@Research Paper <#LINE#>Biosorption of basic yellow dye using leaf sheath powder of Areca catechu (Betel nut tree)<#LINE#>M @Narmatha <#LINE#>1-9<#LINE#>1.ISCA-RJCS-2020-043.pdf<#LINE#>Vivekanand College of Engineering for Women, Namakkal, Elaiyampalayam, Tamil Nadu, India<#LINE#>16/8/2020<#LINE#>11/12/2021<#LINE#>Increased anthropological activities have led to the random spread of pollutants in the environment. The pollutants that enter the environment have the potential to bind up with the elements in the surroundings and form both reversible & irreversible chemical compounds that pose hazards to humans and other living organisms. The availability of treatment and purification techniques of such pollutants is wide spread and of high cost. Our aim is to provide an eco friendly and cost effective material for dye removal. The biosorption of basic yellow dye by the raw and unmodified leaf sheath powder of Areca catechu (betel nut tree) was analyzed in this study.<#LINE#>Senthil Amudhan, Hazeena Begum and KB. Habber (2012).@A review on Phytochemical and Pharmacological potential of Areca catechu L. seed.@International Journal of Pharmaceutical Sciences and Research, 3(11), 4151-4157.@Yes$Tahrez A. Khan, Saif A. Chaudry and Imran Ali (2015).@Equilibrium uptake, isotherm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution.@Journal of Molecular liquids, 202,165-175@Yes$Atefeh Abdolai, Huu Nao Ngo, Wneshen Guo, Shaoyong Lu, Shiao- Shing Chen, Nguyen Cong Nguyen, Xinbo Zhang, Jie Wang and Yun Wu (2016).@A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetics, thermodynamic and mechanism analyses in a lab scale study.@Science of the Total Environment, 542(A), 603-611.@Yes$Lei Sun, Dongmei Chen and Zebin Wu (2015).@Performance, kinetics and equilibrium of Methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric acid and acetic acid.@Bioresource Technology, 198, 300-308.@Yes$Basker A., Syed Shabudeen P.S. and Kalaiselvi D. (2015).@Adsorption of Cationic dye onto activated carbon from Areca husk fibre and Optimisation of Operating Conditions using Design of Experiment.@International Journal of Advanced Research in Biotechnology, 3(1), 06-24.@Yes$Özacar, M. & Şengil, İ. A. (2003).@Adsorption of reactive dyes on calcined alunite from aqueous solutions.@Journal of hazardous materials, 98(1-3), 211-224.@Yes$Vijayakumar, G., Tamilarasan, R., & Dharmendirakumar, M. (2012).@Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite.@J. Mater. Environ. Sci, 3(1), 157-170.@Yes$Yasemin Caliskan, Serpil Harbeck and Nihal Bektas (2018).@Adsorptive Removal of basic yellow dye using Bigadic zeolites: FTIR analysis, kinetics and Isotherms Modelling.@American Institute of Chemical Engineers. DOI: 10.1002/ep.12969@Yes$Ankitha R, Prakruthi S, Sneha S and Seeman Tharannum (2016).@Areca nut as potential Bio adsorbent for Remediation of Chromium.@International Journal of Science Engineering and Management.@No$Girish C R and Geoju M George (2017).@Phenol Removal from waste water using Areca nut Husk (Areca catechu) as adsorbent.@International Journal of Mechanical Engineering and Technology, 8(12), 1-9.@Yes$Mulu Berhe Desta (2013).@Batch Sorption Experiments: Langmuir and Freundlich Isotherm studies for the adsorption of textile Metal ions onto teff straw (Ergatois tef) Agricultural Waste.@Journal of Thermodynamics, http://dx.doi.org/10.1155/2013/375830.@Yes$Rehman, M. A., Hasan, M. A., Salam, M. A., Salam, A., & Alam, A. S. (2012).@Betel-nut peel as an adsorbent in the removal of Cd, Cr and Pb from aqueous solutions.@Pakistan Journal of Analytical & Environmental Chemistry, 13(2), 11.@Yes$Nagaraja R., Gurumurthy B.R. and Shivanna M.B. (2014).@Bio softening of Areca nut waste Areca Husk, Leaf and Leaf Sheath for Value Added Compost.@International Journal of Research in Applied Natural and Social Sciences, 2(9), 105-112.@Yes$Raju, C. A. I., & Nethi, V. R. N. (2018). Biosorption and optimization studies on congo red dye with fanwort powder using box Behnken design. Int J Res Eng Technol, 5, 728-738.@undefined@undefined@Yes$Paresh Chakravarthy, N. Sen Sarma and H.P. Sarma (2010).@Biosorption of Cd(II) from aqueous solution using Heartwood powder of Areca catechu.@Chemical Engineering Journal, 162, 949-955@Yes$Georgin, J., Marques, B. S., Peres, E. C., Allasia, D., & Dotto, G. L. (2018).@Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa).@Water Science and Technology, 77(6), 1612-1621.@Yes$Shamim, S. (2018).@Biosorption of heavy metals.@Biosorption, 2, 21-49.@Yes$El-Naggar, N. E. A., Hamouda, R. A., Mousa, I. E., Abdel-Hamid, M. S., & Rabei, N. H. (2018).@Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions.@Scientific Reports, 8(1), 1-19.@Yes$Ramachandra, T. V., N. Ahalya, and R. D. Kanamadi (2006).@Biosorption: techniques and mechanisms.@CES TR 110, 1-91.@Yes$Temesgen, F., Gabbiye, N., & Sahu, O. (2018).@Biosorption of reactive red dye (RRD) on activated surface of banana and orange peels: economical alternative for textile effluent.@Surfaces and interfaces, 12, 151-159.@Yes$Basrur, D., & Ishwara Bhat, J. (2019).@An investigation on the characterization of activated carbon from areca leaves and their adsorption nature towards different dyes.@Global Nest Journal, 21(2), 124-130.@Yes$Ozdemir, O., Armagan, B., Turan, M., & Celik, M. S. (2004).@Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals.@Dyes and pigments, 62(1), 49-60.@Yes$P. Uma Maheswari, M Saranya, K. Agnes Nirmala and M. Kanchana (2019).@Composting of Areca nut leaf sheath and its effect on growth and biochemical contents of Vigna unguiculata L..@International Research Journal of Public and Environmental Health, 2, 23-26.@Yes$Mustafa T. Yagub, Tushar Kanti Sen, Sharmen A foze and H.M Ang (2014).@Dye and its removal from aqueous solutions by adsorption: A review.@Advances in Colloid and Interface Science, 209,172-184@Yes$Cimá-Mukul, C. A., Abdellaoui, Y., Abatal, M., Vargas, J., Santiago, A. A., & Barrón-Zambrano, J. A. (2019).@Eco-efficient biosorbent based on leucaena leucocephala residues for the simultaneous removal of Pb (II) and Cd (II) ions from water system: sorption and mechanism.@Bioinorganic chemistry and applications.@Yes$Kaykhaii, M., Sasani, M., & Marghzari, S. (2018).@Removal of dyes from the environment by adsorption process.@Chem. Mater. Eng, 6(2), 31-35.@Yes$Tripathi, A., & Ranjan, M. R. (2015).@Heavy metal removal from wastewater using low cost adsorbents.@J Bioremed Biodeg, 6(6), 315.@Yes$Kajjumba, G. W., Emik, S., Öngen, A., Özcan, H. K., & Aydın, S. (2018).@Modelling of adsorption kinetic processes—errors, theory and application.@Advanced sorption process applications, 1-19.@Yes$Murugakoothan, P., Ananth, S., Vivek, P. & Arumanayagam, T. (2014).@Natural dye extracts of areca catechu nut as dye sensitizer for titanium dioxide based dye sensitized solar cells.@Journal of Nano and Electronic Physics.@Yes$M. Farnane, A. Machrouchi, A. Elhali, M. Ahdennouri, S. Qourzal, H. Tounsadi and N. Barka (2018).@New Sustainable Biosorbent based on Recycled Deoiled Carob seeds: Optimisation of Heavy metals Remediation.@Journal of Chemistry.@Yes$Muh Nazmi Ishmail, Hamidi Abdul Aziz, Mohid Azmir, Ahmad and Nika Thirah Yusoff (2015).@Optimization of Areca catechu fronds as Adsorbent for Decolorisation and COD removal of waste water through the Adsorption Process.@Sains Malaysiana, 44(11), 1609-1614.@Yes$Das, D., & Das, N. (2014).@Optimization of parameters for cerium (III) biosorption onto biowaste materials of animal and plant origin using 5-level Box-Behnken design: Equilibrium, kinetic, thermodynamic and regeneration studies.@Journal of Rare Earths, 32(8), 745-758.@Yes$Patil, P. R., Rakesh, S. U., Dhabale, P. N. & Burade, K. B. (2009).@Pharmacological activities of Areca catechu Linn.-a review.@Journal of Pharmacy Research, 2(4), 683-687.@Yes$Shashikumar, Shrinivasa D J, Manjunatha K and Anatachar M (2016).@Physical Properties of Areca Nut Sheath.@International Journal of Agriculture Sciences, 8(60), 3378-3380.@No$Ravi Bhat, Sujatha Sadasivuni and Chowdappa Pallem (2015).@Recycling Potential of Organic wastes of Areca nut and cocoa in India: a short review.@Environmental Technology Reviews, 4(1), 91-102.@Yes$Paresh Chakravarthy, Dinesh C. Deka, Neelotpal S. Sarma and Hari P. Sarma (2012).@Removal of Cu(II) from waste waster by heartwood powder of Areca catechu: Kinetic & equilibrium studies.@Desalination and water treatment, 40, 1-3, 194-203.