@Research Paper <#LINE#>Substance ingredient of Anisodus luridus roots and their antimicrobial transmission<#LINE#>Anupama@.,Pooja @Kumawat <#LINE#>1-5<#LINE#>1.ISCA-RJCS-2021-007.pdf<#LINE#>Dept. in Chemistry, Govt. Girls College, Jhunjhunu, Rajasthan, India@Dept. in Chemistry, Govt. PG College Jhunjhunu, Rajasthan, India<#LINE#>17/2/2021<#LINE#>10/5/2021<#LINE#>The feeble base and sturdy base fractions were separated from methanolic extract of roots of Anisodus luridus. Chromatographic resolution of both fractions yielded composite 1-5 which is characterized as a β-sitosteroal (1), β-sitosteroal -β-D-glucoside (2), apohyoscyamine (3), esculetin (4) and hyoscyamine (5) with the help out of spectroscopic analysis. Four compounds, 1-4 were isolated from A. luridus for the first time. The weak base, strong base and isolated ingredient were screened against six microbes viz. Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Candida albicans, Candida tropicalis with Candida krusei. feeble base, sturdy base and isolated pure compounds exhibited their potential against these microbes.<#LINE#>Gewali, M. B., & Awale, S. (2008).@Aspects of traditional medicine in Nepal.@Japan: Institute of Natural Medicine. University of Toyama.@Yes$Ghimire, S. K., Sapkota, I. B., Oli, B. R., & Parajuli, R. R. (2008).@Non-timber forest products of Nepal Himalaya: database of some important species found in the mountain protected areas and surrounding regions.@WWF Nepal, Kathmandu, Nepal.@Yes$Quattrocchi, U. (2012).@CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology (5 Volume Set).@CRC press. United States.@Yes$Hosny, M., & Rosazza, J. P. (1998).@Gmelinosides A− L, twelve acylated iridoid glycosides from Gmelina a rborea.@Journal of natural products, 61(6), 734-742.@Yes$Rabinovich M. S. and Konovalova R. A. (1946).@Zhurnal Obshchei Khimii.@Etymology, (16), 21.@No$Kai G. Y., Li L., Jiang Y., Yan X., Zhang Y., Lu X. and Liao P. (2009).@Antibacterial compounds from Carissa lanceolata R.Br.@Biotechnol. Appl. Biochem., 54, 177.@No$Wiegand, I., Hilpert, K., & Hancock, R. E. (2008).@Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.@Nature protocols, 3(2), 163.@Yes$Wikler, M. A. (2006).@Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard.@CLSI (NCCLS), 26, M7-A7.@Yes$Ghosh, P., Ghosh, A., Chakraborty, P., & Saha, B. (2014).@Triterpenoids from Gynocardia odorata and Their Antimicrobial Activity.@ChemInform, 45(50).@Yes$Sayed, H. H., & Ali, M. A. (2007).@Synthesis of 3-[(4-Chloro-phenyl) oxiranyl] thiophen-2-yl-propanone and Their Reactions with Some Nucleophilles for Antiviral Evaluations.@Phosphorus, Sulfur, and Silicon and the Related Elements, 183(1), 156-167.@Yes$Begmatov, N. B., Yili, A., Eshbakova, K. A., & Aisa, H. A. (2014).@Chemical constituents of Apocynum lancifolium flowers.@Chemistry of Natural Compounds, 50(3), 541-542.@Yes$Shibata, N., Morimoto, J., Hoshino, N., Minouchi, T., & Yamaji, A. (2000).@Factors that affect absorption behavior of cyclosporin a in gentamicin-induced acute renal failure in rats.@Renal failure, 22(2), 181-194.@Yes$El-Shazly, A., Tei, A., Witte, L., El-Domiaty, M., & Wink, M. (1997).@Tropane alkaloids of Hyoscyamus boveanus, H. desertorum, H. muticus and H. albus from Egypt.@Zeitschrift für Naturforschung C, 52(11-12), 729-739.@Yes$Verma, M., Gangwar, M., Sahai, M., Nath, G., & Singh, T. D. (2015).@Antimicrobial activity of phytochemicals isolated from Selaginella bryopteris.@Chemistry of Natural Compounds, 51(2), 341-345.@Yes <#LINE#>Certain new dicyclopentadienyl titanium complexes derived from sterically impeded heterocyclic beta-diketones and beta-diketones: Generation, spectroscopic characterization and structure- antimicrobial activity relationship<#LINE#>Kanika @Sharma,Sanjiv @Saxena,Asha @Jain <#LINE#>6-13<#LINE#>2.ISCA-RJCS-2021-014.pdf<#LINE#>Department of Chemistry, University of Rajasthan, Jaipur-302004, India@Department of Chemistry, University of Rajasthan, Jaipur-302004, India@Department of Chemistry, University of Rajasthan, Jaipur-302004, India<#LINE#>22/1/2021<#LINE#>4/9/2021<#LINE#>A set of new dicyclopentadienyl titanium complexes was generated by the reactions of titanocene dichloride with sterically impeded heterocyclic beta-diketones (L(1)H=4-acetyl-2,4 dihydro-5-methyl-2-phenyl-3H-pyrazol-3-one, L(2)H=4-propanoyl-2,4 dihydro-5-methyl-2-phenyl 3H-pyrazol-3-one and L(3)H=4-(4-chloro)benzoyl-2,4 dihydro-5-methyl-2-phenyl 3H-pyrazol-3-one), beta-diketones (L'(1)H=pentane-2,4-dione, L'(2)H=1-phenylbutane-1,3-dione and L'(3)H=1,3-diphenylpropane-1,3-dione) and triethylamine in 1:1:1:2 molar ratio in refluxing dry THF. Plausible structures of these newly generated complexes were suggested based on spectroscopic and mass studies. Some representative complexes were also screened for their antimicrobial activity.<#LINE#>Machat, M. R., Jandl, C., & Rieger, B. (2017).@Titanocenes in olefin polymerization: Sustainable catalyst system or an extinct species?.@Organometallics, 36(7), 1408-1418.@Yes$Kaluderovic, G.N., Quintanilla, D.P., Sierra, I., Prashar, S., Hierro, I., Izak, Z., Juranic, Z.D., Fajardoc, M. and Ruiz, S.G. (2010).@Study of the influence of the metal complex on the cytotoxic activity of titanocene-functionalized mesoporous materials.@J. Mater. Chem., 20, 806–814.@Yes$Guo, M., Sun, H., McArdle, H.J., Gambling, L. and Sadler, P.J. (2000).@Ti(IV)Uptake and Release by Human Serum Transferrin and Recognition of Ti(IV)-Transferrin by Cancer Cells: Understanding the Mechanism of Action of the Anticancer Drug Titanocene Dichloride.@Biochemistry, 39(33), 10023-10033.@Yes$Abeysinghe, P. M., & Harding, M. M. (2007).@Antitumour bis (cyclopentadienyl) metal complexes: titanocene and molybdocene dichloride and derivatives.@Dalton Transactions, (32), 3474-3482.@Yes$Hogan, M., Claffey, J., Pampillón, C., Watson, R. W. G., & Tacke, M. (2007).@Synthesis and cytotoxicity studies of new dimethylamino-functionalized and azole-substituted titanocene anticancer drugs.@Organometallics, 26(10), 2501-2506.@Yes$Verma, S., Joshi, A., Jain, A., & Saxena, S. (2004).@New mixed ligand complexes of dicyclopentadienyl titanium (IV) derived from sterically congested heterocyclic β-diketones and N-protected amino acids.@Journal of Chemical Research, 2004(11), 768-772.@Yes$Klapoetke, T. M., Koepf, H., Tornieporth-Oetting, I. C., & White, P. S. (1994).@Synthesis, Characterization, and Structural Investigation of the First Bioinorganic Titanocene (IV). Alpha.-Amino Acid Complexes Prepared from the Antitumor Agent Titanocene Dichloride.@Organometallics, 13(9), 3628-3633.@Yes$Florès, O., Trommenschlager, A., Amor, S., Marques,F., Silva, F., Gano, L., Dena, F., Campello, M.P.C., Goze, C., Bodio, E. and Gendre, P.L. (2017).@In vitro and in vivo trackable titanocene-based complexes using optical imaging or SPECT.