@Research Paper <#LINE#>Synthesis, physicochemical investigation and antimicrobial efficacy of Co(II) and Ni(II) chelates with bidentate azomethine ligand<#LINE#>Abubakar A. @Ahmed,Habu N. @Aliyu <#LINE#>1-7<#LINE#>1.ISCA-RJCS-2019-042.pdf<#LINE#>Department of Pure and Applied Chemistry, Faculty of Science, University of Maiduguri, Borno State, Nigeria@Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Kano, Kano State, Nigeria<#LINE#>30/6/2019<#LINE#>17/4/2020<#LINE#>The azomethine ligand was afforded by condensation reaction of 2-aminobenzoic acid and 4-(N,N-dimethylamino) benzaldehyde in equimolar ratio in an ethanolic medium. Refluxing the Schiff base ligand with CoCl2.6H2O and NiCl2.6H2O yielded the corresponding chelates. The synthesized compounds were investigated by melting point/decomposition temperature determination, solubility test, estimation of water of crystallization, elemental analysis, infrared spectral analysis, magnetic susceptibility and molar conductance measurements. The azomethine ligand and the metal chelates were differently coloured, air stable, non-hygroscopic solids which were found soluble in nearly all of the organic solvents used. The presence of water of hydration was established by heating the complexes to constant weight in an oven. From the high decomposition temperatures, the complexes are suggested to have high thermal stability. The elemental analysis data showed their formation in 1:2 metal - ligand ratio. The obtained molar conductance values of 6.08 and 9.12 ohm-1cm2mol-1 entailed that the chelates are non-electrolytes. The infrared data implied that the azomethine ligand has denticity of 2 with the imine nitrogen atom (C=N) and the deprotonated carboxyl oxygen atom as the coordination sites. The magnetic moment values of 5.44 and 2.93 B.M for the Co(II) and Ni(II) chelates respectively, suggest a paramagnetic phenomenon around a six- coordinate octahedral geometry. The in vitro antibacterial and antifungal sensitivity studies revealed that the metal chelates are more potent against the tested microbes than the uncomplexed ligand.<#LINE#>Anant, P. and Devjani, A. (2011).@Application of Schiff bases and their Metal Complexes - A Review.@International Journal of Chem Tech Research, 3(4), 1891-1896. www.sphinxsai.com@Yes$Kelly, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. and Cooper, B. R. (1995).@8-Amino-3-benzyl-1,2,4-triazolo[4,3-œ]pyrazines: Synthesis and Anticonvulsant activity.@Journal of Medicinal Chemistry, 38(18), 3676-3679. http://doi.org/10.1021/jm00018a029@Yes$Nejo, A. A. (2009).@Metal (II) Schiff base Complexes and the Insulin Mimetic Studies on the oxovanadium(IV) Complexes.@An Unpublished PhD Thesis Submitted to the Department of Chemistry, Faculty of Science and Agriculture, University of Zululand, South Africa.@Yes$Rehman, M., Imran, M., Arif, M. and Farooq, M. (2014).@Synthesis, Characterization and Metal Picrate Extraction Studies of Salicylaldehyde Derived Macrocyclic Schiff bases.@International Research Journal of Pure and Applied Chemistry, 4(2), 243-250. https://doi.org/10.9734/IRJPAC/2014/8147@Yes$Patel, D. D., and Patel, A. (2011).@Synthesis and Antimicrobial activity of Metal(II) N-[4-dimethylamino] benzylidenebenzene-1.2-diamine Complex.@Journal of Pharmaceutical Science and Technology, 4(4), 25-38@No$Ahmed, A. A. and Yunusa, Y. (2018).@Synthesis and Spectroscopic Characterization of Mn(II) and Fe(II) Complexes with a Schiff Base derived from 4-(N,N-Dimethylamino) benzaldehyde and 2-aminophenol.@International Journal of Chem Tech Research,11(1), 308-313. www.sphinxsai.com@Yes$Yusha@Inhibitory Activity of Detarium Microcarpum Extracts on Some Clinical Isolates.@Biological and Environmental Sciences Journal for the Tropics, 8(4), 113-117.@Yes$Bain, G. A. and Berry, J. F. (2008).@Diamagnetic Corrections and Pascal@Journal of Chemical Education, 85(4), 532-536. http://dx.doi.org/10.1021/ed0 85p532@Yes$Hadi, M. A. (2009).@Preparation and Characterization of Some Transition Metal Complexes with Schiff base ligand.@Journal of Kerbala University, 7(4), 52-57. https//www.iasj.net@Yes$Ibrahim, A. K., Yusuf, B. A. and Hamisu, A. (2017).@Synthesis, Characterization and Antimicrobial Studies of Cu(II) and Zn(II) Complexes with Schiff base N-Salicylidene-4-chloroanilinie.@Chem Search Journal, 8(2), 68-74. https://www.ajol.info/index.php/csj/article/view/ 166253@Yes$Anu, M., Prabha, L., Banukarthi, G., Kanjana, P. R. and Rajeswari, K. (2013).@UV-visible, IR and NMR spectra on Copper(II) Schiff base Complex.@International Journal of Institutional Pharmacy and Life Sciences, 3(6), 23-32 www.ijipls.com@No$Khalifa, H. A. (2014).@Synthesis, Characterization and Antimicrobial Studies of Some Divalent Metal Complexes with Schiff base derived from p- aminophenol and benzaldehyde.@An Unpublished M. Sc. dissertation Submitted to the Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria.@No$Ogunira, K. O., Tella, A. C., Alensela, M. and Yakubu, M. T. (2007).@Synthesis, Physical Properties, Antimicrobial Potential of Some Antibiotic Complexes with Transition Metals and their Effects on Alkaline Phosphates Activities of Selected Rat Tissues.@African Journal of Biotechnology, 6(10), 1202 - 1208. http://www.academicjournals.org/AJB@No$Badamasi, A. (2011).