@Yes$Selvaraju Sivamani and Leena Grace Beslin (2009).@Removal of Dyes from Wastewater using Adsorption: A review.@International Journal of Biosciences and Technology, 2(4), 47-51.@Yes$Maryam Khodaie, Nahid Ghasemi, Babak Moradi and Mohsen Rahimi (2013).@Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl2 Activated Corn Husk Carbon Equilibrium Studies.@Journal of Chemistry.@Yes$Vijayaraghavan, G. & Shanthakumar, S. (2015).@Removal of sulphur black dye from its aqueous solution using alginate from Sargassum sp. (Brown algae) as a coagulant.@Environmental Progress & Sustainable Energy, 34(5), 1427-1434.@Yes$Sulak, M. T. & Yatmaz, H. C. (2012).@Removal of textile dyes from aqueous solutions with eco-friendly biosorbent.@Desalination and Water Treatment, 37(1-3), 169-177.@Yes$Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018).@Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis.@Bioinorganic chemistry and applications.@Yes$Lekha, K. B., Vasumathi, G. S., Neelam, R. K., & Archna, A. (2014).@Textile dye removal using pelletized agro waste.@IOSR J Environ Sci, Toxicol Food Technol, 8, 83-90.@Yes$Anh Thai Nguyen, Ruey-Shin Juang (2013).@Treatment of waters and waste waters containing sulphur dyes: A review.@Chemical Engineering Journal, 219(1), 109-117.@Yes$Sahira Joshi (2018).@Use of Al2O3- Areca nut activated carbon composite as an adsorbent for deflouridation of water.@Research Journal of Chemical Sciences, 8(9), 1-6.@No$Lee, S. M., Choi, S. S. & Tiwari, D. (2017).@Simultaneous removal of Hg (II) and phenol using functionalized activated carbon derived from areca nut waste.@Metals, 7(7), 248.@Yes <#LINE#>Geochemistry of termite mounds in the sediment-hosted lead-zinc mining District of Yolo, Gongola sub-basin: A guide for lead-zinc exploration in the Upper Benue Trough, Nigeria<#LINE#>Haruna @I.V.,Ahmed @H.A.,Suleiman @B.M. <#LINE#>10-20<#LINE#>2.ISCA-RJCS-2020-064.pdf<#LINE#>Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria@Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria@Department of Geology, Modibbo Adama University of Technology, Yola P.M.B. 2076, Yola – Nigeria<#LINE#>28/11/2020<#LINE#>7/10/2021<#LINE#>Yolo lead-zinc mining district is an important area in Gongola Sub-basin of the Upper Benue Trough with paucity of rocks outcrops but abundant termite mounds. The termite mounds and their adjoining surface soils were analysed for Pb, Zn, Ti, Cu, Sb, As, U, Cr, Zr, and Li in an attempt to test their effectiveness in defining favorable areas for lead-Zinc mineralization in the Upper Benue Trough. The result shows general low elements content in both the termite mounds and adjoining soils, but with a clear trend of elevated concentration in termite mounds relative to their adjoining surface soils. The ore elements Pb, Zn together with Ti have the highest average concentrations of 503 ppb, 2136.5 ppb, and 6285 ppb in termite mounds compared to 356 ppb, 1662 ppb and 2250 ppb respectively in adjoining surface soils. Biological Absorption Coefficient (BAC), calculated to evaluate their degree of concentration, shows 141 values of Biological Absorption Coefficient within enrichment category with only 59 values in the depletion category. Although the values for elemental concentrations are generally low, the elevated concentration of the ore elements Pb, Zn and the associated trace elements in termite mounds relative to their adjoining soils, and the clustering of BAC values in the enrichment category together suggest that Pb, Zn and Ti in termite mounds can give an insight into favorable areas for lead-Zinc exploration in the Upper Benue Trough.<#LINE#>Burgers, A. (Ed.). (2012).@Soil biology.@Elsevier.@Yes$Black H.I.J. and Okwakol M.J.N. (1997).@Agricultural intensification, soil biodiversity and agroecosystem functions in the tropics: The role of termites.@Appl. Soil Ecology, (6), 37-53.@Yes$Jungerius P.D.V., Ancker J.A.M. and Mucher H.J. (1999).@The contribution of termites to microgranular structure of soils on the Uasin Gishu Plateau, Kenya.@Catena, (34), 349-363 (1999).@Yes$Genise J.F. (1997).@A fossil termite nest from the Marpiatom stage (late Pliocene) of Argentina; Paleoclimatic indicator.@Paleogeo. Paleoclim. Paleoecology, (136), 139-144.@Yes$Alveti N., Reginald S., Kumar K.S., Harinath V. and Sreedhar B. (2012).@Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.@Environ. Monit Assess, (184), 2295-2306.@Yes$Prasad E.A.V., Jayarama G. M., Raghu V. and Dunn C.E. (1987).@Significance of termite mounds in gold exploration.@Curr. Sci., (56), 1219-1222.@Yes$Raghu V. (2007).@Termite mound as a bioindicator for the exploration of barite in the area around Vemula Mine, Kadapa District, Andhra Pradesh.@Indian Journal of Geochemistry, 22(1), 45-56.@Yes$Haruna, I. V., Ahmed, H. A., & Suleiman, B. M. (2021).@Geochemistry of termite mounds in the sediment-hosted Lead-Zinc Mining District of Yolo, Gongola Sub-basin: A guide for lead-zinc exploration in the Upper Benue Trough, Nigeria.@Journal of Geology and Mining Research, 13(1), 1-10.@Yes$Watson J.P. (1970).@Contribution of termites to development of Zinc anomalies in Kalahari sand.@Trans. Inst. Min. Metall., (79B), B53-B59.@Yes$Grant N.K. (1971).@The South Atlantic Benue Trough and Gulf of Guinea Cretaceous triple junction.@Geol. Soc. Amer. Bull., (82), 2295-2298.@Yes$Benkhelil J. and Robineau B., Le fosse de la Benoue est-il un rift? Bull. Centres Recherches Expl. Prod. Elf-Aquitaine, (7), 315-321.@undefined@undefined@Yes$Maurin J.C., Benkhelil J. and Robineau B. (1985).@Fault rocks of the Kaltungo Lineament (northeastern Nigeria) and their relationship with the Benue Trough.@J. Geol. Soc. London, (143), 587-599.@Yes$Benkhelil J. (1986).@Structure et évolution geodynamique du basin intercontinental de la Bénoué (Nigeria): Thése de Doctorat d’Etat.@Université de Nice, 226.@Yes$Popoff, M. (1990).@Deformation intracontinental gondwanienne—Rifting mesozoique en Afrique (Evolution meso-cenozoique du fosse de la Benue, Nigeria)—Relations de lıocean Atlantique sud@Doctoral dissertation, These de Etat, University Aix-Marseillea III.@Yes$Fairhead, J. D., & Binks, R. M. (1991).@Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system.@Tectonophysics, 187(1-3), 191-203.@Yes$Zaborski, P. M. (1998).@The cretaceous system in Nigeria.@Africa Geoscience Review, 5, 385-484.@Yes$Maluski, H., Coulon, C., Popoff, M. T., & Baudin, P. (1995).@40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria.@Journal of the Geological Society, 152(2), 311-326.@Yes$Report (1975).@Federal Surveys, Nigeria.@Futuk Sheet 172 S.E, edition 1.@No$Carter, J. D. (1963).@The geology of parts of Adamawa, Bauchi and Bornu Provinces in northeastern Nigeria.@Geological Survey of Nigeria Bulletin, 30.@Yes$Offodile M. E. (1976).@A review of the geology of the Cretaceous of the Benue Valley.@In: Kogbe, C.A., ed., Geology of Nigeria. Elizabethan Publ. Co. Lagos. Pp. 319-330.@Yes$Benkhelil J. (1989).@The origin and evaluation of the Cretaceous Benue Trough (Nigeria).@Journal African Earth Sciences, (8), 251-282.@Yes$Zaborski P. M. (1997).@Guide to the Cretaceous System in the Upper Part of the Upper Benue Trough, North-eastern Nigeria.@African Geosciences Review, 10(1&2), 1322.@No$Tukur A., Samaila N. K., Grimes S. T., Kariya I. I. and Chaanda M. S. (2015).@Two member subdivision of the Bima Sandstone, Upper Benue Trough: Based on sedimentological data.@Journal of African Earth Sciences, (104), 140-158.@Yes$Akande S.O., Ojo J.O., Erdtmann B.D., and Hetenyi M.,@Paleoenvironments, source rock potentials and thermal maturity of the Upper Benue rift basins, Nigeria: Implications for hydrocarbon exploration.@Org. Geochem., 00(0), 1-12.@Yes$Farrington J. L. (1952).@A preliminary description of the Nigerian lead-zinc fields.@Econ. Geol., (47), 583-608.@Yes$Orajaka, S. (1965).@The geology of the Enyigba. Ameri and Ameka lead-zinc lodes, Abakaliki division, Eastern Nigeria-a reconnaissance.@J. Nig. Min. Geol. Mot. Soc, 2(2), 66-70.@Yes$Nwachukwu S.O. (1975).@Temperature of formation in vein minerals in the southern portion of the Benue Trough, Nigeria.@Jour. Min. Geol., (11), 45-55.@No$Reyment R.A. (1965).@Aspect of geology of Nigeria: A review of Nigeria metallic minerals for technological development.@Nat. Res., 8.@Yes$Orajaka S. (1972).@Salt water resources of East Central State of Nigeria.@J. Min. Geol., (3), 49-51.@Yes$Olade M. A. (1976).