@Dalton Trans, 46(42), 14548–14555.@Yes$Rezazadeh, M., Ghiasi, R. and Jamehbozorgi, S. (2018).@Influence of solvent and electric field on the structure and IR, 31P NMR spectroscopic properties of a titanocene–benzene complex.@J. Appl. Spectrosc., 85(3), 526-534.@Yes$Rosenthal, U., Burlakov, V. V., Arndt, P., Baumann, W., & Spannenberg, A. (2003).@The titanocene complex of bis (trimethylsilyl) acetylene: synthesis, structure, and chemistry.@Organometallics, 22(5), 884-900.@Yes$Fouegue, A. D. T., Nono, J. H., Nkungli, N. K., & Ghogomu, J. N. (2021).@A theoretical study of the structural and electronic properties of some titanocenes using DFT, TD-DFT, and QTAIM.@Structural Chemistry, 32(1), 353-366.@Yes$Jaraiz, M., Enriquez, L., Pinacho, R., Rubio, J. E., Lesarri, A., & Lopez-Perez, J. L. (2017).@A DFT-based computational-experimental methodology for synthetic chemistry: Example of application to the catalytic opening of epoxides by titanocene.@The Journal of organic chemistry, 82(7), 3760-3766.@Yes$Deng, C., & Zhou, L. (2010).@Binding of ansa-and non-ansa-titanocene anticancer drugs to DNA: a DFT study.@Structural Chemistry, 21(4), 735-744.@Yes$Semproni, S. P., Milsmann, C., & Chirik, P. J. (2012).@Side-on dinitrogen complexes of titanocenes with disubstituted cyclopentadienyl ligands: synthesis, structure, and spectroscopic characterization.@Organometallics, 31(9), 3672-3682.@Yes$Gallardo, J.F., Elie, B.T., Sadhukha, T., Prabha, S., Sanau, M., Rotenberg, S.A., Ramos, J.W. and Contel, M. (2015).@Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo.@Chem. Sci., 6, 5269–5283.@Yes$Burlakov, V.V., Arndt, P., Baumann, W., Spannenberg A., Rosenthal, U., Letov, A.V., Lyssenko, K.A., Korlyukov, A.A., Strunkina L.I., Minacheva, M. Kh. and Shur, V.B. (2001).@Synthesis and X-ray Crystal Structure Determination of New Zwitterionic Complexes of Titanocene.@Organometallics, 20, 4072-4079.@Yes$Sun, Z., Unruean, P., Aoki, H., Kitiyanan, B., & Nomura, K. (2020).@Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization.@Organometallics, 39(16), 2998-3009.@Yes$Tang, X. Y., Liu, J. Y., & Li, Y. S. (2013).@Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-) Polymerization.@Catalysts, 3(1), 261-275.@Yes$Gansäuer, A., Fleckhaus, A., Lafont, M. A., Okkel, A., Kotsis, K., Anoop, A., & Neese, F. (2009).@Catalysis via homolytic substitutions with C−O and Ti−O bonds: Oxidative additions and reductive eliminations in single electron steps.@Journal of the American Chemical Society, 131(46), 16989-16999.@Yes$Li, J. L., Gao, Z. W., Sun, P., Gao, L. X., & Tikkanen, W. (2011).@Ethanol catalyzed synthesis of titanocene aryl carboxylate complexes and crystal structure of (η5-C5H5) 2Ti (2-OH-5-S–O2CC6H3) 2.@Inorganica Chimica Acta, 368(1), 231-236.@Yes$Jerzykiewicz, L. B., Utko, J., Duczmal, M., & Sobota, P. (2009).@Titanocene as a precursor for a cyclopentadienyl-free titanium (iii)–manganese (ii) cluster: A new approach for nano-size materials.@Dalton Transactions, (28), 5450-5452.@Yes$Chaudhary, A., Sharma, N., Dhayal, V., Saxena, A., Nagar, M., & Bohra, R. (2011).@Synthesis and characterization of some bis (cyclopentadienyl) titanium (IV) complexes with internally functionalized oximes (LH): sol–gel transformations of Cp2TiCl2, Cp2TiClL and Cp2TiL2 to nano‐sized anatase titania.@Applied Organometallic Chemistry, 25(3), 198-206.@Yes$Sharma, S., Kumar, P., Jain, A., & Saxena, S. (2018).@Synergy between DFT Calculations and Experimental Studies on the Optimized Structures and the Antibacterial Potential of Some Novel Tetra‐and Penta Coordinated Organic‐Inorganic Hybrid Complexes of Titanium (IV).@Applied Organometallic Chemistry, 32(6), e4321.@Yes$Maheshwari, K., Srivastava, M. K., Saxena, S., & Jain, A. (2017).@Effect of fluorinated/non‐fluorinated β‐diketones and side‐chain branching of N‐protected amino acids on the antibacterial potential of new heptacoordinated monobutyltin (IV) complexes.@Applied Organometallic Chemistry, 31(6), e3628.@Yes$Sharma, A., Jain, A., & Saxena, S. (2015).@The structure–activity relationship of some hexacoordinated dimethyltin (IV) complexes of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones.@Applied Organometallic Chemistry, 29(8), 499-508.@Yes$Pelletier, F., Comte, V., Massard, A., Wenzel, M., Toulot, S., Richard, P., Picquet, M., Gendre, P. L., Zava, O., Edafe, F., Casini, A. and Dyson, P.J. (2010).@Development of Bimetallic Titanocene-Ruthenium-Arene Complexes As Anticancer Agents: Relationships between Structural and Biological Properties.@J.Med.Chem., 53, 6923-6933.@Yes$Jensen, B. S. (1959).@The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5.@Acta Chem. Scand, 13(8), 1668-1670.@Yes$Jain, A., Saxena, S., Rai, A. K., & Bohra, R. (2003).@Preparation, Structural Chemistry and Spectroscopic (IR, 1H & 13C) Characterization of Certain Lead (II) Complexes of Sterically Demanding Heterocyclic β-Diketones. X-Ray Crystal Structure of Bis [4-Acetyl-2, 4-Dihydro-5-Methyl-2-Phenyl-3H-Pyrazol-3-Onato) Lead (II), C24H22N4O4Pb.@Main group metal chemistry, 26(1), 1-12.@Yes$Perez, C. (1990).@Antibiotic assay by agar-well diffusion method.@Acta Biol Med Exp, 15, 113-115.@Yes <#LINE#>Chemical characterization of the coagulating solutions of the powders of the seeds of Arachis hypogaea L., Cucumeropsis mannii Naud. and Moringa oleifera Lam.<#LINE#>Hermeline @NTALANI,Ravelle Duclérine @NGOUANOU,Hubert @MAKOMO,Aubin Nestor @LOUMOUAMOU,Zéphirin @MOULOUNGUI,Jean-Maurille @OUAMBA <#LINE#>14-23<#LINE#>3.ISCA-RJCS-2021-017.pdf<#LINE#>Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo and Institute for Research in Exact and Natural Sciences, BP 2400, Brazzaville, Congo@Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo@Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo@Multidisciplinary Research Team in Food and Nutrition, Faculty of Sci. and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo and Institute for Research in Exact and Natural Sciences, BP 2400, Brazzaville, Congo@Dina – BioRes# - Chem www.dinabiores.com 10 rue Simone Henry 31200 Toulouse, France@Plant and Life Chemistry Unit, Faculty of Sciences and Technics, University Marien NGOUABI, BP 69, Brazzaville, Congo<#LINE#>2/4/2021<#LINE#>20/5/2021<#LINE#>The aim of this study is to characterize the proteins in the coagulating solutions of the powders of the seeds of Arachis hypogaea L., Cucumeropsis mannii Naud. and Moringa oleifera Lam. Analyzes were performed using high performance size exclusion liquid chromatography (SE-HPLC) on a Superdex column in the range of 10kDa to 500kDa and on a Shodex column in the range of 204Da to 35000Da. Electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate (SDS PAGE) was also performed. The results obtained showed that the coagulating solutions of C. mannii and M. oleifera mainly contain small proteins, of which 75.4% and 94.4% have molecular masses of less than 10kDa. The coagulating solution of A. hypogaea, on the other hand mainly contains large proteins, of which 25.4% have molecular masses between 100kDa and 300kDa, 16.8% between 300kDa and 500kDa and 16.8% have molecular masses greater than 500kDa.