@Synthesis, Characterization, Antibacterial and Antifungal Evaluation of Ampicilin Divalent Metal Complexes.@An Unpublished M.Sc. Thesis Submitted to the Department of Chemistry, Faculty of Science, Bayero University, kano, Nigeria.@No$Shamkhy, E. T. (2015).@Synthesis, Characterization and Spectroscopic Studies of 2 - {{E} - hydroxyphenyl) imino) methyl} phenol Schiff base with Some Metal Complexes.@Journal of AL-Nahrain University, 18(1), 39-45. https://anjs.edu.iq@Yes$Suresh, M. S. and Prakash, V. (2010).@Preparation, Characterization and Microbiological Studies of Cr3+, Mn+2, Co+2, Ni+2, Cu+2 and Cd+2 Chelates of Schiff base derived from Vanillin and Anthranilic acid.@International Journal of the Physical Sciences, 5(9), 1443-1449. https://academicjournals.org/IJPS@No$Chohan, Z. H.; Munawar, A and Supuran, C. T. (2001).@Transition Metal ion Complexes of Schiff bases: Synthesis, Characterization and Anti-bacterial Properties.@Metal based drugs, 8(3), 137-143. doi:10.1155/MBD.2001.137.@Yes$Osowole, A. A., Wakil, S. M. and Alao, O. K. (2015).@Synthesis, Characterization and Antimicrobial Activity of Some Mixed trimethoprim - sulfamethoxazole metal drug Complexes.@World Applied Sciences Journal, 33(2), 336 - 342. DOI: 10.5829/idosi.wasj.2015.33.02.22206@Yes$Mounika, K., Anupama, B., Pragathi, J. and Gyanakumari, C. (2010).@Synthesis, Characterization and Biological Activity of a Schiff base derived from 3-ethoxy salicyladehyde and 2-amino benzoic acid and its Transition Metal Complexes.@Journal of Scientific Research, 2(3), 513 - 524. DOI: https://doi.org/10.3329/jsr.v2i3.4899@Yes$Sobola, A. O. and Watkins, G. M. (2013).@Antimicrobial activity and Cu(II) complexes of Schiff bases derived from Orthoaminophenol and Salicylaldehyde Derivatives.@Journal of Chemical and Pharmaceutical Research, 5(10), 147 - 154. www.jocpr.com@No <#LINE#>Photocatalytic, anti-microbial, antioxidant and cytotoxic activity of electrochemically synthesized ZnO-TiO2 nanostructures<#LINE#>Jenice Jean @Goveas,Ajay Sathaynarayanrao @Khandagale,Sandhya @Shetty,Richard Adolf @Gonsalves <#LINE#>8-20<#LINE#>2.ISCA-RJCS-2019-049.pdf<#LINE#>Department of Chemistry, St Aloysius College (Autonomous), Mangalore-575003, India@College of Fisheries Mangalore-575003, India@St Agnes Centre for Post Graduate Studies and Research, Mangalore-575002, India@Department of Chemistry, St Aloysius College (Autonomous), Mangalore-575003, India<#LINE#>26/11/2019<#LINE#>2/3/2020<#LINE#>Mixed metal oxide nanoparticles (NPs) of ZnO-TiO2 (ZTiO) were synthesized using a simplistic two-step electrochemical-thermal route in the presence and absence of three surfactants: Cetyltrimethyl ammonium bromide (Cetrimide), Sodium dodecyl sulphate (SDS) and polyethylene glycol (PEG). This investigation intended to assess the possible applicability of these nanocomposites for degradation of 2 organic aqueous dyes-methylene Blue (MB) and Eriochrome Black-T (EBT). The potential application of ZTiO as antimicrobial agents was also investigated using disc diffusion technique against the Gram-negative bacteria, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and the Gram-positive Staphylococcus aureus. Antioxidant property of the NPs was established by DPPH radical scavenging technique. The particles show a considerably high bacteriostatic effect towards all the pathogens tested. ZTiO also showed significant cytotoxicity to HeLa breast cancer cells. This proves that the electrochemical synthetic route with its low cost and high efficiency is a competent technique for the large-scale synthesis of heterometal oxide photocatalysts which could potentially be used as effective therapeutic agents.<#LINE#>Royston, E., Ghosh, A., Kofinas, P., Harris, M.T. and Culver, J.N. (2008).@Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes.@Langmuir, 24(3), 906-912.@Yes$Zheng, Y., Zheng, L., Zhan, Y., Lin, X., Zheng, Q. and Wei, K. (2007).@Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis.@Inorg. Chem., 46(17), 6980-6986.@Yes$Colón, G., Hidalgo, M., Navío, J.A., Melián, E.P., Díaz, O.G. and Dona, J. (2008).@Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment.@Appl. Catal. B: Environmental, 78(1-2), 176-182.@Yes$Kim, H.G., Borse, P.H., Choi, W. and Lee, J.S. (2005).@Photocatalytic nanodiodes for visible light photocatalysis, Angew.@Chem. Int. Ed., 44(29), 4585-4589.@Yes$Marci, G., Augugliaro, V., Lopez-Munoz, M. J., Martin, C., Palmisano, L., Rives, V., ... & Venezia, A. M. (2001).@Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. surface, bulk characterization, and 4-nitrophenol photodegradation in liquid− solid regime.@The Journal of Physical Chemistry B, 105(5), 1033-1040.@Yes$An, T.-Q., Peng, J.-M., Tian, Z.-J., Zhao, H.-Y., Li, N., Liu, Y.-M., Chen, J.-Z., Leng, C.-L., Sun, Y. and Chang, D. (2013).@Pseudorabies virus variant in bartha-k61-vaccinated pigs, china, 2012.@Emerging Infect. Dis., 19(11),1749.@Yes$Carp, O., Huisman, C.L. and Reller, A. (2004).@Photoinduced reactivity of titanium dioxide.@Prog. Solid State Chem., 32(1-2), 33-177.@Yes$Losito, I., Amorisco, A., Palmisano, F. and Zambonin, P. (2005).@X-ray photoelectron spectroscopy characterization of composite TiO2-poly (vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation.@Appl. Surf. Sci., 240(1-4),180-188.@Yes$Akpan, U. and Hameed, B. (2011).@Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid by Ca-Ce-W-TiO2 composite photocatalyst.@Chem. Eng. J., 173(2), 369-375.@Yes$Naimi-Joubani, M., Shirzad-Siboni, M., Yang, J.-K., Gholami, M. and Farzadkia, M. (2015).@Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite.@J. Ind. Eng. Chem., 22, 317-323.@Yes$Tom, R.T., Suryanarayanan, V., Reddy, P.G., Baskaran, S. and Pradeep, T. (2004).@Ciprofloxacin-protected gold nanoparticles.@Langmuir, 20(5),1909-1914.@Yes$Concannon, S.P., Crowe, T., Abercrombie, J., Molina, C., Hou, P., Sukumaran, D., Raj, P. and Leung, K.-P. (2003).@Susceptibility of oral bacteria to an antimicrobial decapeptide.@J. Med. Microbiol.,52,1083-1093.@Yes$Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H. and Mohamad, D. (2015).@Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism.@Nano-Micro Lett., 7(3), 219-242.@Yes$Shalaby, A., Dimitriev, Y., Iordanova, R., Bachvarova-Nedelcheva, A. and Iliev, T. (2011).@Modified sol-gel synthesis of submicron powders in the system ZnO-TiO2.@Journal of the University of Chemical Technology and Metallurgy, 46(2),137-142.@Yes$Mandal, G. and Ganguly, T. (2011).@Applications of nanomaterials in the different fields of photosciences.@Indian J. phys., 85(8),1229.@Yes$Reddy, V.R., Manjunath, V., Janardhanam, V., Kil, Y.-H. and Choi, C.-J. (2014).@Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer.@J. Electron. Mater., 43(9), 3499-3507.@Yes$Chandrappa, K.G., Venkatesha, T.V., Vathsala, K. and Shivakumara, C. (2010).@A hybrid electrochemical-thermal method for the preparation of large ZnO nanoparticles.@Sci. Technol., 12(7), 2667-2678.@Yes$Li, Y., Li, X., Li, J. and Yin, J. (2006).@Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study.@Water Res., 40(6), 1119-1126.@Yes$Brand-Williams, W., Cuvelier, M.-E. and Berset, C. (1995).@Use of a free radical method to evaluate antioxidant activity.@LWT-Food Sci. Technol., 28(1), 25-30.@Yes$Poojary, M.M. and Passamonti, P. (2015).@Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.@Food Chem., 188, 84-91.@Yes$Pathan, A.H., Ramesh, A.K., Bakale, R.P., Naik, G.N., Kumar, H.R., Frampton, C.S., Rao, G.M.A. and Gudasi, K.B. (2015).@Association of late transition metal complexes with ethyl 2-(2-(4-chlorophenylcarbamothioyl) hydrazono) propanoate: Design, synthesis and in vitro anticancer studies.@Inorganica Chimica Acta, 430, 216-224.@Yes$Hossain, M., Samad, M., Khan, M.D., Ara, N. and Islam, T. (2018).@Study of ZnO-TiO2 Composite Photocatalyst Mediated Photodegradation of Eosin Yellow.@IOSR J. Environ. Sci., Toxicol. Food Technol., 12, 58-67.@Yes$Thamaphat, K., Limsuwan, P. and Ngotawornchai, B. (2008).@Phase characterization of TiO2 powder by XRD and TEM.@Kasetsart J.(Nat. Sci.), 42(5), 357-361.@Yes$Ayed, S., Belgacem, R.B., Zayani, J.O. and Matoussi, A. (2016).@Structural and optical properties of ZnO/TiO2 composites.@Superlattices Microstruct., 91,118-128.@No$Hussein, A.M., Iefanova, A.V., Koodali, R.T., Logue, B.A. and Shende, R.V. (2018).@Interconnected ZrO2 doped ZnO/TiO2 network photoanode for dye-sensitized solar cells.@Energy Rep., 4, 56-64.@Yes$Khan, M., Naqvi, A.H. and Ahmad, M. (2015).@Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles.@Toxicol. Rep., 2, 765-774.@Yes$Ullah, H., Khan, K.A. and Khan, W.U. (2014).@ZnO/TiO2 nanocomposite synthesized by sol gel from highly soluble single source molecular precursor.@Chin. J. Chem. l Phy., 27, 548-554.@Yes$Soni, B., Deshpande, M., Bhatt, S., Garg, N. and Chaki, S. (2013).@Studies on ZnO nanorods synthesized by hydrothermal method and their characterization.@J. Nano-Electron. Phys., 5,4(2), 04077-6.@Yes$Moradi, S., Aberoomand Azar, P., Raeis Farshid, S., Abedini Khorrami, S. and Givianrad, M.H. (2012).@Effect of Additives on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite Prepared via Sol-Gel Process.@Int. J. Chem. Eng., 1-5.@Yes$Stoyanova, A., Hitkova, H., Bachvarova-Nedelcheva, A., Iordanova, R., Ivanova, N. and Sredkova, M. (2013).@Synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via nonhydrolytic route.@J. Chem. Technol. Metall., 48(2), 154-161.@Yes$Yin, R., Luo, Q., Wang, D., Sun, H., Li, Y., Li, X. and An, J. (2014).@SnO2/gC3N4 photocatalyst with enhanced visible-light photocatalytic activity.@J. Mater. Sci., 49(17), 6067-6073.@Yes$Adhikari, S., Sarkar, D. and Madras, G. (2015).@Highly efficient WO3-ZnO mixed oxides for photocatalysis.@RSC Adv., 5(16), 11895-11904.@Yes$Gholami, M., Shirzad-Siboni, M., Farzadkia, M. and Yang, J.-K. (2016).@Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon).@Desalin. Water Treat., 57(29), 13632-13644.@Yes$Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, K.J. (2002).@Metal oxide nanoparticles as bactericidal agents.@Langmuir, 18(17), 6679-6686.@Yes$Yang, H., Liu, C., Yang, D., Zhang, H. and Xi, Z. (2009).@Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition.@J. Appl. Toxicol., 29(1), 69-78.@Yes$Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. and Fiévet, F. (2006).@Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.@Nano lett., 6(4), 866-870.@Yes$Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G. and Mattoussi, H. (2004).@Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors.@J. Am. Chem. Soc., 126(1), 301-310.@Yes$Premanathan, M., Karthikeyan, K., Jeyasubramanian, K. and Manivannan, G. (2011).@Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation.@Nanomed-Nanotechnol., 7(2), 184-192.@Yes$Kim, I.-S., Baek, M. and Choi, S.-J. (2010).@Comparative Cytotoxicity of Al2O3, CeO2, TiO2 and ZnO Nanoparticles to Human Lung Cells.@J. Nanosci. Nanotechnol., 10(5), 3453-3458.@Yes$Gies, V. and Zou, S. (2018).@Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size.@Toxicol. Res., 7(1), 93-101.@Yes$Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013).@Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity.@Colloids and Surfaces B: Biointerfaces, 111, 556-560.@Yes$Singh, B.N., Rawat, A.K.S., Khan, W., Naqvi, A.H. and Singh, B.R. (2014).@Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids.@PLoS One, 9(9), e106937.@Yes$Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M. and Markowitz, M. (1995).@Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.@Nature, 373(6510),123-126.@Yes$Singh, N. and Rajini, P. (2004).@Free radical scavenging activity of an aqueous extract of potato peel.@Food Chem., 85(4), 611-616.@Yes <#LINE#>Synthesis, spectral characterization and biological activity of some novel quinoline substituted Thiazolo [4,5-e] azepines derivatives<#LINE#>Sharma @Ravi,Dharam @Kishore <#LINE#>21-31<#LINE#>3.ISCA-RJCS-2020-001.pdf<#LINE#>Department of Chemistry, Banasthali University, Banasthali-304022, Rajasthan, India@Department of Chemistry, Banasthali University, Banasthali-304022, Rajasthan, India<#LINE#>13/1/2020<#LINE#>2/4/2020<#LINE#>A novel series of Quinoline substituted thiazolo fused azepines (3a1-3c3) were synthesized via condensation of N-(5-arylidene- substituted-2-benzylthiazolidin-4-oxo-1,3- thiazolidine-3-yl)-(8-quinolin-yl oxy)-acetamide series (2a-2c) with O-phenyldiamine, O-aminophenol, O-aminothiophenol respectively in the presence of glacial acetic acid and methanol. Compound (2a-2c) were synthesized by condensation of key starting compound N-(4-keto-2-arylthiazolidin-3-yl)-2-(benzazine-8yloxy)ethanamide (1a) with various types of aromatic aldehydes. All these novel compounds were characterized by spectroscopic interpretation methods (i.e. MASS, IR, 1H NMR) and elemental analysis. For all these compounds we have used the micro dilution format to check the amount of antimicrobial agents that is needed to inhibit growth of specific microorganisms.<#LINE#>Rajendra, S. P. and Kavembu, R. (2002).@Synthesis and antifungal activities of Schiff bases derived from 3-amino-2H-pyrano[2,3-b]quinolin-2-ones.@Ind. J. Chem., 41B(1), 222-224.@Yes$Marciniec, K.., Pawełczak, B., Latocha, M., Skrzypek, L., Azek-Jurczyk, M. M. and Boryczka, S. (2017).@Synthesis, Anti-Breast Cancer Activity, and Molecular Docking Study of a New Group of Acetylenic Quinolinesulfonamide Derivatives.@Molecules, 2(2), 300-319.@Yes$Patel, N. C. and Mehta, A. G. (2001).@(1@Asian J. chem., 13(4), 1385-1388.@Yes$Bari, S. S., Sharma, A. K. and Sethi, M. K. (1998).@Synthesis of 3-Phenylthio-azetidin-2-ones.@Indian J. chem., 37B(7), 1114-1119.@No$Pingaew, R., Prachayasittikul, S., & Ruchirawat, S. (2010).@Synthesis, cytotoxic and antimalarial activities of benzoyl thiosemicarbazone analogs of isoquinoline and related compounds.@Molecules, 15(2), 988-996.@Yes$Liu, H. L., Lieberzeit, Z. and Anthonsen, T. (2000).@Synthesis and Fungicidal Activity of 2-Imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and Their 5-Arylidene Derivatives.@Molecules, 5(9), 1055-1061.@Yes$Pitta, E., Tsolaki, E., Geronikaki, A., Petrovic, J., Glamoclija, J., Sokovic, M., Crespan, E., Maga, G., Bhunia, S. S. and Saxena, A. K. (2015).@4-Thiazolidinonederivatives as potent antimicrobial agents: microwave assisted synthesis, biological evaluation and docking studies.@Med. Chem. Commun., 6(2), 319-326.@Yes$Nitsche, C., Schreier, V. N., Behnam, M. A., Kumar, A., Bartenschlager, R. and Klein, C. D. (2013).@Thiazolidinone peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture.@J. Med. Chem., 56(21), 8389-8403.i@Yes$Hu, J., Wang, Y., Wei, X., Wu, X., Chen, G., Cao, G., Shen, X., Zhang, X., Tang, Q., Liang, G. and Li, X. (2013).@Synthesis and biological evaluation of novel Thiazolidinone derivatives as potential anti-inflammatory agents.@Eur. J. Med. Chem., 64(6), 292-301.@Yes$Devinyak, O. Zimenkovsky, B. and Lesyk, R. (2012).@Biologically active 4-thiazolidinones: a review of QSAR studies and QSAR modeling of antitumor activity.@Curr. Top. Med. Chem., 12(24), 2763-2784.@Yes$Bhaumik, A., Chandra, M. A., Saha, S., Mastanaiah, J. and Visalakshi, T. (2014).@Synthesis, characterization and Evaluation of Anticonvulsant activity of some novel 4-thiazolidinone derivatives.@Sch. Acad. J. Pharm., 3(2), 128-132.@Yes$Raza, S., Srivastava, S.P., Srivastava, D. S., Srivastava, A. K., Haq, W. and Katti, S. B. (2013).@Thiazolidin-4-one and thiazinan-4-one derivatives analogous to rosiglitazone as potential anti-hyperglycemic and antidyslipidemic agents.@Eur. J. Med. Chem., 63(5), 611-620.@Yes$Sharma, A. and Sharma, A. (2010).