@On the genesis of lead-znic deposits in Nigeria Benue rift (aulacogen): A re-interpretation.@Jour. of Min. Geol., (13), 20-27.@Yes$Olade M. A. and Morton R.D. (1985).@Origin of lead zinc mineralization in the southern Benue Trough, Nigeria, fluid inclusion and trace element studies.@Mineralium Deposita, (20), 76-80.@Yes$Goodfellow W.D., Lydon J.W. and Turner R.J.W. (1993).@Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits.@In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., and Duke, J.M., eds., Mineral deposits modeling geological Association of Canada, Special Paper, (40), 201-251.@Yes$Krauskopf K.B. (1976).@Introduction to Geochemistry.@Mc Graw-Hill, New York, 72.@Yes$Beus A.A. and Grigorian S.V. (1977).@Geochemical Exploration Methods for Mineral Deposits.@Applied Publishing Ltd., USA, 31-270.@No <#LINE#>Synthesis, characterization, molecular docking and antibacterial evaluation of 3-aryl-1- phenyl-1H-pyrazole- 4-carbaldehyde-acylhydrazones<#LINE#>Sangeetha @Rao <#LINE#>21-24<#LINE#>3.ISCA-RJCS-2021-012.pdf<#LINE#>KLE’s S. Nijalingappa College, Rajajinagar, Bengaluru-10, India<#LINE#>12/3/2021<#LINE#>19/11/2021<#LINE#>In view of fostering research on efficacious antimicrobials, a series of new 3-aryl-1-phenyl-1H-pyrazole-4-carbaldehyde acylhydrazones were synthesized in three steps commencing with the reaction of substituted acetophenones with phenyl hydrazine to yield respective Schiff bases. The respective formyl pyrazoles were synthesized from the Schiff bases by subjecting them to Vilsmeier-Haack formylation. The recrystallized formyl pyrazoles were then treated with substituted benzoic acid hydrazides in ethanol medium with acetic acid as the catalyst to obtain 3-Aryl-1-phenyl-1H-pyrazole-4-carbaldehyde acylhydrazones (4a-4e). The pyrazole derivatives were assessed for their effective inhibitory properties against bacterial DNA Gyrase B enzymes by molecular docking studies which were then evaluated for their in vitro antibacterial activities.<#LINE#>Rahimizadeh, M., Pordel, M., Bakavoli, M., Rezaeian, S., Sadeghian, A. (2009).@Synthesis and antibacterial activity of some new derivatives of pyrazole.@World J. Microbiol. Biotechnol., 26, 317-321. https://doi.org/10.1007/s11274-009-0178-0@Yes$Desai, N. C., Rajpara, K. M. and Joshi, V. V. (2013).@Synthesis of pyrazole encompassing 2-pyridone derivatives as antibacterial agents.@Bioorg. Med. Chem. Lett. 23 (9), 2714-2717. https://doi.org/10.1016/j.bmcl. 2013.02.077@Yes$Zhang, C., Liu, X., Wang, B., Wang, S. and Li, Z. (2010).@Synthesis and antifungal activities of new pyrazole derivatives via 1,3-dipolar cycloaddition reaction.@Chem. Biol. Drug Des., 75(5), 489-493. https://doi.org/10.1111/ j.1747-0285.2010.00948.x@Yes$Taher, A. T., Sarg, M. T. M., El-Sayed Ali, N. R., Elnagdi, N. H. (2019).@Design, synthesis, modelling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents.@Bioorg. Chem. 89, 103023. https://doi.org/10.1016/j.bioorg.2019.103023@Yes$Bekhit, A. A. and Abdel-Aziem. T. (2004).@Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents.@Bioorg. Med. Chem. 12 (8), 1935-1945. https://doi.org/10.1016/j.bmc.2004.01.037@Yes$Bekhit, A. A., Ashour, H. M. A., Ghany, Y. S. A., Bekhit, A. E. A. and Baraka, A. (2008).@Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents.@Eur. J. Med. Chem., 43(3), 456-463. https://doi.org/10.1016/j.ejmech.2007.03.030@Yes$Da Costa, L., Scheers, E., Coluccia, A., Casulli, A., Roche, M., Di Giorgio, C., Neyts, J., Terme, T., Cirilli, R., La Regina, G., Silvestri, R., Mirabelli and C., Vanelle, P. (2018).@Structure-Based drug design of potent pyrazole derivatives against Rhinovirus replication.@J. Med. Chem. 61 (18), 8402-8416. https://doi.org/10.1021/acs.jmedchem. 8b00931@Yes$Vicina, P., Zani, F., Cozzini, P. and Doytchinova, I. (2002).@Hydrazones of 1,2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations.@Eur. J. Med. Chem. 37 (7), 553-564. https://doi.org/10.1016/ S0223-5234(02)01378-8@Yes$Pieczonka, A. M., Strzelczyk, A., Sadowska, B., Mloston, G., Staczek, P. (2013).@Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1H-imidazole-4-carbohydrazides.@Eur. J. Med. Chem. 64, 389-395. https://doi.org/10.1016/j.ejmech.2013.04.023@Yes$Metwally, K. A., Abdel-Aziz, L. M., Lashine, E. S., Husseiny, M. I. and Badawy, R. H. (2006).@Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents.@Bioorg. Med. Chem., 14(24), 8675-8682. https://doi.org/10.1016/j.bmc.2006.08.022@Yes$Odabasoglu, M., Albayrak, C., Ozkanca, R., Aykan, F. Z. and Lonecke, P. (2007).@Some polyhydroxy azo-azomethine derivatives of salicylaldehyde: Synthesis, characterization, spectroscopic, molecular structure and antimicrobial activity studies.@840(1-3), 71-89. https://doi.org/10.1016/j.molstruc.2006.11.025@Yes <#LINE#>Kinetics of Aquation of Hexakis (Urea) Chromium (III) Chloride<#LINE#>Umeh@.,Chukwudi @Michael,Elisha @Karu,Nnamani, Johnson @Onuorah <#LINE#>25-31<#LINE#>4.ISCA-RJCS-2021-022.pdf<#LINE#>Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria@Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria@Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria@Gombe state University, Faculty of Sciences, Department of Chemistry, Gombe, Nigeria<#LINE#>22/4/2021<#LINE#>10/12/2021<#LINE#>Chromium hexaurea complex was synthesized and characterized by two different spectroscopic techniques. The UV-Vis spectra showed a maximum absorbance at 290nm while IR spectra showed v(C=N) stretching vibration in the free urea occurred at 1681cm-1 but shifted down to 1633cm-1in the complex a change of 48cm-1 indicating a bonding to nitrogen, The kinetics of the aquation of Hexakis (urea) chromium (III) chloride complex has been shown to follow first order kinetics with average rate constant kobs (25oC, 40oC and 50oC) to be 2.5×10-2, 3.04×10-2 and 3.3×10-2 respectively and the corresponding activation parameters of ∆H*= +5.19kJK-1, ∆S* = -258JK-1 and ∆G*25=82.25kJK-1, ∆G*40=85.62kJK-1, ∆G*50=88.199kJK-1indicative associative mechanism.<#LINE#>Ptáček, P., Opravil, T. and Šoukal, F. (2018).@Introducing the Effective Mass of Activated Complex and the Discussion on the Wave Function of this Instanton.@BoD–Books on Demand.@Yes$Seoud, A. L. A., & Abdallah, L. A. (2010).@Two optimization methods to determine the rate constants of a complex chemical reaction using FORTRAN and MATLAB.@American Journal of Applied Sciences, 7(4), 509.@Yes$Barraza-Burgos, J. M., García-Saavedra, E. A., Chaves-Sanchez, D., Trujillo-Uribe, M. P., Velasco-Charria, F. J., & Acuña-Polanco, J. J. (2015).@Thermogravimetric characteristics and kinetics of pyrolysis of coal blends.@Revista Facultad de Ingeniería Universidad de Antioquia, (77), 17-24.@Yes$Breiner, Pfeiffer and Malet (1924). J. Chim. Phys. 21, 25.@undefined@undefined@No$Laidler, K. J., & Glasstone, S. (1948).@Rate, order and molecularity in chemical kinetics.@Journal of Chemical Education, 25(7), 383.@Yes$Jerry, M. (1992).@Advanced Organic Chemistry: reactions.@Mechanisms and Structure.@No$James E. H. (2002).@Chemical Kinetics and Reaction Mechanisms.@2nd ed., McGraw-Hill, Deduction of Reaction Mechanisms, 156-160. ISBN 0-07-288362-6.@No$Morrison R. T. and Boyd R. N. (1983).@Organic Chemistry.@4th ed., Allyn and Bacon, 216-9 and 228-231. ISBN 0-205-05838-8.@No$Petrou. A. Vrachnou-Astra. E, and Katakis, D. (1980).@A new series of organochromium complexes formed in aqueous solutions.@Inorganica Chimica Acta, 39, 161–171.@Yes$Atkins P. and De Paula J. (2006).@Physical Chemistry.@8th ed., W.H. Freeman, 816-8. ISBN 0-7167-8759-8.@No$Moore J. W. and. Pearson R. G. (1981).@Kinetics and Mechanism.@3rd ed., John Wiley. 276-8. ISBN 0-471-03558-0@No$Petrou A. L. (1993).@Kinetics and mechanism of the reaction between chromium (II) and 1, 2-bis (2-pyridyl) ethylene in acidic aqueous solutions.@Journal of the Chemical Society, Dalton Transactions, (24), 3771-3775.@Yes$Vincent, J. B. (2003).@Recent advances in the biochemistry of chromium (III).@The Journal of Trace Elements in Experimental Medicine, 16(4), 227-236.