rajendran, S., Sathiyabama, J., & Prabhakar, P. (2012).@Asafoetida extract (ASF) as green corrosion inhibitor for mild steel in sea water.@Int. Res. J. Environment Sci, 1(5), 14-21.@Yes$Rama. V, Malarvizhi, I. & Selvaraj, S. (2018).@Effect of Cansjera Rheedii leaves extract on mild steel in Natural Sea Water.@Int. J. of Engg. Devel. and Res., 6(4), 575-582.@No$Sribharathy V. and Rajendran, S. (2013).@Cuminum cyminum Extracts as Eco-Friendly Corrosion Inhibitor for Mild Steel in Seawater.@ISRN Corrosion, Article ID 370802, 1-7. http://dx.doi.org/10.1155/2013/370802.@Yes$Oyewole, O., Aondoakaa, E., Abayomi, T. S., Ogundipe, S. J., & Oshin, T. A. (2021).@Characterization and optimization study of Ficus exasperata extract as corrosion inhibitor for mild steel in seawater.@World Scientific News, (151), 78-94.@Yes$Olamide, O., Adekunle, O. F., Adesoji, A. A., & Sunday, O. A. (2016).@Corrosion Inhibition of Mild Steel in Seawater using Jatropha Stem.@Analele Universitatii@Yes$Hajar, H. M., Zulkifli, F., Mohd Sabri, M. G., Fitriadhy, A. & Wan Nik, W. B. (2016).@Lawsonia Inermis Performance as Corrosion Inhibitor for Mild Steel in Seawater.@Int. J. of Chem. Tech. Res., 9(8), 600-608.@Yes$Ukpong, I., Bamgboye, O., & Soriyan, O. (2018).@Synergistic inhibition of mild steel corrosion in seawater and acidic medium by cathodic protection and Monodora myristica using zinc anode.@International Journal of Corrosion, 1-8.@Yes$Hart K. G, Orubite-Okorosaye. K. & James A. O. (2017). Corrosion Inhibition of Mild Steel in Simulated Seawater by Nymphae pubscens Leaf Extracts (NLE).@Int. J. of Adv. Res. in Chem. Sci., 4(12), 32-40@undefined@Yes$Deivanayagam, P., Malarvizhi, I., Selvaraj S. & Deeparani, P. (2015).@Corrosion behaviour of Sauropus and rogynus leaves (SAL) on mild steel in natural sea water.@Int. J. of Adv. in Pharm., Bio. and Chem., 4(3), 574-583.@Yes$Malar vizhi. I. & Selvaraj. S. & Kalirajan. K. (2018).@Corrosion Behavior of Mild Steel in Natural Sea Waterwith Tephrosia Purpurea– A Green Approach.@Int. J. of Res. and Anal. Rev., 5 (4), 164-174.@No$Tuaweri, T. J., & Ogbonnaya, E. A. (2017).@Corrosion Inhibition Characteristics of Vernonia Amygdalina (Bitter Leaf) on Mild Steel in Seawater.@Journal of Science and Engineering Research, 4, 6-13.@Yes$Mzioud, K., Habsaoui, A., Ouakki, M., Galai, M., El Fartah, S., & Ebn Touhami, M. (2020).@Inhibition of copper corrosion by the essential oil of Allium sativum in 0.5 MH 2 SO 4 solutions.@SN Applied Sciences, 2, 1-13.@Yes$Prakash N. and B. Ragavan, B. (2009).@Phytochemical Observation and Antibacterial Activity of Cyperus Esculentus.@Ancient Sci. of Life., 28 (4), 16-20.@Yes$Onukwuli, O. D. Omotioma, M. and Obiora-Okafor, I. (2020).@Thermometric and Gravimetric Analyses of Aluminum Corrosion Control in a HCl Medium, Using Ricinus Communis Extract.@Port. Electrochim. Acta., 38(1), 19-28. DOI: 10.4152/pea.202001019.@Yes$Hassan, A. M., & Hassan, A. S. (2017).@In vitro antimicrobial activity of Thymus vulgaris, Origanum vulgare and Rosmarinus officinalis against dental caries pathogens.@Ibn AL-Haitham Journal for Pure and Applied Science, 25(2).@Yes$Ejikeme, P. M., Umana, S. G., Alinnor, I. J., Onukwuli, O. D., & Menkiti, M. C. (2014). Corrosion inhibition and adsorption characteristics of jatropha curcas leaves on Al in 1M HCl. American J. of Materials Sci, 4(5), 194-201.@undefined@undefined@Yes$El-Etre, A. Y., Abdallah, M., & El-Tantawy, Z. E. (2005).@Corrosion inhibition of some metals using lawsonia extract.@Corrosion science, 47(2), 385-395.@Yes$Khaled, K. F. (2008).@Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles. Electrochimica Acta, 53(9), 3484-3492.