@Synthesis, physicochemical and antimicrobial studies of first row transition metal complexes with quinoline derivatives nitroquinolino[3,2-b][1,5]benzodiazepine and nitro quinolino[3,2- b][1,5]benzoxazepine.@Orbital: Elec. J. Chem., 2(3), 277-287.@No$Sangu, S., Vema, A., Bigala, R. and Gadipalli, S. (2012).@Synthesis and antimicrobial evaluation of some novel quinoline incorporated Azetidinones, Thiazolidinones.@J. Pharm. Sci. Inn., 1(1), 41-43.@No$Barry, A.L. (1976).@The Antimicrobial Susceptibility Test: Principle and Practices.@Lea, I; Febiger, Eds; Philadelphia: PA, USA, 180.@No <#LINE#>An acoustic levitator for single droplet evaporation kinetics<#LINE#>Beni B. @Dangi,Jordan M. @Dixon,Shazzia @Alexander,Emmanuala @Noel <#LINE#>32-37<#LINE#>4.ISCA-RJCS-2020-003.pdf<#LINE#>Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA@Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA@Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA@Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA<#LINE#>26/1/2020<#LINE#>14/4/2020<#LINE#>Evaporation kinetics of methanol, hexafluoroisopropanol, and polyethylene oxide solutions under microgravity condition were investigated utilizing an acoustic levitator and a fast-frame CCD camera. Two different regimes of evaporation kinetics were measured experimentally for both solvents. Two distinct rate constants were determined in the range of 10-3 s-1, with overall slower decay for methanol. Total evaporation times for microliter volumes of methanol were measured under container-less acoustic levitation and compared with the evaporation times under container processed normal laboratory conditions. Significant differences in the evaporation time and trend were observed. A typical 4 μL sample of methanol evaporation time increased from 5 minutes to 45 minutes, from normal laboratory conditions to levitation. While a linear trend was observed under normal conditions, a logarithmic trend was observed under levitation. These experiments demonstrate difference in air-liquid interface dynamics due to difference in gravity and contact surface. The extended evaporation time under levitation condition can be utilized to perform and monitor reactions in a droplet which may otherwise be limited due to short droplet lifetime. Such extended lifetimes and microgravity conditions can be used in distinct evnironments, such as crystallization and aggregation of proteins and polymers from solutions. The set up described here can be used as a ground-based microgravity simulation device, which can quickly screen the chemical reactions to limit the payload for more expensive experiments at the international space station.<#LINE#>Lierke, E. G.(1996).@Acoustic levitation - A comprehensive survey of principles and applications.@Acustica, 82(2), 220-237.@Yes$Zang, D. Y., et al. (2017).@Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.@Adv Colloid Interfac, 243, 77-85.@Yes$Baensch, E. G., Michael (2018).@Numerical study of droplet evaporation in an acoustic levitator.@Phys Fluids, 30(3).@Yes$Dangi, B. B., et al. (2015).@Toward the Formation of Carbonaceous Refractory Matter in High Temperature Hydrocarbon-Rich Atmospheres of Exoplanets Upon Micrometeoroid Impact.@Astrophys. J., 805(1), 76.@Yes$Cao, H. L., et al. (2012).@Rapid crystallization from acoustically levitated droplets.@J Acoust Soc Am, 131(4), 3164-3172.@Yes$Cristiglio, V., et al. (2017).@Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.@Bba-Gen Subjects, 1861(1), 3693-3699.@Yes$Combe, N. A. and Donaldson, D. J. (2017).@Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.@The journal of physical chemistry. A, 121(38), 7197-7204.@Yes$Mason, N. J., Drage, E. A., Webb, S. M., Dawes, A., McPheat, R., & Hayes, G. (2008).@The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.@Faraday discussions, 137, 367-376.@Yes$Kobayashi, K. B., Saptarshi (2018).@Flow structure and evaporation behavior of an acoustically levitated droplet.@Phys Fluids, 30(8).@Yes$Tuckermann, R., et al. (2002).@Evaporation rates of alkanes and alkanols from acoustically levitated drops.@Anal Bioanal Chem, 372(1), 122-7.@Yes$Chauveau, C., et al.(2011).@An analysis of the d(2)-law departure during droplet evaporation in microgravity.@Int J Multiphas Flow, 37(3), 252-259.@Yes$Kastner, O., et al.(2001).@The Acoustic Tube Levitator - A Novel Device for Determining the Drying Kinetics of Single Droplets.@Chemical Engineering & Technology, 24 (4), 335-339.@Yes$Yarin, A. L., Brenn, G., Kastner, O., Rensink, D., & Tropea, C. (1999).@Evaporation of acoustically levitated droplets.@Journal of Fluid Mechanics, 399, 151-204.@Yes$Delißen, F., Leiterer, J., Bienert, R., Emmerling, F., & Thünemann, A. F. (2008).@Agglomeration of proteins in acoustically levitated droplets.@Analytical and bioanalytical chemistry, 392(1-2), 161-165.@Yes$Weber, J. K. R., Benmore, C. J., Suthar, K. J., Tamalonis, A. J., Alderman, O. L. G., Sendelbach, S., ... & Byrn, S. R. (2017).@Using containerless methods to develop amorphous pharmaceuticals.@Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(1), 3686-3692.@Yes$Keil, N. and Lee, G. (2016).@Use of acoustic levitation to examine the drying behavior of microdroplets of polymer latex dispersions.@Colloid Polym Sci , 294(12), 1921-1928.@Yes$Hu, S., et al. (2008).