@Yes <#LINE#>Study on Kinetics and mechanism of reaction between 2-phenethyl alcohol and vinyl acetate catalyzed by cross-linked Pseudomonas Cepacia Lipase<#LINE#>Sumbita @Gogoi <#LINE#>32-40<#LINE#>5.ISCA-RJCS-2021-040.pdf<#LINE#>Department of Chemistry, Dergaon Kamal Dowerah College, Dergaon, Golaghat-785614, Assam, India<#LINE#>3/7/2021<#LINE#>16/1/2022<#LINE#>The use of flavoring compounds in the food industry is now increasing day by day. The aim of the present study was to crystallization and cross-linking of lipase from Pseudomonas Cepacia and to study the kinetics of the synthesis of a rose flavor ester, 2-phenethyl acetate in an organic solvent system. The effect of different reaction co-ordinates such as enzyme concentration, temperature, substrate concentration were studied and found the maximum conversion in 50mg/ml enzyme concentration, temperature at 550C and substrate ratio of 1:4. The stability of the cross-linked lipase was observed in comparison to free lipase and retained 50% of original activity by cross linked lipase up to seven days of incubation.<#LINE#>Saxena, R. K.., Sheoran, A., Giri, B. & Davidson W. S. (2003).@Purification strategies for microbial lipases.@J Microbiol Methods, 52(1), 1-18.@Yes$Rajendran, A., Palanisamy, A. & Thangavlu, V. (2009).@Lipase catalyzed ester synthesis for food processing industries.@Brazil Arch. Biol. Technol. 52(1), 202-219.@Yes$Hazarika, S., Goswami, P. & Dutta N.N. (2003).@Lipase catalysed transesterification of 2-O-benzylglycerol with vinyl acetate: solvent effect.@Chem. Eng. J., 85, 61-68@Yes$Okahata, Y., Hatano, A. & Ijiro, K. (1995).@Enhancing Enantioselectivity of of a lipid-coated lipase via imprinting methods for esterification in organic solvents.@Tetrahedron Asymm., 6, 1311-1322.@Yes$Van Tol, J. B. A., Stevens, R. M. M., Veldhuizen, W. J., Jongejan, J. A. & Duine, J. A. (1995).@Do organic solvents affect the catalytic property of lipase? Intrinsic kinetic parameters of lipases in ester hydrolysis and formation in various organic solvents.@Biotechnol. Bioeng., 47(1), 71-81.@Yes$Jeong, S., Hwang, B.Y., Kim, J. & Kim, B.G. (2000).@Lipase catalysed reaction in the packed bed reactor with continuous extraction column to overcome a product inhibition.@J. Mol. Catal.B: Enzym., 10(6), 597-604.@Yes$Gogoi, S., Hazarika, S., Rao, P.G. & Dutta, N. N. (2006).@Esterification of lauric acid with lauryl alcohol using cross-linked enzyme crystals: Solvent effect nd kinetic study.@Biocatal. Biotransform., 24(5), 343-351.@Yes$Persichetti, R.A., St Clair, N. L., Griffith, J. P., Navia, M. A. & Margolin, A.L. (1995).@Cross-linked Enzyme Crystals (CLEAs) of Thermolysin in the synthesis of peptides.@J. Am. Chem. Soc., 117(10). 2732-2737.@Yes$Gogoi, S. (2014).@Enzymatic Bioconversion in Non-conventional Media.@Res. J. Chem. Sci., 4(11), 103-116.@Yes$Lalonde, J. J., Govardhan, C., Khalaf, N., Martinez, A. G., Visuri, K. & Margolin, A.L. (1995).@Cross-linked Crystals of Candida rugosa Lipase: Highly efficient catalysts for the resolution of Chiral Esters.@J. Am. Chem. Soc., 117, 6845-6852.@Yes$Gogoi, S. & Dutta, N. N. (2009).@Kinetics and mechanism of esterification of isoamyl alcohol with acetic acid by immobilized lipase.@Indian J. Chem. Technol., 16(3), 209-215.@Yes$Kraai, G.N., Winkelmn, J.G.M., de Vries, J.G. & Heeres, H.J. (2008).@Kinetic studies on the Rhizomucor miehei lipase catalysed esterification reaction of oleic acid with 1-butanol in biphasic system.@Biochem. Engg. J., 41, 87-94.@Yes$Gogoi, S., Pathak, M.G., Dutta, A. & Dutta, N. N. (2008).@Porcine pancreas lipase catalysed synthesis of lauryl laurate in organic solvent media: A Kinetic Study.@Indian J Biochem. Biophys., 45(3), 192-197.@Yes$Hazarika, S., Goswami, P., Dutta, N.N. & Hazarika, A. K. (2002).@Ethyl oleate synthesis by Porcine pancreatic lipase in organic solvents.@Chem. Engg. J., 85, 61-68.@Yes$Hazarika, S., Goswami, P. & Dutta, N.N. (2004).@Lipase catalysed transesterification of 2-o-benzylglycerol with vinyl acetate: study of reaction and deactivation kinetics.@Org. Process Res. & Dev., 8(2), 229-237.@Yes$Hidalgo, A.M., Sanchez, A., Gomez, J.L., Gomez, E., Gomez M. & Murcia M.D. (2018).@Kinetic study of the enzymatic synthesis of 2-phenylethyl acetate in discontinuous Tank Reactor.@Ind. Eng. Chem. Res., 57(33), 11280-11287.@Yes$Rubio, E., Fernandez, M.A. & Klibanov, A. M. (1991).@Effect of solvent on enzyme regioselectivity.@J. Am. Chem. Soc., 113, 695-696.@Yes$Zaks, A. & Klibanov, A. M. (1986). Substrate specificity of enzymes in organic solvents vs water is reversed. J. Am. Chem. Soc.,108, 2767-2768.@undefined@undefined@Yes$Guide, S. D. U. (2014).@Online. Sigma-Aldrich.@https://www. sigmaaldrich. com/content/dam/sigmaaldrich/ docs/Aldrich/Bulletin/al_exp_guide_pdencat. pdf (accessed October 2018), 310.@Yes$Bialecka – Florjanczyk, E., Krzyczkowska, J., Stolarzewicz, T. & Kapturowska, A. (2012).@Synthesis of 2-Phenyl ethyl acetate in the presence of Yarrowia lipolytica KKP 379 biomass.@J. Mol. Catal. B: Enzym., 74(3-4), 241-245.@Yes$Talukder, M.M., Zaman, M.M., Hayashi, J.C., Wu, H.J.C. & Kawanishi, T. (2004).@Ultrasonication enhanced hydrolytic activity of lipase in water/isooctane two phase systems.@Biocatal. Biotransform., 24(3), 182-194.@Yes$Kartal, F. & Kilinc, A. (2012).@Cross-lined aggregates of Rhizopus Oryzae lipase as industrial biocatalyst: Preparation, optimization, characterization and application for enantioselective resolution reactions.@Biotechnol. Progress, 28, 937-945.@Yes$Paljevac, M., Knez, Z. & Leitgeb, M. (2009).@Lipase catalysed transesterification of (R,S)-1 Phenylethanol in SCCO2 and in SCCO2/ ionic liquid system.@Acta Chimica Solvenica, 56, 815-820.@Yes$Van der Heijden, A. M., Zuijderduijn, F. J. & Rantwijk, F. van. (1998).@Transesterification of lactulose with ethyl butanote catalysed Candida Antarctica lipase.@J. Mol. Catal. A: Chemical., 134(1-3), 259 -265.@Yes$Pirozzi, D. & Guido, G. J. (2004).@Activity and stability of lipase in the synthesis of butyl lactate.@Enzyme. Microb. Technol., 34(1), 94-100.@Yes$Martinelle, M. & Hult, K. (1995).@Kinetics of acyl transfer reactions in organic media catalysed by Candida Antarctica lipase B.@Biochem et Biophy. Acta., 1251, 191-197.@Yes$Yadav, G. D. & Trivedi, A.H. (2003).@Kinetic modeling of immobilized lipase catalysed transesterification of n-octanol with vinyl acetate in non-aqueous media.@Enzyme Microb. Technol., 32, 783-789.@Yes$Yadav, G. D. & Borkar, I. V. (2008).@Kinetic modeling of immobilized lipase catalysis in synthesis of n-butyl levulinate. Ind. Eng. Chem. Res., 47(10), 3358-3363.@undefined@Yes$Dossat, V., Combes, D. & Marty, A. (2002). Lipase catalysed transesterication of high oleic Sunflower oil. Enzyme Microb. Technol., 30(1), 90 - 94.@undefined@undefined@Yes$Yadav, G. D. & Borkar, I. V. (2009).@Kinetic and mechanistic investigation of Microwave Assisted lipase catalysed synthesis of citronellyl acetate.@48(17), 7915-7922.@Yes$Yadav, G. D. & Devi, K. M. (2004).@Kinetics of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from Candida Antarctica.@Biochem. Eng. J., 17, 57-63.@Yes$Castillo, B., Pacheco, Y., Al-Azzam, W., Griebenow, K., Devi, K. M., Ferrer, A. & Barletta, G. (2005).@On the activity loss of hydrolases in organic solvents I. Rapid loss of activity of a variety of enzymes and formulations in a range of organic solvents.@J. Mol. Catal. B: Enzym., 35, 147-153.@Yes <#LINE#>Study on novel polymeric ligand based on bismaleimide<#LINE#>Jayshree N. @Patel,Shailesh V. @Patel <#LINE#>41-45<#LINE#>6.ISCA-RJCS-2021-041.pdf<#LINE#>Chemistry Department, Sir P.T. Science College, Modasa, Gujarat, India@Chemistry Department, Sir P.T. Science College, Modasa, Gujarat, India<#LINE#>20/8/2021<#LINE#>25/11/2021<#LINE#>Michael addition reactions of 1, 4-phenylene bismaleimide (PB) with benzidine dicarboxylic acid (BDC) affords polymeric ligand (PB-BDC). Elemental analysis, spectral study and TGA were carried out of all PB-BDC. The transition metal chelates of Cu2+, Ni2+, Zn2+, Co2+, Mn2+ metal ions with PB-BDC were prepared and characterized all by metal: ligand ratio, spectral studies, magnetic moment and thermogravimetry. Antimicrobial activity of all polymer samples was carried out against various plant pathogens.<#LINE#>Gu, A. (2006).@High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties.@Composites Science and Technology, 66(11-12), 1749-1755.@Yes$Chuang, K. C., Bowman, C. L., Tsotsis, T. K., & Arendt, C. P. (2003).@6F-polyimides with phenylethynyl endcap for 315-370 C applications.@High performance polymers, 15(4), 459-472.@Yes$M. J., Voytekunas, V. Y., & Rusanov, A. L. (2006).@State of the Art Organic Matrices for Highperformance Composites: A Review.@Iranian Polymer Journal, 15, 65 (2006).@Yes$Mangalgiri, P. D. (2005). Polymer-matrix composites for high-temperature applications. Defence Science Journal, 55(2), 175.