<#LINE#>Degremont, S.A. (2005).@Memento Technique de l’eau.@10e édition, Tome 1, Lavoisier SAS, Paris, pp 185-206. ISBN: 978-27430-07171.@Yes$Lugube, B. (2015).@Production d’eau potable.@Dunod, Paris, pp 49-86. ISBN: 978-2100593200.@No$Faust, S. D. & Aly, O. M. (2018).@Chemistry of Water Treatment.@CRC Press, USA, pp 215-266. ISBN: 978-1315139265.@Yes$Hendricks, D.W. (2006).@Water Treatment Unit Processes.@CRC Press, USA, pp 277-364. ISBN: 978-0824706951.@Yes$Choy, S. Y., Prasad, K. M. N., Wu, T. Y., & Ramanan, R. N. (2015).@A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification.@International Journal of Environmental Science and Technology, 12(1), 367-390.@Yes$Shukla, P. (2016).@Natural coagulants for water purification: an ecofriendly approach.@World Journal of Pharmaceutical Research, 5(5), 1177-1185.@Yes$Jayalakshmi, G., Saritha, V., & Dwarapureddi, B. K. (2017).@A review on native plant based coagulants for water purification.@International Journal of Applied Environmental Sciences, 12(3), 469-487.@Yes$Kristianto, H. (2017).@The potency of Indonesia native plants as natural coagulant: a mini review.@Water Conservation Science and Engineering, 2(2), 51-60.@Yes$Linangelo, S.B., Kamango, J. B., Mokili, J. K. E., Monama, T. O., Ulyel, J. A. P., & Kazada Z-A. M. (2018).@Problématique d’accès à l’eau potable en milieu rural en RDC: cas de la ville urbano-rurale de Bumba.@International Journal of Innovation and Scientific Research, 37(2), 130-138.@No$Ofouémé-Berton, Y. (2010).@L’approvisionnement en eau des populations rurales au Congo-Brazzaville. Les Cahiers d’Outre-Mer.@Revue de géographie de Bordeaux, 63(249), 7-30.@Yes$OMS (2012).@Rapport du programme commun OMS/UNICEF.@https://www.who.int/water_sanitation_ health/monitoring. Consulté le 10 décembre 2020.@Yes$OMS (2017).@2,1 milliards de personnes n’ont pas d’eau potable.@https: // www.who.int/fr/news/item. Consulté le 10 décembre 2020.@No$Babu, R., &Chaudhuri, M. (2005). Home water treatment by direct filtration with natural coagulant. Journal of Water and Health, 3 (1), 27-30.@undefined@undefined@Yes$Marobhe, N. J. (2013).@Effectiveness of crude extract and purified protein from Vigna unguiculata seed in purification of charco dam water for drinking in Tanzania.@International Journal of Environmental Sciences, 4(3), 259-273.@Yes$Kabore, A., Zongo, I., Sawadogo, J., Savadogo, B., Doumounia, A., Kima, S.A., & Nombré, I.N. (2020).@Efficacité du traitement de l’eau des puits avec les tourteaux de Moringa oleifera par coagulation et filtration sur sable dans les ménages ruraux au Burkina Faso.@Environmental and Water Sciences, Public Heath & Territorial Intelligence, 4 (1), 307-314.@Yes$PNUD (2019).@Eau propre et assainissement.@https: //www.undp.org. Consulté le 10 décembre 2020.@Yes$Kabore, A., Savadago, B., Rosillon, F., Straore, A., & Dianou, D. (2013).@Optimisation de l’efficacité des graines de Moringa oleifera dans le traitement des eaux de Consommation en Afrique sub-saharienne: cas des eaux du Burkina Faso.@Revue des sciences de l’eau/Journal of Water Science, 26(3), 209-220.@Yes$Gámez, L. L. S., Luna-del Risco, M., & Cano, R. E. S. (2015).@Comparative study between M. oleifera and aluminum sulfate for water treatment: case study Colombia.@Environmental monitoring and assessment, 187(10), 1-9.@Yes$Lugo-Arias, J., Burgos-Vergara, J., Lugo-Arias, E., Gould, A., & Ovallos-Gazabon, D. (2020).@Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta@Heliyon, 6(1), e03062.@Yes$Bichi, M. H. (2013).@A review of the applications of Moringa oleifera seeds extract in water treatment.@Civil and Environmental Research, 3(8), 1-10.@Yes$Sulaiman, M., Zhigila, D. A., Mohammed, K., Umar, D. M., Aliyu, B., &Manan, F. A. (2019).@Moringa oleifera seed as potential application in water treatment: a review.@Journal of Advanced Research in Material Sciences, 56 (1), 11-21.@No$Cardot, C. L. A. U. D. E. (2010).@Les traitements de l’eau pour l’ingénieur. Procédés physico-Chimiques et biologiques.@Ellipes Editions Marketing SA Paris. pp 20-26. ISBN: 978-2729861872.@Yes$Hermeline, N., Duclérine, N. R., Hubert, M., Arnold, E. N., Murphy, B. T. G., Nestor, L. A., ... & Jean-Maurille, O. (2020).@Etudes comparatives de la composition chimique et de l’activité coagulante des graines de Cucumeropsis mannii Naud., Arachis hypogaea L. et Moringa oleifera Lam. dans la clarification des eaux de surface.@Journal of Applied Biosciences, 145, 14974-14984.@Yes$Rejsek F. (2002).@Analyse des eaux.@CRDP Aquitaine, pp 69-70. ISBN: 2-86617-420-8.@No$Rodier, J., Legube, B., & Merlet, N. (2016).@L’analyse de l’eau.@10eédition, Dunod, Paris, pp 105-112. ISBN: 978-2100754120.@No$Cardot, C.& Gilles, A. (2013).@Analyse des eaux.@Ellipses Edition, Paris, pp 19-28.ISBN: 978-2729883478.@No$Mbogo, S.A. (2008).@A novel technology to improve drinking water quality using natural treatment methods in rural Tanzania.@Journal of Environmental Health, 70(7), 46-50.@Yes$Prasad, S. V. M., Ramamohan, H., & Srinivasa Rao, B. (2017).@Assessment of coagulation potential of three different natural coagulants in water treatment.@International Journal of Research and Scientific Innovation, 4(12), 7-9.@No$Bodlund, I., Pavankumar, A. R., Chelliah, R., Kasi, S., Sankaran, K., & Rajarao, G. K. (2014).@Coagulant proteins identified in Mustard: a potential water treatment agent.@International Journal of Environmental Science and Technology, 11(4), 873-880.@Yes$Arunkumar, P., Sadish Kumar, V., Saran, S., Bindun, H., & Devipriya, S. P. (2019).@Isolation of active coagulant protein from the seeds of Strychnos potatorum–a potential water treatment agent.@Environmental technology, 40(12), 1624-1632.