@In-Situ Observation of Drying Process of a Latex Droplet by Synchrotron Small-Angle X-ray Scattering.@Macromolecules, 41(13), 5073-5076.@Yes$Lavasanifar, A., et al. (2002).@Poly (ethylene oxide)-block-poly (L-amino acid) micelles for drug delivery.@Advanced drug delivery reviews, 54(2), 169-190.@Yes$Jeong, B., et al. (1997).@Biodegradable block copolymers as injectable drug-delivery systems.@Nature, 388(6645), 860-862.@Yes$Archibong, E., et al. (2016).@Synthesis, characterization, and electrospinning of novel polyaniline-peptide polymers.@Appl Mater Today, 4, 78-82.@Yes$Wellen, R. M. R., et al. (2015).@Melting and crystallization of poly(3-hydroxybutyrate): effect of heating/cooling rates on phase transformation.@Polímeros, 25(3), 296-304.@Yes$Song, P., et al. (2017).@Insight into the role of bound water of a nucleating agent in polymer nucleation: a comparative study of anhydrous and monohydrated orotic acid on crystallization of poly(l-lactic acid).@RSC Advances, 7 (44), 27150-27161.@Yes$Bansch, E. and Gotz, M.(2018).@Numerical study of droplet evaporation in an acoustic levitator.@Phys Fluids, 30(3), 037103.@Yes <#LINE#>α-Benzoin Oxime as the complexing agent for the estimation of small amount of Nickel (II) without extraction<#LINE#>Ashwini@.,Gopalakrishna Bhat @N.,Ronald A @Nazareth <#LINE#>38-45<#LINE#>5.ISCA-RJCS-2020-005.pdf<#LINE#>St. Aloysius College, India@Srinivas Institute of Technology, Valachil, India@St. Aloysius College, India<#LINE#>31/1/2020<#LINE#>10/5/2020<#LINE#>A selective and sensitive complexing reagent, α-benzoin oxime gives orange colour complex with ammoniacal Nickel(Ni(II)) at pH 9 in the existence of non-ionic surfactant Triton-X-100 in an aqueous medium. Detection of Ni(II) in distinct water samples and in alloys can be done using this highly selective complexing agent with low cost and with accurate results by spectrophotometric method. The spectrophotometric method of estimation of Ni(II) was carried out at pH 9. The maximum absorbance was found to be at 422nm. Ni(II)- α-benzoin oxime complex obeys Beer's law. The influence of various category of surfactants and the quantity of it is studied. The composition of the complex was found by Job\'s method and mole ratio method.<#LINE#>Wiley-VCH, Weinheim. Lascelles, K., Morgan, L. G., Nicholls, D., Beyersmann, D., & Institute, N. (2000).@Nickel compounds.@Ullmann@Yes$American Plumbing Practice: From the Engineering Record (Prior to 1887 the Sanitary Engineer.) (2016).@A Selected Reprint of Articles Describing Notable Plumbing Installations in the United States, and Questions and Answers on Problems Arising in Plumbing and House Draining. With Five Hundred and Thirty-six Illustrations.@Engineering record 1896. 119. Archived from the original on December 1, 2016. Retrieved May 28, 2016.@No$Khan, A. R., & Awan, F. R. (2014).@Metals in the pathogenesis of type 2 diabetes.@Journal of Diabetes & Metabolic Disorders, 13(1), 16.@Yes$K. Hussain Reddy, N.B.L. Prasad and T. Sreenivasulu Reddy (2003).@Analytical properties of 1-phenyl-1, 2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper (II) and nickel (II) in edible oils and seeds.@Talanta, 59(3), 425-433.@Yes$R. B. Singh and H. Ishii (1991).@Analytical potentialities of thiosemicarbazone and semicarbazones.@Crit. Rev. Anal. Chem., 22(5), 381-409.@Yes$Ramachandraiah, C., Kumar, J. R., Reddy, K. J., Narayana, S. L., & Reddy, A. V. (2008).@Development of a highly sensitive extractive spectrophotometric method for the determination of nickel (II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarba zone.@Journal of environmental management, 88(4), 729-736.@Yes$Sözgen, K., & Tütem, E. (2004).@Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol.@Talanta, 62(5), 971-976.@Yes$Chimpalee, N., Chimpalee, D., Keawpasert, P., & Burns, D. T. (2000).@Flow injection extraction spectrophotometric determination of nickel using bis (acetylacetone) ethylenediimine.@Analytica chimica acta, 408(1-2), 123-127.@Yes$Zeng, C., Xu, X., Zhou, N., & Lin, Y. (2012).@Synergistic enhancement effect of room temperature ionic liquids for cloud point extraction combined with UV-vis spectrophotometric determination nickel in environmental samples.@Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 94, 48-52.@Yes$Kanchi, S., Sabela, M. I., Singh, P., & Bisetty, K. (2017).@Multivariate optimization of differential pulse polarographic-catalytic hydrogen wave technique for the determination of nickel (II) in real samples.@Arabian Journal of Chemistry, 10, S2260-S2272.@Yes$Xu, H., Zhang, W., Zhang, X., Wang, J., & Wang, J. (2013).@Simultaneous preconcentration of cobalt, nickel and copper in water samples by cloud point extraction method and their determination by flame atomic absorption spectrometry.@Procedia Environmental Sciences, 18, 258-263.@Yes$Sadeghi, O., Tavassoli, N., Amini, M. M., Ebrahimzadeh, H., & Daei, N. (2011).@Pyridine-functionalized mesoporous silica as an adsorbent material for the determination of nickel and lead in vegetables grown in close proximity by electrothermal atomic adsorption spectroscopy.@Food Chemistry, 127(1), 364-368.@Yes$Bidabadi, M. S., Dadfarnia, S., & Shabani, A. M. H. (2009).@Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS).@Journal of hazardous materials, 166(1), 291-296.@Yes$Zeng, C., Jia, Y., Lee, Y. I., Hou, X., & Wu, L. (2012).@Ultrasensitive determination of cobalt and nickel by atomic fluorescence spectrometry using APDC enhanced chemical vapor generation.@Microchemical Journal, 104, 33-37.@Yes$Thangavel, S., Dash, K., Dhavile, S. M., & Sahayam, A. C. (2015).@Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES).@Talanta, 131, 505-509.@Yes$Teixeira, L. S. G., Santos, E. S., & Nunes, L. S. (2012).@Determination of copper, iron, nickel and zinc in ethanol fuel by energy dispersive X-ray fluorescence after pre-concentration on chromatography paper.@Analytica chimica acta, 722, 29-33.@Yes$Zhou, Q., Xing, A., & Zhao, K. (2014).@Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.@Journal of Chromatography A, 1360, 76-81.@Yes$S. Kanchi, P. Singh, K. Bisetty (2014).@Dithiocarbamates as hazardous remediation agent: a critical review on progress in environmental chemistry for inorganic species studies of 20th century.@Arab. J. Chem. 7(1) 11-25.@Yes$Kiatkumjorn, T., Rattanarat, P., Siangproh, W., Chailapakul, O., & Praphairaksit, N. (2014).@Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel.@Talanta, 128, 215-220.@Yes$Amin, A. S. (2009).@Utilization of solid phase spectrop hotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline.@Chemical Papers, 63(6), 625.@Yes$Amin, A. S., & AL-Attas, A. S. (2012).@Study of the solid phase extraction and spectrophotometric determination of nickel using 5-(4′-chlorophenylazo)-6-hydroxypyrimidine-2, 4-dione in environmental samples.@Journal of Saudi Chemical Society, 16(4), 451-459.@Yes$Barreto, W. J., Barreto, S. R. G., Scarminio, I. S., Ishikawa, D. N., Soares, M. D. F., & Proença, M. V. B. D. (2010).@Determination of Ni (II) in metal alloys by spectrophotometry UV-Vis using dopasemiquinone.@Química Nova, 33(1), 109-113.@Yes$Fan, X., Zhu, C., & Zhang, G. (1998).@Synthesis of 2-[2-(5-methylbenzothiazolyl) azo]-5-dimethylaminobenzoic acid and its application to the spectrophotometric determination of nickel.@Analyst, 123(1), 109-112.@Yes$Ghaedi, M. (2007).@Selective and sensitized spectrophotometric determination of trace amounts of Ni (II) ion using α-benzyl dioxime in surfactant media.@Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 295-301.@Yes$Hu, Q., Yang, G., Huang, Z., & YIN, J. (2003).@Determination of nickel with 2-(2-quinolylazo)-5-diethylaminoaniline as a chromogenic reagent.@Analytical sciences, 19(10), 1449-1452.@Yes$Hu, Q., Yang, G., Huang, Z., & Yin, A. (2004).@Study on solid phase extraction and spectrophotometric determination of nickel in waters and biological samples.@Bull. Kor. Chem. Soc, 25, 545-548.@Yes$Kumar, B. N., Kumar, S. H., & Redhi, G. G. (2016).@Spectrophotometric Determination of Cadmium (II) in Water and Soil Samples Using Schiff@Asian journal of chemistry.@Yes$Kumar, B. N., Kanchi, S., Bisetty, K., & Jyothi, N. V. V. (2014).@Analytical and biological evaluation of Schiff@International Journal of Environmental Analytical Chemistry, 1(1), 1-7.@Yes$Li, Z., Pan, J., & Tang, J. (2002).@Determination of nickel in food by spectrophotometry with o-carboxyl benzenediazo-aminoazobenzene.@Analytical letters, 35(1), 167-183.@Yes$Macit, M., BATI, H., & Bati, B. (2000).@Synthesis of 4-benzyl-1-piperazineglyoxime and its use in the spectrophotometric determination of nickel.@Turkish Journal of Chemistry, 24(1), 81-88.@Yes$Sarma, L. S., Kumar, J. R., Reddy, K. J., Thriveni, T., & Reddy, A. V. (2008).@Development of highly sensitive extractive spectrophotometric determination of nickel (II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.@Journal of Trace Elements in Medicine and Biology, 22(4), 285-295.@Yes$Suresh, T., Kumar, S. S., Kottureshawara, N. M., Revanasidappa, M., & Khasim, S. (2008).@Spectrophotometric study of nitrogen base adducts of nickel (II)-4-methyl-8-quinolinate.@Journal of Chemistry, 5(2), 404-408.@Yes$Vongboot, M., & Suesoonthon, M. (2015).@Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring.@Talanta, 131, 325-329.@Yes$Omidi, F., Behbahani, M., Shahtaheri, S. J., & Salimi, S. (2015).@Trace monitoring of silver ions in food and water samples by flame atomic absorption spectrophotometry after preconcentration with solvent-assisted dispersive solid phase extraction.@Environmental Monitoring and Assessment, 187(6), 361.@Yes$Omidi, F., Behbahani, M., Bojdi, M. K., & Shahtaheri, S. J. (2015).@Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica.@Journal of Magnetism and Magnetic Materials, 395, 213-220.@Yes$Behbahani, M., Bide, Y., Bagheri, S., Salarian, M., Omidi, F., & Nabid, M. R. (2016).@A pH responsive nanogel composed of magnetite, silica and poly (4-vinylpyridine) for extraction of Cd (II), Cu (II), Ni (II) and Pb (II).@Microchimica Acta, 183(1), 111-121.@Yes$Bojdi, M. K., Behbahani, M., Hesam, G., & Mashhadizadeh, M. H. (2016).@Application of magnetic lamotrigine-imprinted polymer nanoparticles as an electrochemical sensor for trace determination of lamotrigine in biological samples.@RSC advances, 6(38), 32374-32380.@Yes$Behbahani, M., Aliakbari, A., Amini, M. M., Behbahani, A. S., & Omidi, F. (2015).