@undefined@undefined@Yes$Varma, I. K., & Varma, D. S. (1984).@Addition polyimides. III. Thermal behavior of bismaleimides.@Journal of Polymer Science: Polymer Chemistry Edition, 22(6), 1419-1433.@Yes$Pascal, T., Mercier, R., & Sillion, B. (1989).@New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides. 1: Synthesis and characterization of starting components.@Polymer, 30(4), 739-744.@Yes$Qin, H., Mather, P. T., Baek, J. B., & Tan, L. S. (2006).@Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI).@Polymer, 47(8), 2813-2821.@Yes$Harris, F. W., Wilson, D., Stenzenberger, H. D., & Hergenrother, P. M. (1990).@Polyimides.@D. Wilson, HD Stenzenberger, PM Hergenrother, Chapman and Hall edt., New York, 23-96.@Yes$Pan, J. P., Shiau, G. Y., Lin, S. S., & Chen, K. M. (1992).@Effect of barbituric acid on the self‐polymerization reaction of bismaleimides.@Journal of applied polymer science, 45(1), 103-109.@Yes$Yu, F. E., Hsu, J. M., Pan, J. P., Wang, T. H., & Chern, C. S. (2013).@Kinetics of Michael addition polymerizations of n, n′‐bismaleimide‐4, 4′‐diphenylmethane with barbituric acid.@Polymer Engineering & Science, 53(1), 204-211.@Yes$Varma I. K. and Varma D. S. Varma (1987).@Polymer Chemistry Edition.@Journal of Polymer Science:, 5, 568.@No$D′ alelio, G. F., E. T. Hofman, and J. R. Zeman (1969).@Chelating Polymers. I. Monomeric Hydroxyaryl aminoacetic acids as prototype chelating compounds.@Journal of Macromolecular Science—Chemistry 3.5, 959-989.@Yes$R. L. Cook (2005).@U.S. Patent No. 6,933,046. Washington, DC: U.S. Patent and Trademark Office.@undefined@No$Crivello, J. V., & Lam, J. H. W. (1979). Photosensitive polymers containing diaryliodonium salt groups in the main chain.@Journal of Polymer Science: Polymer Chemistry Edition, 17(12), 3845-3858.@undefined@Yes$A. I. Vogel (1978).@Textbook of Quantitative Chemical Analysis.@ELBS 4th Edn. London. p. 317.@No$W. R. Baily and E. G. Scott (1966).@Diagnostic Microbiology.@The C. V. Moshy Co. St. Lovis, p. 257.@Yes$Mehta, K. K., & Patel, A. D. (2016).@Synthesis, characterization, biological and chelating properties of new antipyrine derived azo dyes and its transition metal complexes.@Acta Chimica and Pharmaceutica Indica, 6, 26-31.@Yes$Patel, D. C. (1972).@Studies in some NI (II) and CU (II) Complexes.@Journal of Indian Chemical Society, 49, 1041.@Yes$D. Oza, K. N. Kaul and R. K. (1996). Mehta, Indian Journal of Chemistry, 7, 927.@undefined@undefined@No$Lewis, J. (1960).@R, G. Wilkins, Modern Coordination Chemistry.@Inter science Publ. Co., New York. 290.@Yes$Pappalardo, R. (1960).@Note on the optical absorption of MnCl2 and MnBr2.@The Journal of Chemical Physics, 33(2), 613-614.@Yes <#LINE#>Estimation of Physicochemical properties of Acetonitrile and Formamide from 293.15-313.15K<#LINE#>Naveen @Awasthi <#LINE#>46-52<#LINE#>7.ISCA-RJCS-2021-042.pdf<#LINE#>Department of Chemistry, Janta College Bakewar Etawah, India<#LINE#>2/9/2021<#LINE#>9/1/2022<#LINE#>Density, viscosity and refractive indices for a binary system of acetonitrile and formamide at 293.15, 298.15, 303.15, 308.15, 313.15K were experimentally determined over the mole fraction range (0.1225-0.9187) and atmospheric pressure. Theoretical results were computed from Jouyban Acree model, based on least square method and compared with experimental findings. Relative standard deviation (RSD) for density, viscosity and refractive indices was treated as a criterion of success. Corresponding RSD at 293.15, 298.15, 303.15, 308.15, 313.15K are (1.0±0.5% ,0.98±0.8% ,0.98±0.8% ,0.95±0.4% ,0.94±0.7%),( 2.30±5.8% ,2.28±7.5% ,2.26±7.9 ,2.21±10.8% ,2.28±13.4%) and (1.39±0.2% ,1.39±0.3% ,1.39±0.3% ,1.38±0.3% ,1.38±0.2%) respectively. R2 values for density, viscosity and refractive index were also calculated to determine the accuracy of the mathematical model. This study shows that model deals fair agreement with experimental findings for all the physico-chemical properties of binary system at different temperatures with acceptable deviations in calculation.<#LINE#>Wang, L. C., Xu, H. S., Zhao, J. H., Song, C. Y., and Wang, F. A. (2005).@Density and viscosity of (3-picoline+ water) binary mixtures from T= (293.15 to 343.15) K.@The Journal of Chemical Thermodynamics, 37(5), 477-483.@Yes$Mchaweh, A., Alsaygh, A., Nasrifar, K., and Moshfeghiam, M. (2004).@A simplified method for calculating saturated liquid densities.@Fluid phase equilibria, 224(2), 157-167.@Yes$Bauer, K., Garbe, D. and Surburg, H. (2008).@Common fragrance and flavor materials: preparation, properties and uses.@John Wiley and Sons.@Yes$Shukla, R. K., Kumar, A., Awasthi, N., Srivastava, U. and Gangwar, V. S. (2012).@Density, viscosity and refractive index of binary systems at 293.15, 298.15, 303.15, 308.15 and 313.15 K.@Experimental thermal and fluid science, 37, 1-11.@Yes$Roy, M. N., Sarkar, B. K., and Chanda, R. (2007).@Viscosity, density, and speed of sound for the binary mixtures of formamide with 2-methoxyethanol, acetophenone, acetonitrile, 1, 2-dimethoxyethane, and dimethyl sulfoxide at different temperatures.@Journal of Chemical and Engineering Data, 52(5), 1630-1637.@Yes$Jouyban, A., Fathi-Azarbayjani, A. and Khoubnasabjafari. M. (2005).@Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model.@@Yes$Jouyban, A., Soleymani, J., Jafari, F., Khoubnasabjafari, M., & Acree, W. E. (2013).@Mathematical representation of viscosity of ionic liquid+ molecular solvent mixtures at various temperatures using the Jouyban–Acree model.@Journal of Chemical & Engineering Data, 58(6), 1523-1528.@Yes$Jouyban, A., & Acree Jr, W. E. (2018).@Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures.@Journal of Molecular Liquids, 256, 541-547.@Yes$Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z., & Eugene Jr, W. (2005).@Calculation of the viscosity of binary liquids at various temperatures using Jouyban–Acree model.@Chemical and Pharmaceutical Bulletin, 53(5), 519-523.@Yes$Khattab, I. S., Bandarkar, F., Fakhree, M. A. A., & Jouyban, A. (2012).@Density, viscosity, and surface tension of water+ ethanol mixtures from 293 to 323K.@Korean Journal of Chemical Engineering, 29(6), 812-817.@Yes$Jouyban, A., & Acree Jr, W. E. (2021).@A single model to represent physico-chemical properties of liquid mixtures at various temperatures.@Journal of Molecular Liquids, 323, 115054.@Yes$Mirheydari, S. N., Soleymani, J., Jouyban-Gharamaleki, V., Barzegar-Jalali, M., Jouyban, A., & Shekaari, H. (2018).@Viscosity prediction of ionic liquid + molecular solvent mixtures at various temperatures.@Journal of Molecular Liquids, 263, 228-236.@Yes$Jouyban, A., Mirheydari, S. N., Barzegar-Jalali, M., Shekaari, H., & Acree, W. E. (2020).@Comprehensive models for density prediction of ionic liquid+ molecular solvent mixtures at different temperatures.@Physics and Chemistry of Liquids, 58(3), 309-324.@Yes$Jafari, P., Acree Jr, W. E., & Jouyban, A. (2021).@Additional computations on “Volumetric, acoustic, transport and FTIR studies of binary di-butylamine+ isomeric butanol mixtures as potential CO2 absorbents”.@Journal of Molecular Liquids, 338, 116776.@Yes$Qin, X., Chen, Y., Yang, S., Qin, X., Zhao, J. and Fang, W. (2020).@Density, viscosity, and refractive index for binary mixtures of three adamantane derivatives with n-nonane or n-undecane at T= 293.15–343.15 K and atmospheric pressure.@Journal of Chemical & Engineering Data, 65(5), 2512-2526.@Yes$Ojaki, H.A., Lashkarbolooki, M. and Movagharnejad, K. (2020).@Correlation and prediction of surface tension of highly non-ideal hydrous binary mixtures using artificial neural network.@Colloids and Surfaces A: Physicochemical and Engineering Aspects, 590,124474.@Yes$Huang, H., Ma, Z., Qiu, J., He, H., Guo, Y., Hu, S., Han, J., Liu, H., Zhao, Y. and Wang, P. (2021).@Measurement and Correlation of l-Phenylalanine Benzyl Ester Hydrochloride Solubility in 11 Individual Solvents and a Methanol+ Acetone Binary Solvent System from 283.15 to 323.15 K.@Journal of Chemical & Engineering Data, 66(8), 3156-3164.@Yes$Awasthi, N. (2021).@Estimation of Viscosity of Binary system at Various Temperatures by Jouyban Acree Model and McAllister Model.@International research journal of modernization in engineering technology and science, 3(9), 865-871.@Yes$Shukla, R. K., Awasthi, N., Gangwar, V. S., Singh, S. K., & Srivastava, K. (2012).@Surface Tension of Binary Liquid Mixtures at 298.15, 303.15 and 313.15 K.@Res. J. Recent Sci, 1, 224-231.