@Yes <#LINE#>Physical, proximate and pasting properties of flours from selected clones of low postharvest physiological deterioration cassava<#LINE#>Alimi @J.P.,Ahemen @S.A.,Ikeme @A.I.,Iluebbey @P.O.,Alimi, @J.O. <#LINE#>24-32<#LINE#>4.ISCA-RJCS-2021-027.pdf<#LINE#>Nigerian Stored Products Research Institute, P.M.B. 5044, Onireke, Oyo State, Nigeria@Akperan Orshi Polytechnic, Yandev, P.M.B. 181, Gboko, Benue State, Nigeria@Food Science and Technology Department, P.M.B. 01129, University of Nigeria, Nsukka, Nigeria@International Institute of Tropical Agriculture, P.M.B. 5320. Ibadan, Oyo State, Nigeria@Microbiology Department, P.M.B. 1, University of Ibadan, Oyo State, Nigeria<#LINE#>17/5/2021<#LINE#>3/7/2021<#LINE#>Pasting properties of food depicts various uses of starch based food ingredients in food production processes. The physical, proximate and pasting properties of high quality cassava flours produced from low postharvest physiological deterioration (PPD) cassava was examined by this study. Wholesome four varieties of yellow-fleshed Low PPD cassava and one variety of high PPD cassava were, washed, grated, pressed, pulverized, flash dried at 120°C for 8 minutes, milled with cyclone hammer mill to which a screen having aperture size of 250 was affixed, subsequently cooled and packaged into high density polyethylene bag. The flours were subjected to analysis such asphysical, proximate and pasting. SPSS 25.0 was used to analyze pertinent data generated, means that were significant was separated applying Duncan multiple range test. Lightness of the flour (L*), redness to greenness (a*), blueness to yellowness (b*), hue and chroma had values ranging from 97.96-99.01, -0.07-1.05, 6.42-15.28 and 90.62-95.93 and 6.43-15.32. Moisture, protein, ash, fat, carbohydrate, dry matter and energy value ranged from 6.84-8.73%, 0.17-0.34%, 0.23-0.63%, 0.23-0.63%, 90.08-92.14%, 91.27-93.16% and 1521.68-1558.96KJ/kg. Pasting parameter such as peak, trough, breakdown, final, setback viscosity, peak time and pasting temperature had values ranging from 552.25-716.79RVU, 68.29-234.67RVU, 361.13-517.38RVU, 291.09-380.09RVU, 85.67-265.21RVU, 3.53-4.13min and 71.93-73.55°C respectively. The high gel strength, starch granule stability to heating and low peak time revealed that low PPD cassava flours are suitable for use in the baking and confectionery industry.<#LINE#>Uchechukwu-Agua, A.D., Caleb, O. J. and Opara, U.L. (2015).@Postharvest handling and storage of fresh cassava root and products: a review.@Food and Bioprocess Technology, 8(4), 729-748.@Yes$Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) (2018).@Cassava production statistics.@2018, http://www.fao.org/faostat/en/@No$Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) (2020).@Cassava production statistics, 2020, http://www.fao.org/faostat/en/@data/QC/ visualize@No$Zainuddin, I. M., Fathoni, A., Sudarmonowati, E., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2018).@Cassava post-harvest physiological deterioration: From triggers to symptoms.@Postharvest Biology and Technology, 142, 115-123.@Yes$Shittu, T.A., Dixon, A. Awonorin, S.O., Sanni, L.O. and Maxiya-Dixon, B. (2008).@Bread from composite cassava-wheat flour II: effect of cassava genotype and nitrogen fertilizer on bread quality.@Food Res. Int., 41, 569-578@Yes$Alimi, J.P., Shittu, T.A., Oyelakin, M.O., Olagbaju, A.R., Sanu, F.T., Alimi, J.O., Abel, O.O., Ogundele, B.A., Ibitoye, O., Ala, B.O. and Ishola, D.T. (2016).@Effect of cowpea flour inclusion on the storage characteristics of composite wheat-cowpea bread.@Journal of Agricultural and Crop Research, 4(4), 49-59. Retrievable at http://sciencewebpublishing.net/jacr/archive/2016/June/pdf/Alimi%20et%20al.pdf@Yes$Aryee, F.N.A., Oduro, I, Ellis, W.O. and Afuakwa, J.J. (2006).@Physicochemical flour samples from the roots of 31 varieties of cassava.@Food Control, 2, 916-922.@Yes$Defloor, I., Leijskens, R., Bokanga, M., & Delcour, J. A. (1994).@Impact of genotype and crop age on the breadmaking and physico‐chemical properties of flour produced from cassava (Manihot esculenta Crantz) planted in the dry season.@Journal of the Science of Food and Agriculture, 66(2), 193-202.@Yes$Idowu, M. A., Oni, A. and Amusa, B. M. (1996).@Bread and biscuit making potential of some Nigerian cocoyam cultivars.@Nigerian Food Journal, 14, 1-12.@Yes$Ruales. J., Valencia, S. and Nair. B. (1993).@Effect of processing on the physico-chemical characteristics of quinoa flour.@Starch/Starke, 45, 13-19.@Yes$Official methods of analysis, AOAC (2019).@Association of Official Analytical Chemists.@Vol I, 21st Edition.@No$Nwabueze, T. U., and Anoruoh, G. A. (2011).@Evaluation of flour and extruded noodles from eight cassava mosaic disease (CMD)-resistant varieties.@Food and Bioprocess Technology, 4, 80-91. doi:10.1007/s11947-009-0200-4@No$Akubor, P. I., Adamolekun, F. O., Oba, C. A., Obari, H., and Abudu, I. O. (2003).@Chemical composition and functional properties of cowpea and plantain flour blends for cookie production.@Plant Foods for Human Nutrition, 58, 1-9. doi:10.1023/B:QUAL.0000041160.25384.f6@Yes$Etudaiye, H. A., Nwabueze, T. U., & Sanni, L. O. (2009).@Quality of fufu processed from cassava mosaic disease (CMD) resistant varieties.@African Journal of Food Science, 3(3), 61-67.@Yes$Nassar, N., Vizzotto, C. S., da Silva, H. L., Schwartz, C. A., & Júnior, O. R. P. (2005).@Potentiality of cassava cultivars as a source of carotenoids.@Journal of Food Agriculture and Environment, 3(3/4), 33.@Yes$Moorthy, S. N. (2002).@Physicochemical and functional properties of tropical tuber starches: a review.@Starch‐Stärke, 54(12), 559-592.@Yes$Charles, A., Sriroth, K., and Huang, T. (2005).@Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes.@Food Chemistry, 92, 615–620. doi:10.1016/j.@Yes$Falade, K. O., Semon, M., Fadairo, O. S., Oladunjoye, A. O., & Orou, K. K. (2014).@Functional and physico-chemical properties of flours and starches of African rice cultivars.@Food Hydrocolloids, 39: 41–50. doi:10.1016/j. foodhyd.2013.11.002@Yes$Shobha, D., Kumar, H. V. D., Sreeramasetty, T. A., Gowda, K. T. P., and Shivakumar, G. B. (2012).@Storage influence on the functional, sensory and keeping quality of quality protein maize flour.@Journal of Food Science and Technology. doi:10.1007/s13197-012-0788-7@Yes$Sanni, O.L., Adebowale, A.A., Filani, T.A., Oyewole, O.B. and Westby, A. (2006).@Quality of flash and rotary dryer dried fufu flour.@J. Food Agric. Environ., 4:74-78.@Yes$Moorthy, S.N., Wenham, J.E. and Blanshard, J.M.V. (1996).@Effect of Solvent Extraction on the Gelatinization Properties of Starch and Flour of Five Cassava Varieties.@J. Sci. Food Agric., 72, 329-336.@Yes$Maziya-Dixon, B., Adebowale, A.A., Onabanjo, O.O. and Dixon, A.G.O. (2005).@Effect of Variety and Drying Methods on Physico-Chemical Properties of High Quality Cassava Flour from Yellow Cassava Roots.@In African Crop Science Conference Proceedings, African Crop Science Society, Kampala, Uganda, pp. 635–641.@Yes$Ukenye, E., Ukpabi, U.J., Chijoke, U., Egesi, C. and Njoku, S. (2013).@Physicochemical, Nutritional and Processing Properties of Promising Newly Bred White and Yellow Fleshed Cassava Genotypes in Nigeria.@Pak. J. Nutr., 12(3), 302-305.@Yes$Montagnac, J.A., Davis, C.R. and Tanumihardjo, S.A. (2009).@Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement.@Comp. Rev. Food Sci. Food Saf., 8(3), 181–194.@Yes$Getu, B., Felix, R. S., Raj, D. C., Eliana, G., Narayanan, N., Jackson, G., Dimuth, S., Robyn, L.S., John, J. J., Joyce, V. E., Edward, L., Malia, G., Muhammad, I., Martin, F., Richard, T. S., Paul, A., Nigel, J. T. and Edgar, B. C. (2018).@Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.@Plant Biotechnology Journal, 16(6), 1186-1200.@Yes$Watson, C. A. (1984).@An instrument for determining alpha - amylase activity.@CFW, 29:507-509.@Yes$Meera, K. (2010).@Falling number in wheat-how is it calculated and what does it mean to Producers? USA: USDA, ARS, Soft wheat Quality Lab.@Alpha amylase mkweon-FN-012810 [1], pdf. (Accessed 19 May 2011).@Yes$Schiller, G. W. (1984).@Bakery flour specifications.@CFW 29, 647-651.@Yes$Nuwamanya, E., Baguma, Y., Emmambux, N., Taylor, J. and Patrick, R. (2010).@Physicochemical and Functional Characteristics of Cassava starch in Ugandan Varieties and Their Progenies.@J. Plant Breed Crop Sci., 2, 1-11.@Yes$Hugo, L. F., Rooney, L. W. and Taylor, J. R. N. (2000).@Malted Sorghum as a functional ingredient in composite bread.@Cereal Chem., 77, 428–432.@No$Bakare, H. A., Adegunwa, M. O., Osundahunsi, O. F. and Olusanya. J. O. (2012).@Composition and Pasting properties of Breadfruit (Artocarpus communis Forst) from South West States of Nigeria.@Negerian Food Journal, 30, 11–17.@Yes$Awoyale,W., Sanni, L.O., Shittu, T.A. and Adegunwa, M.O. (2015).Effect of Varieties on the Functional and Pasting Properties of Biofortified Cassava Root Starches. Food Meas. 9: 225-232.@undefined@undefined@Yes$Numfor, F.A., Walter, W.M. and Schwartz, S.J. (1996).@Effect of Emulsifiers on the Physical Properties of Native and Fermented Cassava Starches.@J. Agric. Food. Chem., 44, 2595-2599.@Yes <#LINE#>Preparation of nanoparticles incorporated green paper using organic waste<#LINE#>Sanchita @Mitra,Yuktika@.,Shilpa S. @Chapadgaonkar <#LINE#>33-38<#LINE#>5.ISCA-RJCS-2021-034.pdf<#LINE#>Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India and Department of Chemistry, Gargi, College New Delhi, India@Department of Chemistry, Gargi College New Delhi, India@Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana India<#LINE#>1/6/2021<#LINE#>20/8/2021<#LINE#>Paper production is one of the major causes of deforestation, around the world this contributes to the rising quantity of greenhouse gases in the atmosphere and, as a result, led to global warming. In this paper, a sustainable solution for the production of paper from tea leaf waste has been reported. Organic waste such as waste tea-leaf, mango seeds, and Indian blackberry seeds are used as an alternative source for paper making. Metal nanoparticles have been incorporated in this paper to enhance the utility. These improved the quality of the synthesized paper by imparting microbial resistance, whiteness, hydrophobicity, and high strength to the synthesized paper. Limonene was also used for increasing the shelf-life of the paper produced. The synthesized paper was produced successfully with all the basic required qualities. Paper produced is cost-effective, writeable, with good tearing strength and shelf-life. The produced paper was kept under observation for one year and it retained the properties for the time. The texture of the paper produced is somewhat like cardboard which can prove to be a good packing paper material, with other uses of a similar kind.<#LINE#>Matthews, D. (2016).@Sustainability Challenges in the Paper Industry.@ChEnected—Where Chemical Engineers Mix Up—Online Community, 12, 2016.@Yes$Pacheco, P., Mo, K., Dudley, N., Shapiro, A., Aguilar-Amuchastegui, N., Ling, P.Y., Anderson, C. and Marx, A. (2021).@Deforestation fronts: Drivers and responses in a changing world.@WWF, Gland, Switzerland.@Yes$Suraj, M., & Khan, A. (2015).@Environmental impact of paper industry.@International Journal of Engineering Research & Technology, 3(20), 1-3.@Yes$Dudley N, Stolton S., Jeanrenaud J. P. (1996).@Pulp Fact Environmental Implications of the Paper Cycle.@WWF International.@Yes$Čabalová, I., Kačík, F., Geffert, A., & Kačíková, D. (2011).@The effects of paper recycling and its environmental impact.@In Tech, Rijeka., 17, 329-350. DOI:10.5772/231 10.@Yes$Mahale S. and Goswami-Gir A. S. (2015).@Environmental Friendly Approach in Paper Making using Natural Organic Waste.@Chemical Science Review and Letters, 4(14), 489-493.@Yes$Fahmy Y., YA Fahmy T., Mobarak F., El-Sakhawy M. (2017).@Agricultural Residues (Wastes) for Manufacture of Paper, Board, and Miscellaneous Products: Background Overview and Future Prospects.@International Journal of ChemTech Research, 10(2), 424-448. DOI:10.5281/ zenodo.546735@Yes$Kairyte K., Kadys A. and Luksiene Z. (2013).@Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension.@J. Photochem Photobiol B Biol. 128, 78–84.@Yes$Uwidia I. E., Owolabi B. J. and Okafor R. C. (2020).@Extraction, Derivatization, Characterization, and Antifungal Investigation of Limonene from Citrus sinensis Peels.@Tanzania Journal of Science, 46(2), 419-429.@Yes$Erasto P. and Viljoen A. M. (2008).@Limonene - A Review: Biosynthetic, Ecological and Pharmacological Relevance.@Natural Product Communications, 3(7). 1193 – 1202.@Yes$Prasad R. Mahajan, Pratika D. Wankhede & Omkumar S. Gulhane. (2017).@Extraction of D- Limonene from orange Peels.@Global Journal of Engineering Science and Researches. DOI-10.5281/zenodo.804823.@Yes$Aung W. P., Myint Y. W. and Saw Mya Ni (2020).@Synthesis of calcium carbonate nanoparticles by chemical precipitation method.@DOI:10.13140/RG.2.2.18905.34402@Yes$Chung Y T et al. (2015).@Synthesis of minimal-size ZnO nanoparticles through the sol-gel method: Taguchi design optimization Mater.@Des. 87 780–7@Yes$Md Jahidul Haque et al. (2020).@Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic, and optical properties.@IOPSCIENCE, Nano Express, 1(1).@Yes$Hariharan M., Varghese N., Cherian A. B., Sreenivasan P. V., Paul J. Antony. K.A. (2014).@Synthesis and Characterisation of CaCO3 (Calcite) Nanoparticles from Cockle Shells Using Chitosan as Precursor.@International Journal of Scientific and Research Publications, 4(10).@Yes$Abd El-Sayed, E. S., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020).@Non-wood fibers as raw material for pulp and paper industry.@Nordic Pulp & Paper Research Journal, 35(2), 215-230. DOI:10.1515/npprj-2019-0064@Yes$Matthews, D. (2016).@Sustainability Challenges in the Paper Industry.@ChEnected—Where Chemical Engineers Mix Up—Online Community, 12, 2016.@Yes$Pacheco, P., Mo, K., Dudley, N., Shapiro, A., Aguilar-Amuchastegui, N., Ling, P.Y., Anderson, C. and Marx, A. (2021).@Deforestation fronts: Drivers and responses in a changing world.@WWF, Gland, Switzerland.@Yes$Suraj, M., & Khan, A. (2015).@Environmental impact of paper industry.@International Journal of Engineering Research & Technology, 3(20), 1-3.@Yes$Dudley N, Stolton S., Jeanrenaud J. P. (1996).@Pulp Fact Environmental Implications of the Paper Cycle.@WWF International.@Yes$Čabalová, I., Kačík, F., Geffert, A., & Kačíková, D. (2011).@The effects of paper recycling and its environmental impact.