@undefined@Yes <#LINE#>Crystallization approach for purification of intact monoclonal antibodies: A review<#LINE#>Amit @Chougale,Shruti @Vedante,Sayali @Lole,Rutuparna @Karkare <#LINE#>65-78<#LINE#>8.ISCA-RJCS-2022-014.pdf<#LINE#>Department of Biotechnology, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, Maharashtra, India@Department of Biotechnology, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, Maharashtra, India@Department of Biotechnology, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, Maharashtra, India@Department of Biotechnology, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, Maharashtra, India<#LINE#>15/6/2022<#LINE#>30/10/2022<#LINE#>Over the 20th century, protein crystallization had been accepted and developed as a powerful purification tool before chromatography. It has also been applied for various biologically important macromolecules for efficacious durability and contracted dosage in the field of drug formulation. Right from the evolution, intact monoclonal antibodies (mAbs) have gained prime importance in the field of therapeutic drug applications, especially in immunotherapies. The fragments of mAbs have also been used for different applications. The purification strategies researched and established for these molecules during the last 20 years are predominantly chromatographies. But considering the process cost limitations, crystallization was found to be effective to purify the intact monoclonal antibodies from a massive number of proteins in culture broth and feasible to use as an alternative platform. This review presents the success rate of crystallization in intact monoclonal antibody purification. Further, the importance of phase behavior studies, the effects of additives on monoclonal antibody crystallization is discussed with the help of case studies. Also, the comparison of different batch versus continuous crystallization methods applied is discussed. In the end, the requirement and prospects of large-scale crystallization studies of intact monoclonal antibodies invoking the accomplishment of high throughput demand are discussed.<#LINE#>Abdalla, M., Dai, Y. N., Chi, C. B., Cheng, W., Cao, D. D., Zhou, K., Ali, W., Chen, Y., & Zhou, C. Z. (2016).@Crystal structure of yeast monothiol glutaredoxin Grx6 in complex with a glutathione-coordinated [2Fe-2S] cluster.@Acta Crystallographica Section: F Structural Biology Communications, 72(10), 732–737.@Yes$Adachi, H., Takano, K. Morikawa, M., Kanaya, S., Yoshimura, M., Mori, Y. & Sasaki, T. (2003).@Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization.@Acta Crystallographica Section D: Biological Crystallography, 59(1), 194-196.@Yes$Ahamed, T., Esteban, B. N., Ottens, M., Van Dedem, G. W., Van der Wielen, L. A., Bisschops, M. A., ... & Thömmes, J. (2007).@Phase behavior of an intact monoclonal antibody.@Biophysical journal, 93(2), 610-619.@Yes$Alvarado, U. R., DeWitt, C. R., Shultz, B. B., Ramsland, P. A. & Edmundson, A. B. (2001).@Crystallization of a human Bence–Jones protein in microgravity using vapor diffusion in capillaries.@Journal of Crystal Growth, 223(3), 407-414.@Yes$D@Microseed matrix screening for optimization in protein crystallization: what have we learned?.@Acta Crystallographica Section F: Structural Biology Communications, 70(9), 1117-1126.@Yes$D@The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions.@Acta Crystallographica Section D: Biological Crystallography, 59(2), 396-399.@Yes$Asherie, N. (2004).@Protein crystallization and phase diagrams.@Methods, 34(3), 266-272.@Yes$Bolanos-Garcia, V. M. & Chayen, N. E. (2009).@New directions in conventional methods of protein crystallization.@Progress in biophysics and molecular biology, 101(1-3), 3-12.@Yes$Bunick, C., North, A. C. T. & Stubbs, G. (2000).@Evaporative microdialysis: an effective improvement in an established method of protein crystallization.@Acta Crystallographica Section D: Biological Crystallography, 56(11), 1430-1431.@Yes$Chayen, B. N. E. (2009).@High-Throughput Protein Crystallization Structural genomics projects have led to great progress in the field of structural biology. Considerable advances have been made in the automation of all stages of the pipeline from clone to structure. This chapte.@Advances in Protein Chemistry and Structural Biology, 77(09). Elsevier. https://doi.org/10.1016/S1876-1623(09)77001-4@No$Chayen, N. E., & Saridakis, E. (2008).