@Yes$Riddick, J. A., Bunger, W. B., and Sakano, T. K. (1986).@Organic solvents: physical properties and methods of purification.@Fourth edition.@Yes <#LINE#>Kinetic study and mechanistic elucidation for metformin oxidation by Mn(VII) in alkaline medium<#LINE#>R.N. @Hegde,P. @Vishwanatha,S.T. @Nandibewoor <#LINE#>53-63<#LINE#>8.ISCA-RJCS-2021-046.pdf<#LINE#>Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, India@Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire-574 240, India@Post Graduate Department of Studies in Chemistry, Karnatak University, Dharwad-580 003, India<#LINE#>12/10/2021<#LINE#>2/2/2022<#LINE#>The kinetics and oxidation of an anti-diabetic drug, metformin using permanganate in alkaline media was studied spectrophotometrically by keeping 0.01moldm-3ionic strength. The oxidation among permanganate with metformin in NaOH media shows 1:6 stoichiometry (metformin: permanganate). The oxidation reaction is first order dependence in [permanganate ion] and less than unit order in MET and hydroxyl ion concentrations, respectively. When ionic strength of reaction medium is increased, the rate of the reaction also increased. The consequence of dielectric constant of the media and externally added products were also studied. A proper mechanism for oxidation was proposed. The main product of the title reaction was recognized using LC-MS technique. The various constants of the reaction concerned in various steps in the mechanism were computed. The activation constants and thermodynamic values are also evaluated by graphical method and discussed in detail.<#LINE#>Setter, S.M., Iltz, J.L., Thams, J. and Campbell, R.K. (2003).@Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy.@Clin. Therap., 25(12), 2991-3026. https://doi.org/10.1016/S0149-2918(03)90089-0.@Yes$Susan, Z.Y., and Jack, A.Y., (2014).@Long-term Drug Treatment for Obesity: A Systematic and Clinical Review.@JAMA, 311(1), 74-86. https://doi.org/10.1001/jama.2013. 281361.@Yes$Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N., (1999).@Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.@Biochem. Pharmacol., 58(11), 1765-1773. https://doi.org/10.1016/s0006-2952(99)00263-4.@Yes$Brackett, C.C., (2010).@Clarifying metformin@J. Am. Pharm. Assoc., 50(3), 407-410. https://doi.org/ 10.1331/JAPhA.2010.08090.@Yes$Banerji, K.K., (1988).@Mechanism of the oxidation of organic sulphides by permanganate ion.@Tetrahedron, 44. 2969-2975. https://doi.org/10.1016/S0040-4020(88)90035-X.@Yes$Stewart, R., (1965).@Oxidation in Organic Chemistry.@New York: Part A, K.B. Wiberg Ed, Academic Press.@Yes$Lee, D.G., (1980).@The Oxidation of Organic Compounds by Permanganate Ion and Hexavalent Chromium.@La Salle: IL.@Yes$Simandi, L.I., (1993).@The Chemistry of Functional Groups.@Chichester: Wiley.@No$Lee, D. G., Lee, E. J., & Brown, K. C. (1987).@Phase transfer catalysis, new chemistry, catalysts and applications.@In ACS symposium series (No. 326, p. 82).@Yes$Simandi, L. I., Jaky, M., Savage, C. R., & Schelly, Z. A. (1985).@Kinetics and mechanism of the permanganate ion oxidation of sulfite in alkaline solutions. The nature of short-lived intermediates.@Journal of the American Chemical Society, 107(14), 4220-4224.@Yes$Farokhi, S. A. & Nandibewoor, S. T. (2016).@Mechanistic study. of oxidative transformation of hetero aromatic stimulant, 1, 3, 7-trimethyl uric acid by potassium permanganate in perchloric acid medium-A kinetic study.@Journal of The Indian Chemical Society, 93(4), 427-435.@Yes$Pol, P.D., Mahesh, R.T., and Nandibewoor, S.T., (2002).@Free radical intervention in the oxidation of nicotinamide by alkaline permanganate - A Kinetic study.@J. Chem. Res., 11, 533-534. https://doi.org/10.3184%2F030823402 103170899.@Yes$Bolattin, M.B., Nandibewoor, S.T., and Chimatadar, S.A., (2017).@Influence of micellar aggregates on oxidative degradation of β-cyclodextrin by alkaline permanganate: a kinetic and mechanistic study of inclusion complex.@J. Env. Chem. Eng., 7, 47-52. https://doi.org/10.1016/j.jece. 2017.07.047.@Yes$Jeffery, G.H., Bassett, J., Mendham, J. and Denny, R.C., (1996).@Vogel’s Text Book of Quantitative Chemical Analysis.@Essex: 5th ed, ELBS Longman, U.K.@No$Carrington, A. and Symons M.C.R. (1956).@Structure and Reactivity of Oxyanions of Transition Metals Part I. The Manganese Oxy-anions.@J. Chem. Soc., 3373–3376. https://doi.org/10.1039/JR9560003373.@Yes$Hegde, R.N., Shetti, N.P. and Nandibewoor, S.T., (2009).@Kinetic and mechanistic investigations of oxidation of pentoxifylline drug by alkaline permanganate.@Ind. Eng. Chem. Res., 48, 7025-7031. https://doi.org/10.1021/ie900 4145.@Yes$Panari, R.G., Chougale, R.B., and Nandibewoor, S.T., (1998).@Oxidation of mandelic acid by alkaline potassium permanganate – A Kinetic Study.@J. Phys. Org. Chem., 11, 448-454. https://doi.org/10.1002/(SICI)1099-1395 (199807)11:7%3C448::AID-OC23%3E3.0.CO;2-A@Yes$Farokhi, S.A., Kini, A.K. and Nandibewoor, S.T. (2002).@Oxidation of L-hydroxy proline by aqueous alkaline permanganate. A Kinetic Study.@Inorg. Rect. Mech., 4, 67-76. https://doi.org/10.1080/1028662021000003847.@Yes$Amis, E. S. (1966).@Solvent effects on reaction rates and mechanisms (No. 541.39).@Academic Press.@Yes$Seregar, V.C., Hiremath, C.V. and Nandibewoor, S.T. (2006).@Palladium(II) catalysed oxidation of L-proline by heptavalent manganese in aqueous alkaline medium: a free radical intervention and decarboxylation.@Tran. Met. Chem., 31, 541–548. https://doi.org/10.1007/s11243-006-0029-x.@Yes$Rangappa, K.S., Raghavendra, M.P., Mahadevappa, D.S., and Channegowda, D. (1998).@Sodium N-chlorobenzene sulfonamide as a selective oxidant for hexosamines in alkaline medium: a kinetic and mechanistic study.@J. Org. Chem., 63, 531-536. https://doi.org/10.1021/jo971398t.@Yes <#LINE#>Optimization indigo carmine removal by biosorption materials from agriculture waste<#LINE#>Zran @V.E.S.,Konan @A.T.S.,Kouakou @L.P.M.S,N’Guessan @A.C.,Yao @K. B.,Trokourey @A.,Drogui @P. <#LINE#>62-72<#LINE#>9.ISCA-RJCS-2022-002.pdf<#LINE#>Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22@The Thermodynamics and Environmental Physico-Chemistry Laboratory, University NanguiAbrogoua (UNA), 02 BP 801 Abidjan 02, Côte d’Ivoire and Laboratory of Industrial Processes of Synthesis, Environment and New Energies Laboratory (LAPISEN) Félix HOUPHOUËT BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire@Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22@Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22@Laboratory of Industrial Processes of Synthesis, Environment and New Energies Laboratory (LAPISEN) Félix HOUPHOUËT BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire@Constitution and Reaction of Matter Laboratory (LCRM) at UFR-SSMT University Félix HOUPHOUËT-BOIGNY (UFHB) of Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22@National Institute of Scientific Research (INRS Water, Earth and Environment), Université du Québec, 490 rue de la Couronne, Québec City, Canada<#LINE#>28/1/2022<#LINE#>13/3/2022<#LINE#>The optimization of indigo carmine removal on biosorbents by Hadamard and full factorial design designs was the subject of this study. The biosorbents used were prepared from cassava tuber peels and ripe banana peels, considered as agricultural waste in Côte d´Ivoire. The effect of six parameters (pH of the solution, mass of the biosorbent "banana peel or cassava peel", granulometry, concentration of the solution, stirring time and stirring speed) was studied to establish the optimal conditions for the removal of the indigo carmine dye. A Hadamard design established as a first approach, showed that only three parameters, namely: the mass of the biosorbent (cassava peel), the concentration of the solution and the stirring speed, had an influence on the response. The results of the second design, the full factorial design, showed that the removal rate of the indigo carmine increased with increasing mass of the biosorbent. The maximum removal rate obtained was 96.80% when 5.00mg/L of indigo carmine solution was contacted with 1.20g of the biosorbent obtained from cassava peel, 2.00mm particle size, at a stirring speed of 250rpm for 60 minutes.<#LINE#>Ma’arfi, F., Khan, M.Y., Husain, A., Khanam, A. and Hasan, Z. (2021).@Chapter 9 - Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1, Contamination of Water.@pp. 123-141. Academic Press. ISBN 978-0-12-824058-8.@Yes$Tripathi, G., Husain, A., Ahmad, S., Hasan, Z. and Farooqui, A. (2021).