@In Tech, Rijeka., 17, 329-350. DOI:10.5772/231 10.@Yes$Mahale S. and Goswami-Gir A. S. (2015).@Environmental Friendly Approach in Paper Making using Natural Organic Waste.@Chemical Science Review and Letters, 4(14), 489-493.@Yes$Fahmy Y., YA Fahmy T., Mobarak F., El-Sakhawy M. (2017).@Agricultural Residues (Wastes) for Manufacture of Paper, Board, and Miscellaneous Products: Background Overview and Future Prospects.@International Journal of ChemTech Research, 10(2), 424-448. DOI:10.5281/ zenodo.546735@Yes$Kairyte K., Kadys A. and Luksiene Z. (2013).@Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension.@J. Photochem Photobiol B Biol. 128, 78–84.@Yes$Uwidia I. E., Owolabi B. J. and Okafor R. C. (2020).@Extraction, Derivatization, Characterization, and Antifungal Investigation of Limonene from Citrus sinensis Peels.@Tanzania Journal of Science, 46(2), 419-429.@Yes$Erasto P. and Viljoen A. M. (2008).@Limonene - A Review: Biosynthetic, Ecological and Pharmacological Relevance.@Natural Product Communications, 3(7). 1193 – 1202.@Yes$Prasad R. Mahajan, Pratika D. Wankhede & Omkumar S. Gulhane. (2017).@Extraction of D- Limonene from orange Peels.@Global Journal of Engineering Science and Researches. DOI-10.5281/zenodo.804823.@Yes$Aung W. P., Myint Y. W. and Saw Mya Ni (2020).@Synthesis of calcium carbonate nanoparticles by chemical precipitation method.@DOI:10.13140/RG.2.2.18905.34402@Yes$Chung Y T et al. (2015).@Synthesis of minimal-size ZnO nanoparticles through the sol-gel method: Taguchi design optimization Mater.@Des. 87 780–7@Yes$Md Jahidul Haque et al. (2020).@Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic, and optical properties.@IOPSCIENCE, Nano Express, 1(1).@Yes$Hariharan M., Varghese N., Cherian A. B., Sreenivasan P. V., Paul J. Antony. K.A. (2014).@Synthesis and Characterisation of CaCO3 (Calcite) Nanoparticles from Cockle Shells Using Chitosan as Precursor.@International Journal of Scientific and Research Publications, 4(10).@Yes$Abd El-Sayed, E. S., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020).@Non-wood fibers as raw material for pulp and paper industry.@Nordic Pulp & Paper Research Journal, 35(2), 215-230. DOI:10.1515/npprj-2019-0064@Yes <#LINE#>Iron oxide based catalysts: a temperature programmed reduction study<#LINE#>Ajay @Kumar,Bharmana @Malvi <#LINE#>39-45<#LINE#>6.ISCA-RJCS-2021-036.pdf<#LINE#>Analytical Sciences, T&I, SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India@Olefins Platform, SABIC Research & Technology Pvt. Ltd, Plot No. 81 to 85, Chikkadunnasandra, Sarjapura - Attibele State Highway, Bengaluru, Karnataka-562125, India<#LINE#>18/6/2021<#LINE#>22/8/2021<#LINE#>Reduction process of iron oxides using hydrogen is a complex phenomena which needs to be understood properly to know about role of various phases of iron oxide in the functioning of catalyst. A detailed Temperature Programmed Reduction (TPR) study of iron oxide based catalyst has been reported here. Apart from fundamental behavior in terms of phase transformation as a result of reduction, the effect of various parameters like preparation methods, use of iron precursors, promoters and additives have also been studied in the present study. The reduction was found to be a multistage and stepwise process depending strongly on various factors like catalyst preparation method, iron precursor and presence of additives. This H2-TPR study further showed that, when Fe was more than 45%, reduction happened to be a three stage process (hematite Fe2O3 → magnetite Fe3O4 → wustite FeO →Fe), however when Fe is less than 30% it reduces through a two stage process (Fe2O3 → Fe3O4 → Fe). Also it was found that interaction of alumina (10%) with iron can make it possible to have reduction route through metastable FeO. However, with increasing Al content, alumina interacted strongly with iron oxide and resulted in the formation of spinel phase which was not easy to reduce. The presence of K and Mg in the catalyst shifted reduction towards high temperature.<#LINE#>Jozwiak, W.K., Kaczmarek, E., Maniecki, T.P., Ignaczak W., & Maniukiewicz W. (2007).@Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres.@Appl. Catal. A: Gen., 326(1), 17–27. https:// doi: 10. 1016/j.apcata.2007.03.021.@Yes$Ndlela, S.C. and Shanks, B.H. (2003).@Reducibility of Potassium-Promoted Iron Oxide Under Hydrogen Conditions.@Ind. Eng. Chem. Res., 42(10), 2112-2121.@Yes$Messi, C., Carniti, P., & Gervasini, A. (2008).@Kinetics of Reduction of Supported Nanoparticles of Iron Oxide.@J. Therm. Anal. Cal., 91(1), 93-100.@Yes$Lin, H.Y., Chen, Y.W., & Li, C. (2003).@The Mechanism of Reduction of Iron Oxide by Hydrogen.@Thermochim. Acta, 400(1-2), 61- 67.@Yes$Fakeeha, A.H., Ibrahim, A.A., Naeem, M.A., Khan, W.U., Abasaeed, A.E., Alotaibi, R.L., & Al-Fatesh, A.S. (2015).@Methane Decomposition Over Fe Supported Catalysts for Hydrogen and Nano Carbon Yield.@Catal. Sustain. Energy, 2(1), 71-82. https://DOI10.1515/cse-2015-0005.@Yes$Jeong, M.H., Lee, D.H., & Bae, J.W. (2015).@Reduction and Oxidation Kinetics of Different Phases of Iron Oxides.@Int. J. Hydrogen Energy, 40(6), 2613. http://dx.doi.org/ 10.1016/j.ijhydene.2014.12.099.@Yes$Li, K., Haneda, M., & Ozawa, M. (2012).@The Synthesis of Iron Oxides with Different Phases or Exposure Crystal Planes and Their Catalytic Property for Propene Oxidation.@Adv. Mater. Res., 463-464,189-193. https://doi: 10.4028/www.scientific.net/AMR.463-464.189.@Yes$Farias, F. E. M., Rabelo Neto, R. C., Baldanza, M. A. S., Schmal, M., & Fernandes, F. A. N. (2011).@Effect of K Promoter on The Structure and Catalytic Behavior of Supported Iron-Based Catalysts in Fischer–Tropsch Synthesis.@Brazilian J. Chem. Engg., 28(3), 495-504.@Yes$Vulic T. J., Reitzmann, A. F. K., & Lázár, K. (2012).@Thermally Activated Iron Containing Layered Double Hydroxides as Potential Catalyst for N2O Abatement.@Chem. Eng. J., 207-208, 913–922. http://dx.doi.org/10. 1016/j.cej.2012.06.152.@Yes$Al-Fatesh, A.S., Fakeeha, A.H., Ibrahim, A.A., Khan, W.U., Atia, H., Eckelt, R., Seshan, K., & Chowdhury, B. (2018).@Decomposition of Methane over Alumina Supported Fe and Ni–Fe Bimetallic Catalyst: Effect of Preparation Procedure and Calcination Temperature.@J. of Saudi Chem. Soc., 22(2), 239-247. http://dx.doi.org/10. 1016/j.jscs.2016.05.001.@Yes$Wieczorek-Ciurowa, K. and Kozak, A.J. (1999).@The Thermal Decomposition of Fe(NO3)3.9H2O.@J. Therm. Anal. Cal., 58(3), 647-651.@Yes$Wei, X., Zhou, Y., Li,Y., & Shen, W. (2015).@Polymorphous Transformation of Rod-Shaped Iron Oxides and Their Catalytic Properties in Selective Reduction of NO by NH3.@RSC Adv., 5, 66141. https://DOI:10.1039/ c5ra08254d@Yes$Lübbe, M., Gigler, A. M., Stark, R.W., & Moritz, W. (2010).@Identification of Iron Oxide Phases in Thin Films Grown on Al2O3 (0001) by Raman Spectroscopy and X-Ray Diffraction.