@Protein crystallization: from purified protein to diffraction-quality crystal.@Nature methods, 5(2), 147-153.@Yes$Chusainow, J., Yang, Y. S., Yeo, J. H., Toh, P. C., Asvadi, P., Wong, N. S., & Yap, M. G. (2009).@A study of monoclonal antibody‐producing CHO cell lines: What makes a stable high producer?.@Biotechnology and Bioengineering, 102(4), 1182-1196.@Yes$Collins, K. D. (2004).@Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process.@Methods, 34(3), 300-311.@Yes$Collins, K. D. (2006).@Ion hydration: Implications for cellular function, polyelectrolytes and protein crystallization.@119, 271–281. https://doi.org/10.1016/j. bpc.2005.08.010@Yes$Data, R. U. S. A., Helk, B., Smejkal, B., Schulz, K. & Smejkal, B. (2015).@(12) Patent Application Publication (10) Pub.@No .: US 2015 / 0133642 A1. 1(19).@No$Yang, H., Belviso, B. D., Li, X., Chen, W., Mastropietro, T. F., Di Profio, G., ... & Heng, J. Y. (2019).@Optimization of vapor diffusion conditions for anti-CD20 crystallization and scale-up to meso batch.@Crystals, 9(5), 230.@Yes$Dumetz, A. C., Snellinger‐O@Patterns of protein–protein interactions in salt solutions and implications for protein crystallization.@Protein Science, 16(9), 1867-1877.@Yes$Fraunhofer, W. (2006).@United States Patent.@2(12).@No$Fraunhofer, W., Krause, H., De, G., Koenigsdorfer, A., De, I., Winter, G., De, P. & Gottschalk, S. (2012).@(12) United States Patent (10) Patent No.@: 2(12).@No$Gielen, B., Jordens, J., Thomassen, L. C., Braeken, L., & Van Gerven, T. (2017).@Agglomeration control during ultrasonic crystallization of an active pharmaceutical ingredient.@Crystals, 7(2), 40.@Yes$Govardhan, C. P., Us, M. A., Yang, M. X., & Margolin, A. L. (2016).@(12) United States Patent (10) Patent No.@no 2(12).@No$Hebel, D., Huber, S., Stanislawski, B., & Hekmat, D. (2013).@Stirred batch crystallization of a therapeutic antibody fragment.@Journal of biotechnology, 166(4), 206-211.@Yes$Hebel, D., Ürdingen, M., Hekmat, D., & Weuster-Botz, D. (2013).@Development and scale up of high-yield crystallization processes of lysozyme and lipase using additives.@Crystal growth & design, 13(6), 2499-2506.@Yes$Hekmat, D., Hebel, D. & Weuster‐Botz, D. (2008).@Crystalline proteins as an alternative to standard formulations.@Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering ‐Biotechnology, 31(6), 911-916.@Yes$Hekmat, D. (2015).@Large-scale crystallization of proteins for purification and formulation.@Bioprocess and biosystems engineering, 38, 1209-1231.@Yes$Hekmat, D., Huber, M., Lohse, C., Von Den Eichen, N., & Weuster-Botz, D. (2017).@Continuous crystallization of proteins in a stirred classified product removal tank with a tubular reactor in bypass.@Crystal Growth & Design, 17(8), 4162-4169.@Yes$Henricks, L. M., Schellens, J. H., Huitema, A. D., & Beijnen, J. H. (2015).@The use of combinations of monoclonal antibodies in clinical oncology.@Cancer treatment reviews, 41(10), 859-867.@Yes$Hildebrandt, C., Joos, L., Saedler, R., & Winter, G. (2015).@The new polyethylene glycol dilemma: polyethylene glycol impurities and their paradox role in mAb crystallization.@Journal of Pharmaceutical Sciences, 104(6), 1938-1945.@Yes$Hildebrandt, C., Mathaes, R., Saedler, R., & Winter, G. (2016).@Origin of aggregate formation in antibody crystal suspensions containing PEG.@Journal of Pharmaceutical Sciences, 105(3), 1059-1065.@Yes$Jion, A. I., Goh, L. T., & Oh, S. K. (2006).@Crystallization of IgG1 by mapping its liquid–liquid phase separation curves.@Biotechnology and bioengineering, 95(5), 911-918.@Yes$Kirley, T. L., & Norman, A. B. (2015).@Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.@Human vaccines & immunotherapeutics, 11(2), 458-467.@Yes$Krauss, I. R., Merlino, A., Vergara, A., & Sica, F. (2013).@An overview of biological macromolecule crystallization.@International journal of molecular sciences, 14(6), 11643-11691.