@Chapter 6 - Contamination of water resources in industrial zones, Contamination of Water.@pp. 85‑98. Academic Press. ISBN: 978-0-12-824058-8.@No$Lee, C.-K., Low, K.-S. and Chung, L.-C. (1997).@Removal of Some Organic Dyes by Hexane-Extracted Spent Bleaching Earth.@Journal of Chemical Technology & Biotechnology, 69(1), 93-99. https://doi.org/10.1002/(SICI) 1097-4660(199705)69:1.@Yes$Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. and Polonio, J.C. (2019).@Effects of textile dyes on health and the environment and bioremediation potential of living organisms.@Biotechnology Research and Innovation, 3(2), 275‑290. https://doi.org/10.1016/j.biori.2019.09.001.@Yes$Manceau, A., Marcus, M. and Tamura, N. (2002).@Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques.@Reviews in Mineralogy & Geochemistry, 49, 341‑428. https://doi.org/10.2138/gsrmg.49.1.341.@Yes$Hnatiuc, E. (2002).@Procédés électriques de mesure et de traitement des polluants.@Tec & Doc Lavoisier, https://www.lavoisier.fr/livre/environnement/procedes-electriques-de-mesure-et-de-traitement-des-polluants/hnatiuc/descriptif-9782743005788.@No$Acka, T.L. (2020).@Utilisation de plan d’expérience dans l’élimination du remazol black par du charbon actif.@Master, Université Félix Houphouët Boigny de Cocody (Côte d’Ivoire).@No$Qu, R., Xu, B., Meng, L., Wang, L. and Wang, Z. (2015).@Ozonation of indigo enhanced by carboxylated carbon nanotubes: Performance optimization, degradation products, reaction mechanism and toxicity evaluation.@Water Research, 68, 316-327. https://doi.org/10.1016/ j.watres.2014.10.017.@Yes$Ramesh, T.N., Kirana, D.V., Ashwini, A. and Manasa, T.R. (2017).@Calcium hydroxide as low-cost adsorbent for the effective removal of indigo carmine dye in water.@Journal of Saudi Chemical Society, 2(21), 165-171. https://doi.org/10.1016/j.jscs.2015.03.001.@Yes$Reilly, M., Cooley, A.P., Tito, D., Tassou, S.A. and Theodorou, M.K. (2019).@Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters.@Energy Procedia, 161, 343-351. https://doi.org/10.1016/j. egypro.2019.02.106.@Yes$Bernal, M., Romero, R., Roa, G., Barrera-Díaz, C., Torres-Blancas, T. and Natividad, R. (2013).@Ozonation of Indigo Carmine Catalyzed with Fe-Pillared Clay.@International Journal of Photoenergy, 2013, 1–7. https://doi.org/10. 1155/2013/918025.@Yes$Li, H.-X., Xu, B., Tang, L., Zhang, J.-H. and Mao, Z.-G. (2015).@Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10.@International Biodeterioration & Biodegradation, 103, 30-37. https://doi.org/10.1016/ j.ibiod.2015.04.007.@Yes$Gopi, S., Balakrishnan, P., Pius, A.and Thomas, S. (2017).@Chitinnanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine.@Carbohydrate Polymers, 165, 115-122. https://doi.org/10.1016/j.carbpol.2017.02.046.@Yes$Gemeay, A.H., Elsharkawy, R.G. and Aboelfetoh, E.F. (2018).@Graphene Oxide/Polyaniline/Manganese Oxide Ternary Nanocomposites, Facile Synthesis, Characterization, and Application for Indigo Carmine Removal.@Journal of Polymers and the Environment, 26(2), 655-669. https://doi.org/10.1007/s10924-017-0947-z.@Yes$Zaouak, A., Noomen, A. and Jelassi, H. (2018).@Gamma-radiation induced decolorization and degradation on aqueous solutions of Indigo Carmine dye@Journal of Radioanalytical and Nuclear Chemistry, 317, 37-48. https://doi.org/10.1007/s10967-018-5835-z.@Yes$Eroi, S.N., Ello, A.S., Diabaté, D. and Ossonon, D.B. (2021).@Heterogeneous WO3/H2O2 system for degradation of Indigo Carmin dye from aqueous solution.@South African Journal of Chemical Engineering, 37, 53-60. https://doi.org/10.1016/j.sajce.2021.03.009.@Yes$Capra, L., Manolache, M., Ion, I., Stoica, R., Stinga, G., Doncea, S.M., and Ion, A.C. (2018).@Adsorption of Sb (III) on Oxidized Exfoliated Graphite Nanoplatelets.@Nanomaterials (Basel), 8(12), 992. https://doi.org/ 10.3390/nano8120992.@Yes$Crini, G., Lichtfouse, E., Wilson, L. and Morin-Crini, N. (2018).@Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment.@Green Adsorbents for Pollutant Removal,18, 23-71. https://doi.org/10.1007/978-3-319-92111-2_2.@Yes$Konan, A. T. S., Richard, R., Andriantsiferana, C., Yao, K. B. and Manero, M.-H. (2019).@Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewate.@Desalination and Water Treatment, 163, 336–346.@No$Jiwalak, N., Rattanaphani, S., Bremner, J. and Rattanaphani, V. (2010).@Equilibrium and kinetic modeling of the adsorption of indigo carmine onto silk.@Faculty of Science - Papers (Archive), 11(4), 572-579. https://doi.org/10.1007/s12221-010-0572-2.@Yes$Konan, A. T. S., Richard, R., Andriantsiferana, C. and Yao, K. B. (2020).@Recovery of borassus palm tree and bamboo waste into activated carbon: application to the phenolic compound removal.@Journal of Materials and Environmental Science, 11(10), 1584-1598.@Yes$Konan, K.G. (2015).@Elimination du Crystal violet par biosorption : application aux peaux de manioc et de banane (Master option chimie et environnement).@Université Nangui Abrogoua, Abidjan (Côte d’Ivoire).@No$Mayeko, A., Vesituluta, P., Phanzu, J., Muanda, D., Bakambo, G., Lopaka, B. and Mulangala, J. (2012).@Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l’acide phosphorique.@International Journal of Biological and Chemical Sciences, 6(3), 1337-1359. https://doi.org/10.4314/ijbcs.v6i3.36.@Yes$Adedeji, O. (2019).@Nigéria : faire des déchets de manioc une richesse dans la stratégie d’atténuation du changement climatique.@https://www.cta.int/fr/blog/all/article/nigeria-faire-des-dechets-de-manioc-une-richesse-dans-la-strategie-d-attenuation-du-changement-climatique-sid0011dd15d-fd72-49e9-8b21-70800f55c781.@Yes$FAO (2014).@Lutter contre le changement climatique grâce à l’élevage – Une évaluation des émissions et des opportunités d’atténuation au niveau mondial.@Rome.@Yes$Vernier, P., N’Zué, B. and Zakhia-Rozis, N. (2018).@Le manioc, entre culture alimentaire et filière agro-industrielle.@éditions Quae. https://doi.org/10.35690/978-2-7592-2708-2.@Yes$N’Zué, B., Zohouri, P.G. and Sangaré, A. (2004).@Performances agronomiques de quelques variétés de manioc (Manihot esculenta Crantz) dans trois zones agroclimatiques de la Côte d’Ivoire.@Agronomie Africaine, 16(2), 1-7.@Yes$Thiémélé, D.E.F., Traoré, S., Aby, N., Gnonhouri, P., Yao, N., Kobenan, K., and Zakra, N. (2017).@Diversité et sélection participative de variétés locales productives de banane plantain de Côte d’Ivoire.@Journal of Applied Biosciences, 114, 11324-11335. https://doi.org/10.4314/ jab.v114i1.6.@Yes$Kwa, M., & Temple, L. (2019).@Le bananier plantain. Enjeux socio-économiques et techniques, expériences en Afrique intertropicale.@Ed. Quae. https://spore.cta.int/fr/ publications/all/issue/le-bananier-plantain-un-potentiel-a-mieux-valoriser-sid051a55ffb-488a-44f4-a74d-019b7d1e0 468.@Yes$Liade, J. (2021).@Yakro Côte-d’Ivoire : Vente de peaux de manioc, un autre business des commerçantes d’attiéké.@https://www.connectionivoirienne.net/2021/04/12/magazine-yakro-cote-divoire-vente-de-peaux-de-manioc-un-autre-business-des-commercantes-dattieke.@No$Guezzen, B., Rasmal, H.N. and Kermane, Z. (2017).@Modification de la bentonite par l’hexadecyltrimethyl ammonium application à l’adsorption du l’indigo carmine.@Master, Université Dr. Moulay Tahar Saïda (Algérie).@No$Palma-Goyes, R.E., Silva-Agredo, J., González, I. and Torres-Palma, R.A. (2014).@Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes.@Electrochimica Acta, 140, 427-433. https://doi.org/10.1016/j.electacta.2014.06.096.@Yes$Zhang, H., Zhu, J., Chen, Q., Jiang, S., Zhang, Y. and Fu, T. (2018).@New intelligent photometric titration system and its method for constructing chemical oxygen demand based on micro-flow injection.@Microchemical Journal, 143, 292-304. https://doi.org/10.1016/j.microc.2018.08.009.@Yes$Debina, B., Eric, S.N., Fotio, D., Arnaud, K.T., Lemankreo, D.-Y. and Rahman, A.N. (2020).@Adsorption of Indigo Carmine Dye by Composite Activated Carbons Prepared from Plastic Waste (PET) and Banana Pseudo Stem.@Journal of Materials Science and Chemical Engineering, 8(12), 39-55. https://doi.org/10.4236/msce.2020.812004.@Yes$Ano, J., Assémian, A.S., Yobouet, Y.A., Adouby, K. and Drogui, P. (2019).@Electrochemical removal of phosphate from synthetic effluent: A comparative study between iron and aluminum by using experimental design methodology.@Process Safety and Environmental Protection, 129, 184-195. https://doi.org/10.1016/j.psep.2019.07.003.@Yes$France. Feinberg, M. (1996).