@Surf. Sci., 604(7-8), 679-685. https:// doi:10.1016/j.susc.2010.01.015@Yes$Hanesch, M. (2009).@Raman Spectroscopy of Iron Oxides and (Oxy) Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies.@Geophys., J. Int., 177(3), 941–948. https://doi:10.1111/ j.1365-246X.2009.04122.x@Yes$Bhatia, S., Beltramini, J, & Do, D. D. (1990).@Temperature Programmed Analysis and its Applications in Catalytic Systems.@Catal. Tod., 7(3), 309.@Yes$Boaro, M., Vicario, M., Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2003).@The Use of Temperature Programmed and Dynamic/Transient Methods in Catalysis: Characterization of Ceria-Based, Model Three-Way Catalysts.@Catal. Tod. 77(4), 407-417. https://doi.org/10. 1016/S0920-5861(02)00383-8@Yes$Che, M., & Védrine, J. C. (2012).@Characterization of solid materials and heterogeneous catalysts: from structure to surface reactivity. John Wiley & Sons.@Ist edn. Wiley-VCH Verlag Gmb H & Co. KGaA, pp 747-852.@Yes$Jin, Y., & Datye, A.K. (2000).@Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature-Programmed Reduction.@J. Catal., 196, 8–17.@Yes$Antonella Gervasini (2013).@Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods, Calorimetry and Thermal Methods in Catalysis.@Springer-Verlag Berlin Heidelberg, pp 175-195. http://DOI:10.1007/978-3-642-119 54-5_5@Yes$Wimmers, O. J., Arnoldy, P., & Moulijn, J.A. (1986).@Determination of the Reduction Mechanism by Temperature- Programmed Reduction: Application to Small Fe2O3 Particles.@J. Phys. Chem., 90(7), 1331-1337. https://doi.org/10.1021/j100398a025@Yes$Wan, H.J., Wu, B.S., Zhang, C.H., Xiang, H.W., Li, Y.W., Xu, B.F., & Yi, F. (2007).@Study on Fe-Al2O3 Interaction over Precipitated Iron Catalyst for Fischer-Tropsch Synthesis.@Catal. Commun., 8(10), 1538-1545. http://doi: 10.1016/j.catcom.2007.01.002@Yes$Nicholas, W.H., Stephen, J.G., Alan, J., & Brian, D. M. (1982).@Temperature Programmed Reduction.@Catal. Rev. Sci. Eng., 24(2), 233-309. http://DOI:10.1080/0360245820 8079654@Yes$Thomé, A.G., Peters, S., & Roessner, F. (2017).@iTPR - A New Methodical Approach for Temperature Programmed Reduction of Catalysts with Improved Sensitivity.@Catal. Communs., 97, 10-13. http://dx.doi.org/10.1016/j.catcom. 2017.04.011@Yes$Einemann, M., Neumann, F., Thomé, A.G., Wabo, S.G., & Roessner, F. (2020).@Quantitative Study of the Oxidation State of Iron-Based Catalysts by Inverse Temperature-Programmed Reduction and Its Consequences for Catalyst Activation and Performance in Fischer-Tropsch Reaction.@Appl Catal A, Gen., 602, 117718. https://doi.org/10.1016/ j.apcata.2020.117718@Yes$Jozwiak, W., Maniecki, T., Mierczynski, P., Bawolak, K., & Maniukiewicz, W. (2009).@Reduction Study of Iron- Alumina Binary Oxide Fe2-xAlxO3.@Pol. J. Chem., 83(12), 2153-2162.@Yes$Gao, X., Shen J., Hsia, Y., & Chen, Y. (1993).@Reduction of Supported Iron Oxide Studied by Temperature- Programmed Reduction Combined With Mossbauer Spectroscopy and X-Ray Diffraction.@J. Chem. Soc. Faraday Trans., 89(7), 1079-1084. https://doi.org/ 10.1039/FT9938901079@Yes$Parkinson, G.S. (2016).@Iron Oxide Surfaces.@Surface Science Reports, 71(1), 272–365. http://dx.doi.org/ 10.1016/ j.surfrep.2016.02.001@Yes$Kock, A.J.H.M., Fortuin, H.M., & Geus, J.W. (1985).@The Reduction Behavior of Supported Iron Catalysts in Hydrogen or Carbon Monoxide Atmospheres.@J. Catal., 96(1), 261-275. https://doi.org/10.1016/0021-9517(85)903 79-3.@Yes$Yuan, T.R., Su, Z., Chengyu, W., Dongbai, L., & Liwu, L. (1987).@An in Situ Combined Temperature Programmed Reduction-Mössbauer Spectroscopy of Alumina-Supported Iron Catalysts.@J. Catal., 106(2), 440-448. https://doi.org/ 10.1016/0021-9517(87)90256-9@Yes$Kumar, A.&Malvi, B. (2019).@Temperature Program Reduction (TPR) Study of Iron Oxide Based Catalysts.@Proceedings from Indian Analytical Congress IAC-2019.N. Delhi, India, 12th-14th Dec. pp165.@Yes$Wan, H., Wu, B., Zhang, C., Xiang, H., & Li, Y. (2008).@Promotional Effects of Cu and K on Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis.@J. Mol. Catal. A: Chem., 283(1-2),33-42@Yes$Yang, J., Sun, Y., Tang, Y., Liu, Y., Wang, H., Tian, L., Wang H., Zhang, Z., Xiang, H., & Li, Y. (2006).@Effect of Magnesium Promoter on Iron-Based Catalyst for Fischer–Tropsch Synthesis.@J. Mol. Catal. A: Chem., 245(1-2), 26–36@Yes$Rajesh, M., Minh, D.P., & Nzihou, A. (2018).@Effect of support and its surface modifications in cobalt-based Fischer-Tropsch synthesis: Review.@Ind. Eng. Chem. Res., Am. Chem. Soc., 57(48), 16137-16161.@Yes$Kishan, G., Lee, M.W., Nam, S.S., Choi, M.J., & Lee, K.W. (1998).@The Catalytic Conversion of CO2 to Hydrocarbons Over Fe–K Supported on Al2O3–MgO Mixed Oxides.@Catal. Lett., 56(4), 215-219. https://doi.org/10.1023/A:1019089919614@Yes @Review Paper <#LINE#>Green corrosion inhibitors for copper in NaOH, NaCl and Sea Water-A Review<#LINE#>Rajendra T. @Vashi <#LINE#>46-50<#LINE#>7.ISCA-RJCS-2021-037.pdf<#LINE#>Chemistry Department, Navyug Science College, Rander Road, Surat, India<#LINE#>22/6/2021<#LINE#>12/9/2021<#LINE#>Corrosion like environmental pollution is inevitable and is a serious problem for most of the industries in rapidly developing tropical countries like India. It is a constant and continuous problem. Plant extract has been used as green inhibitors to prevent the metals and alloys against corrosion as they are non-toxic, biodegradable and readily available and eco-friendly. Adsorptions of ingredients of plant extract on metal surface obey various adsorption isotherms. Corrosion inhibition study of copper was carried out by weight loss method with various time and temperatures. Electrochemical methods such as Potentiodynamic polarization (PP) and Electrochemical Impedance Spectra (EIS) were also employed. To study the nature of surface films was done by using various techniques such as, FT-IR and Ultra Violet Visible Spectroscopy, Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscope (SEM) and Electrochemical Frequency Modulation (EFM). Other methods like High Performance Liquid Chromatography (HPLC), Electric Noise (EN) analysis, EMP, quantum chemical computations techniques were also used. The results obtained from weight loss data and by electrochemical techniques were in good agreement with each other. The present review paper covers the research works done by various researchers on corrosion inhibition of copper in NaOH, NaCl and Sea water media using a plant extract as green inhibitors.<#LINE#>Oteino-Alergo, V., Huynh, N., Notoya, T., Bottle, S.E. & Schwcinsberg, D. P. (1999).@Inhibitive effect of 4- and 5- carboxybenzotriazole on copper corrosion in acidic sulphate and hydrogen sulphide solutions.@Corros. Sci., 41(4), 685-697.@Yes$Wedian, F., Al-Qudaha, M. A. & Abu-Baker, A. N. (2016).@The Effect of Capparis spinosa L. Extract as a Green Inhibitor on the Corrosion Rate of Copper in a Strong Alkaline Solution.