@Yes$Kumar, V., Dixit, N., Singh, S. N., & Kalonia, D. S. (2011). SOLUBILITY/EXCIPIENTS-Phase Separation of Proteins by Poly-ethylene Glycols: Implications in Preformulation and Early Stage Formulation Development. American Pharmaceutical Review, 14(7), 26.@undefined@undefined@Yes$Kuznetsov, Y. G., Malkin, A. J., & McPherson, A. (2001). The liquid protein phase in crystallization: a case study—intact immunoglobulins. Journal of crystal growth, 232(1-4), 30-39. https://doi.org/10.1016/S0022-0248(01)01058-2@undefined@undefined@Yes$Larson, S. B., Kuznetsov, Y. G., Day, J., Zhou, J., Glaser, S., Braslawsky, G., & McPherson, A. (2005). Combined use of AFM and X-ray diffraction to analyze crystals of an engineered, domain-deleted antibody. Acta Crystallographica Section D: Biological Crystallography, 61(4), 416-422.@undefined@undefined@Yes$Vivarès, D., Kaler, E. W., & Lenhoff, A. M. (2005). Quantitative imaging by confocal scanning fluorescence microscopy of protein crystallization via liquid–liquid phase separation. Acta Crystallographica Section D: Biological Crystallography, 61(6), 819-825.@undefined@undefined@Yes$Lewus, R. A., Darcy, P. A., Lenhoff, A. M., & Sandler, S. I. (2011). Interactions and phase behavior of a monoclonal antibody. Biotechnology progress, 27(1), 280-289.@undefined@undefined@Yes$Liu, J., Yin, D. C., Guo, Y. Z., Wang, X. K., Xie, S. X., Lu, Q. Q., & Liu, Y. M. (2011). Selecting temperature for protein crystallization screens using the temperature dependence of the second virial coefficient. PloS one, 6(3), e17950.@undefined@undefined@Yes$Luft, J. R., Wolfley, J. R., Said, M. I., Nagel, R. M., Lauricella, A. M., Smith, J. L., ... & DeTitta, G. T. (2007). Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature. Protein science, 16(4), 715-722.@undefined@undefined@Yes$Luft, J. R., Newman, J., & Snell, E. H. (2014). Crystallization screening: the influence of history on current practice. Acta Crystallographica Section F, 70(7), 835-853.@undefined@undefined@Yes$McPherson, A., & Gavira, J. A. (2014). Introduction to protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 70(1), 2-20.@undefined@undefined@Yes$Moreno, A. (2017).@Advanced methods of protein crystallization.@In Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-7000-1_3@Yes$Neugebauer, P., & Khinast, J. G. (2015).@Continuous crystallization of proteins in a tubular plug-flow crystallizer.@Crystal growth & design, 15(3), 1089-1095.@Yes$Niegowski, D., Hedrén, M., Nordlund, P., & Eshaghi, S. (2006).@A simple strategy towards membrane protein purification and crystallization.@International journal of biological macromolecules, 39(1-3), 83-87.@Yes$Oliva, J. A., Wu, W. L., Greene, M. R., Pal, K., & Nagy, Z. K. (2020).@Continuous spherical crystallization of lysozyme in an oscillatory baffled crystallizer using emulsion solvent diffusion in droplets.@Crystal Growth & Design, 20(2), 934-947.@Yes$Pandit, A., Katkar, V., Ranade, V., & Bhambure, R. (2018).@Real-time monitoring of biopharmaceutical crystallization: chord length distribution to crystal size distribution for lysozyme, rhu insulin, and vitamin B12.@Industrial & Engineering Chemistry Research, 58(18), 7607-7619.@Yes$Penkova, A., Chayen, N. E., Saridakis, E., & Nanev, C. (2002).@Nucleation of protein crystals in a wide continuous supersaturation gradient.@Acta Crystallographica Section D: Biological Crystallography, 58(10), 1606-1610.@Yes$Przybycien, T. M., Pujar, N. S., & Steele, L. M. (2004).@Alternative bioseparation operations: life beyond packed-bed chromatography.@Current Opinion in Biotechnology, 15(5), 469-478.@Yes$Pu, S., & Hadinoto, K. (2020).@Continuous crystallization as a downstream processing step of pharmaceutical proteins: A review.@Chemical Engineering Research and Design, 160, 89-104.@Yes$Reichert, P., Prosise, W., Fischmann, T. O., Scapin, G., Narasimhan, C., Spinale, A., ... & Strickland, C. (2019).@Pembrolizumab microgravity crystallization experimentation.@NPJ Microgravity, 5(1), 28.@Yes$Saridakis, E., & Chayen, N. E. (2000).