@Valorisation of methods of analysis, a chemometric approach to quality assurance in the laboratory.@https://ulysse.univ-lorraine.fr/discovery/ fulldisplay/alma991001105659705596/33UDL_INST:UDL.@Yes$Ano, J., Henri Briton, B.G., Kouassi, K.E. and Adouby, K. (2020).@Nitrate removal by electrocoagulation process using experimental design methodology: A techno-economic optimization.@Journal of Environmental Chemical Engineering, 8(5), 104292. https://doi.org/ 10.1016/j.jece.2020.104292.@Yes$Alahiane, S., Qourzal, S., Ouardi, M.E., Belmouden, M., Assabbane, A. and Ait-Ichou, Y. (2013).@Adsorption and photocatalytic degradation of indigo carmine dye in aqueous solutions using TiO2/UV/O2.@Journal of Materials and Environmental Science, 4(2), 239-250.@Yes$Odogu, A.N., Daouda, K., Desiré, B.B.P., Nsami, N.J. and Mbadcam, K.J. (2016).@Removal of indigo carmine dye (IC) by batch adsorption method onto dried cola nut shells and its active carbon from aqueous medium.@International Journal of Engineering Sciences & Research Technology, 5(3), 874-887. https://doi.org/10.5281/zenodo.48382.@Yes$Aboua, K.N. (2013).@Optimisation par le plan factoriel complet des conditions de production de charbon actif et son utilisation pour l’élimination de colorants et métaux lourds en solutions aqueuses (Thèse).@Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire.@Yes$Berkane, M. (2014).@Elimination d’un colorant Carmin Indigo en solution aqueuse par double hydroxyde lamellaire.@Master, http://e-biblio.univ-mosta.dz/handle/ 123456789/8317.@No$M. Kadja, A. Zaatri, Z. Nemouchi, R. Bessaih, S. Benissaad and K. Talbi (Eds), (2016).@Elimination d’un colorant acide en milieu aqueux@par un procédé d’oxydation chimique catalysée par un polyoxometallate de type Dawson.@Yes @Review Paper <#LINE#>Ceramic materials: A companion of mankind<#LINE#>Ram Prasad @Aryal,Chhabi Lal @Gnawali,Binod @Pandey <#LINE#>73-78<#LINE#>10.ISCA-RJCS-2021-045.pdf<#LINE#>IOE Pulchwok Campus, Tribhuvan University, Kathmandu, Nepal@IOE Pulchwok Campus, Tribhuvan University, Kathmandu, Nepal@IOST Patan Multiple Campus, Tribhuvan University, Kathmandu, Nepal<#LINE#>8/10/2021<#LINE#>2/12/2021<#LINE#>Mankind is always involved in the search for smart multifunctional material with superior physical and engineering properties compared to existing material for better performance in diverse fields. Due to a lack of researchers’ interest, details of ceramics processing/fabrication, manufacturing were difficult. The properties of Ceramics depend on its microstructure obtained after its processing or fabrication so the control of fundamental microstructure has great importance for all ceramics behavior and its application. Understanding the manufacturing technology, processing science, and materials reaction to external spurs to cope with the desired shape, structure, and other traits helps to transfer the ceramics material into the value-added artifact. Thus strong and continuous effort is required for the continuous improvement of ceramics material in the field of Science and Engineering.`<#LINE#>William D., Callister J. & David G. R. (2015).@Fundamentals of Materials Science and Engineering.@John Wiley & Sons, 2–12. ISBN -13: 978-1-119-17548-3.@No$Andreola, F., Lancellotti, I., Sergi, I. R., Cannillo, V. & Barbieri, L. (2021).@Comparison of three manufacturing techniques for sustainable porous clay ceramics.@Materials, 14(1), 1–18. doi: 10.3390/ma14010167.@Yes$Kingery, W. D., Bowen, H. K. & Uhlmann D. R. (1976).@Introduction to ceramics.@John Wiley & Sons, 3-16. ISBN: 0-471-47860-1.@Yes$Boch, P. & Niepce, J.C. (Eds.). (2010).@Ceramics Materials: Process, Properties and Applications.@Wiley-ISTE, London, 95-103. ISBN: 978-0-470-61241-5.@Yes$Ribeiro, M. J. & Tulyaganov, D. (2021).@Traditional Ceramics Manufacturing. In: Baino F., Tomalino M., & Tulyaganov D. (Eds.).@Ceramics, Glass and Glass-Ceramics. PoliTO Springer Series. Springer, 75-223.@No$Carter C. B. & Norton, M. G. (2013).@Ceramic Materials Science and Engineering (2nd ed.).@Springer Science and Business Media, New York, 3-16. ISBN: 978-1-4614-3522-8.@Yes$Kingery, W. D., Bowen H. K. & Uhlmann, D. R. (1976).@Introduction to ceramics.@John Wiley & Sons, 1-19. ISBN: 0-471-47860-1.@Yes$Heimann, R. B. (2010).@Classic and Advanced Ceramics.@WILEY-VCH Verlag GmbH & Co, Winheim,1-18. ISBN: 978-3-527-32517-7.@No$Ashby, M. F. & Jones, D. R. H. (2006).@Engineering Materials 2: An Introduction to microstructure, Processing and Design.@Elsevier-Oxford, 175-183. ISBN–13: 978-0-7506-6381-6.@Yes$Richerson D. W. (2012).@The Magic of Ceramics.@John Wiley & Sons, 2-228. ISBN: 978-0-470-63805-7.@Yes$UNESCO (2010-2013).@Strengthening Conservation and Management of Lumbini, the Birthplace of the Lord Buddha, World Heritage Property A UNESCO Report.@World Herit. Museums. http://whc.unesco.org/en/activities /729.@No$Spielvogel, J. (2014).@The Industrial Revolution and Its Impact on European Society.@Western Civilization, 2, 596-623.@Yes$Europian Commission (2007).@Ceramic Manufacturing Industry Report.@210–211.@No$Greil P. (2002).@Advanced engineering ceramics.@Adv. Mater, 14(10), 709–716.doi: 10.1002/1521-4095 (2002051 7).@Yes$Subedi M. M. (2013).@Ceramics and its Importance.@Himal. Phys., 4, 80–82. doi: 10.3126/hj. v4i0.9433.@No$Fantozzi G. (2017).@Welcome to Ceramics: A New Open Access Scientific Journal on Ceramics Science and Engineering.@Ceramics, 1(1), 1–2. doi: 10.3390/ceramics 1010001.@Yes$Musselman, M. Alkurd, N., Ley, B., Murugappan, X. Feldman, J. & Packard, C. E. (2017).@Ceramic Materials in Renewable Energy: A module Developed for Hands-On Learning.@Colorado School of Mines, 1–15.@Yes$Das C. & Bose S. (2017).@Advanced Ceramic Membranes and Applications.@CRC press, New York, 1-3. ISBN: 13: 978-1-138-05540-7.@Yes$Uchino K. (2010).@Advanced piezoelectric materials: Science and technology.@Woodhead UK, 1-44. ISBN: 13:9781845695347.@Yes$Reed J. (1995).@Introduction to the principle of ceramic Processing.@Wiley and Sons,15-21. ISBN: 978-0-471-59721-6.@No$Terrones-Saeta, J., Suárez-Macías, M. J., Iglesias-Godino, F. J., & Corpas-Iglesias, F. A. (2021).@Development of geopolymers as substitutes for traditional ceramics for bricks with chamotte and biomass bottom ash.@Material, 14(1), 1–20.doi: 10.3390/ma14010199@Yes$Christogerou, A., Lampropoulou, P., Papoulis, D. & Angelopoulos, G. N. (2021).@Feasibility study on the potential replacement of primary raw materials in traditional ceramics by clayey overburden sterile from the prosilio region (Western macedonia, greece).@Minerals, 11(9), 1-13. doi: 10.3390/min11090961@Yes$Pampuch R. (2012).@Introduction to Ceramics.@Springer Cham Heidelberg New York, 19-38. ISBN 978-3-319-10409-6@No$Ho J. W. I. & Quinn, P. S. (2021).@Intentional clay-mixing in the production of traditional and ancient ceramics and its identification in thin section.@J. Archaeol. Sci. Reports, 37, 102945. doi: 10.1016/j.jasrep.2021.102945@Yes$Rambaldi E. (2021).@Pathway towards a High Recycling Content in Traditional Ceramics.@Ceramics, 4(3), 486–501. doi: 10.3390/ceramics4030036@Yes$Idrissi H., Daoudi L., Alami, El., Ouahabi Meriam J. & Fagel, N. (2021).@Main parameters influencing the plastic behavior of clays used for traditional ceramics production.@1–9, doi: 10.31224/OSF.IO/USHM4@Yes$Pfeifer M. (2009).@Materials Enabled Designs.@Elsevier, 80-87. ISBN: 13: 978-0-7506-8287-9@No$Pandey R. K. (2019).@Fundamentals of Electro- ceramics: Materials, Devices, and Applications.@Wiley, 108-111. ISBN: 9781119057345@Yes$Kumar, A., Dahotre, N., & Asthan, R. (2005).@Materials Processing and Manufacturing Science.@Elsevier, 232-236. ISBN: 0750677163@No$@Christine (2021).@Carbon Fibre Characteristics.@No$CFC Carbon Co., Ltd. (2021).@Carbon ceramic composite material and parts.@https://www.cfccarbon.com/carbon-composite/carbon-ceramic-composite.html@No$Julissa Green (2021).@An Overview of Silicon Carbide Ceramic Materials.@https://www.preciseceramic.com/ blog/overview-of-silicon-carbide-ceramic/2021/11/04@No$What is Carbon Fiber? https://www.innovativecomposite. com/what-is-carbon-fiber/2021/11/04@undefined@undefined@No$Huang, B., Li, C., Zhang, Y., Ding, W., Yang, M., Yang, Y., Zhai, H., Xu, X., Wang, D., Debnath, S., Jamil, M., Li, H.N., Ali, H.M., Gupta, M.K., & Said, Z. (2020).@Advances in fabrication of ceramic corundum abrasives based on sol– gel process.@Chinese J. Aeronaut., 34(6), 1–17. doi: 10.1016/j.cja.2020.07.004.@Yes