@Port. Electrochim Acta, 34(1), 39-51 DOI: 10.4152/pea.201601039.@Yes$Mihajlovic´ M.B.P. and Antonijevic M.M. (2015).@Copper corrosion inhibitors. Period 2008–2014. A Review.@Int. J. Electrochem. Sci., 10, 1027–1053.@Yes$Al-Dokheily, M. E., Kredy, H. M. & Al-Jabery, R. N. (2014).@Inhibition of Copper Corrosion in H2SO4, NaCl and NaOH Solutions by Citrullus colocynthis Fruits Extract.@J. Nat. Sci. Res., 4(17), 60-73.@Yes$Nawafleh, E., Irshedat, M.,Bataineh, T., Muhaidat, R., AlQudah, M.& Alomary, A. (2012).@The Effects of Inula viscosa Extract on Corrosion of Copper in NaOH Solution.@Res. J. of Chem. Sci.., 2(9), 37- 41.@Yes$Rehan, H. H. (2003).@Corrosion control by water-soluble extracts from leaves of economic plants.@Material wissenschaft und Werkstofftechnik, 34(2), 232-237.@Yes$Oukhrib, R., El Ibrahimi, B, Bourzi, H., El Mouaden, K., Jmiai, A., El Issami, S. Bammou, L.& Bazzi L. (2017).@Quantum chemical calculations and corrosion inhibition efficiency of biopolymer “chitosan” for copper surface in 3% NaCl.@J. Mater. Environ. Sci., 8(1), 195–208.@Yes$Velazquez-Torres, N., Martinez, H., Porcayo-Calderon, J., Vazquez-Velez, E., Gonzalez-Rodriguez, J.G., & Martinez-Gomez, L. (2018).@Use of an amide-type corrosion inhibitor synthesized from the coffee bagasse oil on the corrosion of Cu in NaCl.@Green Chem. Lett. Rev., 11(1), 1–11. https://doi.org/10.1080/17518253.2017.1404645.@Yes$El-Etre, A. Y. (1998).@Natural honey as corrosion inhibitor for metals and alloys. I. Copper in neutral aqueous solution.@Corros. Sci., 40(11), 1845–1850.@Yes$El-Dahan, H. A. (2006).@Natural products as corrosion inhibitors for copperin saline water in presence of sulphide.@Egyptian J. of Chem., 49(5), 589-600.@Yes$Rahal, C., Masmoudi, M., Abdelhedi, R., Sabot, R., Jeannin, M., Bouaziz, M. & Refait, P. (2016).@Olive leaf extract as natural corrosion inhibitor for pure Copper in 0.5 M NaCl solution: a study by voltammetry around OCP.@J. of Electroanal. Chem., 769, 53-61. https://doi. org/10.1016/j.jelechem.2016.03.010.@Yes$Masmoudi, M. Rahal, C. Abdelhedi, R. Khitouni, M.& Bouaziz, M. (2015).@Inhibitive action of stored olive mill wastewater (OMW) on the corrosion of copper in a NaCl solution.@RSC Adv., 5, 101768– 101775.@Yes$Kumar, K.V., Appa Rao, B.V. & Hebalkar N.Y. (2017).@Phosphorylated chitin as a chemically modified polymer for eco-friendly corrosion inhibition of copper in aqueous chloride environment.@Res. Chem. Intermed., 43, 5811–5828. https://doi.org/10.1007/s1116 4-017-2964-x.@Yes$Vrsalovic, L., Gudic, S., Gracic, D.,Smoljko, I., Ivanic, I. Kliskic, M. & Oguzie, E. E. (2018).@Corrosion protection of copper in sodium chloride solution using propolis.@Int. J. Electrochem. Sci., 13, 2102–2117. https://doi.org/10. 20964/2018.02.71 .@Yes$Agi, A., Junin, R., Rasol, M., Gbadamosi, A. & Gunaji, R. (2018).@Treated Rhizophora mucronata tannin as a corrosion inhibitor in chloride solution.@PLoS One, 13(8), e0200595. https://doi.org/ 10.1371/journal.pone.0200595.@Yes$Mabrour, J., Aksirra, M. & Azzi, M. (2004).@Effect of Vegetal Tannin on Anodic Copper Dissolution in Chloride Solution.@Corros. Sci., 46(8), 1833–1846.@Yes$Oguike, R.S., Ayuk, A.A., Eze, F.C. & Oguzie, E.E. (2016).@Experimental and Theoretical Investigation of Vitex Doniana Leaves Extract as Corrosion Inhibitor for Copper in 3.5% NaCl Solution.@J. of Basic and Appl. Res. Int., 17, 184-197.@Yes$Nagiub, A. M. (2017).@Electrochemical Noise Analysis for Different Green Corrosion Inhibitors for Copper Exposed to Chloride Media.@Port Electrochim Acta, 35(4), 201-210. DOI: 10.4152/pea.201704201.@Yes$El Mouaden, K., El Ibrahimi, B., Oukhrib, R., Bazzi, L., Hammouti, B., Jbara, O., Tara, A., Chauhan, D.S.& Quraishi, M. A. (2018).@Chitosan polymer as a green corrosion inhibitor for copper in sulfide containing seawater.@Int. J. Biol. Macromol., 119, 1311–1323. https ://doi.org/10.1016/j.ijbiomac.2018.07.182.@Yes$Oukhrib, R., El Issami, S., Chaouay, A., El Mouaden, K., Jmiai, A., El Ibrahimi, B., Bazzi, L., Bammou, L. & Hilali, M. (2015).@The inhibitory effect of saffron extract (Crocus sativus L) on copper corrosion in seawater.@Chem. Sci. Review and Lett., 4(13), 241-251.@Yes$Rani, P. D. and Selvaraj, S. (2010).@Emblica officinalis (AMLA) leaves extract as corrosion inhibitor for copper and its alloy (Cu-27Zn) in natural sea water.@Arch. Appl. Sci. Res., 2(6), 140–150.@Yes$Esquivel-Rojas, A., Cuevas-Arteaga, C. & Valladares-Cisneros, M. G. (2020).@Study of corrosion inhibition of copper in synthetic seawater by Equisetum arvense as green corrosion inhibitor.@Rev. Mex. Ing. Quím , 19(2), 603-616. DOI: https://doi.org/10.24275/rmiq/Mat629 .@Yes$Deivanayagam, P., Malarvizhi, I., Selvaraj, S. & Rani,P. D. (2015).@Corrosion inhibition efficacy of ethanolic extract of Mimusops elengi leaves (MEL) on copper in Natural Sea Water.@Int. J. of multidisciplinary Res. and Develop., 2(4), 100-107. DOI: 10.13140/RG.2.1.1205.7129 .@Yes$Rani, P.D. and Selvaraj, S. (2010b).@Inhibitive action of Vitis vinifera (grape) on copper and brass in natural sea water environment.@Rasayan J. Chem., 3(3), 473–482.@Yes$Hart, K.G, Orubite-Okorosaye, K. & James, A.O. (2016).@Corrosion Inhibition of Copper in Seawater by Xanthosoma Spp Leaf Extract (XLE).@Int. J. of Adv. Res. in Chem. Sci., 3(12), 34-40. http://dx.doi.org/10.20431/ 2349-0403.0312005.@Yes$Oukhrib, R., El Issami, S., El Ibrahimi, B., El Mouaden, K., Bazzi, L., Bammou, L., Chaouay, A., Salghi, R., Jodeh, S., Hammouti, B. &Amin-Alami, A. (2017b).@Ziziphus lotus as green inhibitor of copper corrosion in natural sea water.@Port Electrochim. Acta, 35, 187–200. https://doi.org/10. 4152/pea.201704187.@Yes$Khanfer, M. A., Sabri, S. S., Abu Zargaa, M. H. & Zeller, K. P. (2003).@The Chemical Constituents of Capparis spinosa of Jordanian Origin.@Natural Prod. Res., 17(1), 9-14.@Yes$Djilani, A., Legseir, B., Soulimani, R., Dickob, A. & Younos, C. (2006).@New Extraction Technique for Alkaloids.@J. Braz. Chem. Soc., 17(3), 518-520.@Yes$Ortal, D., Hugo, E.G., Shlomo, G. & Margalit, B. (2009).@Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscose.@Food Res. Int., 42, 1273.@Yes$Ladha, D. G., Naik, U. J. & Shah, N. K. (2013).@Investigation of Cumin (Cuminum Cyminum) extract as an eco-friendly green corrosion inhibitor for pure Aluminium in Acid medium.@J. Mater. Env. Sci., 4(5), 701-708.@Yes$Al-Snafi, A. E. (2017).@The pharmacology of Equisetum arvense - A Review.@IOSR J. of Pharm., 7, 31-42.@Yes$Khaled, K. F. (2008).@Molecular simulation, quantum chemical calculations and electrochemical studies for the inhibition of mild steel by triazoles.@Electrochim. Acta, 53, 3484-3492.@Yes$Borgi, W. and Chouchane, N. (2009).@Anti-spasmodic effects of Ziziphus lotus (L.) desf. extracts on isolated rat duodenum.@J. Ethnopharmac., 126(3), 571-573.@Yes