@Improving protein crystal quality by decoupling nucleation and growth in vapor diffusion.@Protein Science, 9(4), 755-757.@Yes$Schmidt, S., Havekost, D., Kaiser, K., Kauling, J., & Henzler, H. J. (2005).@Crystallization for the downstream processing of proteins.@Engineering in life sciences, 5(3), 273-276.@Yes$Shimizu, S., McLaren, W. M., & Matubayasi, N. (2006).@The Hofmeister series and protein-salt interactions.@The Journal of chemical physics, 124(23), 234905.@Yes$Shire, S. J., Shahrokh, Z., & Liu, J. U. N. (2004).@Challenges in the development of high protein concentration formulations.@Journal of pharmaceutical sciences, 93(6), 1390-1402.@Yes$Sjuts, H., Schreuder, H., Engel, C. K., Bussemer, T., & Gokarn, Y. (2020).@Matching pH values for antibody stabilization and crystallization suggest rationale for accelerated development of biotherapeutic drugs.@Drug Development Research, 81(3), 329-337. Smatanová, I. K. (2002). Crystallization of biological macromolecules. 9(1), 1–2.@Yes$Smejkal, B., Agrawal, N. J., Helk, B., Schulz, H., Giffard, M., Mechelke, M., ... & Hekmat, D. (2013). Fast and scalable purification of a therapeutic full‐length antibody based on process crystallization. Biotechnology and Bioengineering, 110(9), 2452-2461.@undefined@undefined@Yes$Snyder, D. A., Chen, Y., Denissova, N. G., Acton, T., Aramini, J. M., Ciano, M., ... & Montelione, G. T. (2005). Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. Journal of the American Chemical Society, 127(47), 16505-16511.@undefined@undefined@Yes$Sommerfeld, S., & Strube, J. (2005). Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies. Chemical Engineering and Processing: Process Intensification, 44(10), 1123-1137.@undefined@undefined@Yes$Sun, M., Tang, W., Du, S., Zhang, Y., Fu, X., & Gong, J. (2018). Understanding the roles of oiling-out on crystallization of β-alanine: unusual behavior in metastable zone width and surface nucleation during growth stage. Crystal Growth & Design, 18(11), 6885-6890.@undefined@undefined@Yes$Fang, L., Liu, J., Ju, S., Zheng, F., Dong, W., & Shen, M. (2010). Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO 3 nanoparticles. Applied Physics Letters, 97(24), 242501.@undefined@undefined@Yes$Tanaka, S., Ataka, M., Onuma, K., & Kubota, T. (2003). Rationalization of membrane protein crystallization with polyethylene glycol using a simple depletion model. Biophysical journal, 84(5), 3299-3306.@undefined@undefined@Yes$Trilisky, E., Gillespie, R., Osslund, T. D., & Vunnum, S. (2011). Crystallization and liquid‐liquid phase separation of monoclonal antibodies and fc‐fusion proteins: Screening results. Biotechnology progress, 27(4), 1054-1067.@undefined@undefined@Yes$Wang, X. K., Yin, D. C., Zhang, C. Y., Lu, Q. Q., Guo, Y. Z., & Guo, W. H. (2010). Effect of temperature programmes on protein crystallisation. Crystal Research and Technology, 45(5), 479-489.@undefined@undefined@Yes$Wilkins, J. A., Francisco, S., Lobo, B., & Data, R. U. S. A. (2011). (12) Patent Application Publication (10) Pub. No.: US 2011/0020322 A1. 1(19).@undefined@undefined@No$Yamada, T., Yamamoto, K., Ishihara, T., & Ohta, S. (2017). Purification of monoclonal antibodies entirely in flow-through mode. Journal of Chromatography B, 1061, 110-116.@undefined@undefined@Yes$Zang, Y. (2013). Development of a crystallization step for monoclonal antibody purification: screening, optimization and aggregation control (Doctoral dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2013).@undefined@undefined@Yes$Zang, Y., Kammerer, B., Eisenkolb, M., Lohr, K., & Kiefer, H. (2011). Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS One, 6(9), e25282.@undefined@undefined@Yes$Zang, Y., Kammerer, B., Eisenkolb, M., Lohr, K., & Kiefer, H. (2011b). Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies : Screening and Optimization at Microbatch Scale Towards Protein Crystallization as a Process Step in Downstream Processing of Therapeutic Antibodies : Sc. April 2016. https://doi.org/10.1371/journal.pone.0025282@undefined@undefined@Yes