@Synthesis and characterization of diphenylcarbazide-siliceous mesocellular foam and its application as a novel mesoporous sorbent for preconcentration and trace detection of copper and cadmium ions.@RSC advances, 5(84), 68500-68509.@Yes$Shojaee, M., Behbahani, M., & Nabid, M. R. (2015).@Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices.@RSC Advances, 5(83), 67418-67426.@Yes$Shojaee, M., Behbahani, M., & Nabid, M. R. (2015).@Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices.@RSC Advances, 5(83), 67418-67426.@Yes$Behbahani, M., Babapour, M., Amini, M. M., Sadeghi, O., Bagheri, A., Salarian, M., & Rafiee, B. (2013).@Separation/enrichment of copper and silver using titanium dioxide nanoparticles coated with poly-thiophene and their analysis by flame atomic absorption spectrophotometry.@@Yes$Behbahani, M., Abolhasani, J., Amini, M. M., Sadeghi, O., Omidi, F., Bagheri, A., & Salarian, M. (2015).@Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products.@Food Chemistry, 173, 1207-1212.@Yes$Ebrahimzadeh, H., & Behbahani, M. (2017).@A novel lead imprinted polymer as the selective solid phase for extraction and trace detection of lead ions by flame atomic absorption spectrophotometry: synthesis, characterization and analytical application.@Arabian journal of chemistry, 10, S2499-S2508.@Yes$Turkoglu, O., Soylak, M., & Belenli, I. (2003).@Electrical conductivity of chloro (phenyl) glyoxime and its Co (II), Ni (II) and Cu (II) complexes.@Collection of Czechoslovak chemical communications, 68(7), 1233-1242.@Yes$Ravindhranath, K. (2012).@A simple method for spectrophotometric determination of traces of copper.@Bapatla-522101, Guntur (AP), Vol, 5, 38-41.@Yes$Shafiee, G., Taghvamanesh, A., Mohamadizadeh, A., & Ghaedi, M. (2006).@Sensitized Spectrophotometric determination of Cu (II) ion using Α-Benzoin Oxime surfactant media.@Journal of Saudi Chemical Society, 9(3), 497-506.@Yes$Hankare, A. S., & Barhate, V. D. (2014).@Development of extractive spectrophotometric determination of copper (II) using [N-(O-Hydroxybenzylidene)-4-methylaniline] (NOHBMA) as an analytical reagent.@Int. J. Curr. Pharm. Res, 6(1), 30-33.@Yes$Admasu, D., Reddy, D. N., & Mekonnen, K. N. (2016).@Spectrophotometric determination of Cu (II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone.@Springer Plus, 5(1), 1-8.@Yes <#LINE#>In vitro antimicrobial assay of an alkaloid isolated from the leaves of Pterocarpus santalinus L.F.<#LINE#>B. @Bharathi,N.B.L. @Prasad <#LINE#>46-52<#LINE#>6.ISCA-RJCS-2020-011.pdf<#LINE#>Department of Chemistry, Research scholar, JNTUA, Ananthapuramu-515001, Andhra Pradesh, India@Retired-Senior Chemical Engineer, Oil Technological Research Institute, JNTUA, Anantapuramu - 515001, A.P., India<#LINE#>10/3/2020<#LINE#>6/6/2020<#LINE#>Due to the adverse side effects of extensive usage of synthetic drugs, people are turning towards natural medicines. Now-a-days, phytochemical studies on traditional therapeutic plants are acquiring significance. In this aspect a phytochemical screening was carried out on different solvent extracts of the leaves of Pterocarpus santalinus L.f., which is about to get endangered. Research studies on this plant revealed the presence of glycosides, alkaloids, flavonoids, phytosteroids and phenolic compounds. An alkaloid, 5-hydroxy-N,N-dimethyltryptamine was isolated from the methanol (Me) extract by column chromatography. Its structure was confirmed by spectroscopic analysis. Its antimicrobial activity was tested against two pathogenic bacterial strains acquired from contaminated paneer (Indian Cheese) which were identified as Escherichia coli (gram -ve) and Staphylococcus aureus (gram +ve) bacteria. The compound expressed better antimicrobial potential against S.aureus than E.coli, with Maximum Inhibition Zone (MIZ) and Minimum Inhibition Concentration (MIC) values in the range of 1.5-2.0 cm and 0.5-1.0 mg/ml respectively.<#LINE#>Rudd, V.E. (1991).@In a Revised Handbook of the Flora of Ceylon.@CRC Press, Boca Raton, FL, USA, pp 108-381.@No$Arokiyaraj, S., Martin, S., Perinbam, K., Marie Arockianathan, P. and Beatrice, V. (2008).@Free radical scavenging activity and HPTLC finger print Pterocarpus santalinus L-an in vitro study.@Indian J Sci Technol, 1(7), 1-3.@Yes$Narayan, S., Devi, R.S. and Devi, C.S.S. (2007).@Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.@Chem Biol Interac, 170(2), 67-75.@Yes$Mukherejee, P.K., Maiti, K., Mukherejee, K. and Houghton, P.J. (2006).@Leads from Indian medicinal plants with hypoglycemic potentials.@J Ethano pharmocol, 106(1), 1-28.@Yes$Krishnaveni, K.S. and Srinivasa Rao, J.V. (2000).@An isoflavone from Pterocarpus santalinus.@Phytochem, 53(5), 605-606.@Yes$Kayser, O., Kiderlen, A.F. and Brun, B. (2001).@In vitro activity of aurones against Plasmodium falciparum strains K1 and NF54.@Planta Med, 67(8), 718-721.@Yes$Kameswara Rao, B., Giri, R., Kesavulu, M.M. and Apparao, C. (2001).@Effect of oral administatiton of bark extracts of Pterocarpus santalinus on blood glucose level in experimental animals.@J Ethnopharmacol, 74(1), 69-74.@Yes$Arokiyaraj, A. and Perinbam, K. (2010).@Antifungal Activity of Pterocarpus Santalinus an In Vitro Study.@Biomed Pharmacol J, 3(1), 107-110.@Yes$Manjunatha, B. K. (2006).@Hepatoprotective activity of Pterocarpus santalinus Lf, an endangered medicinal plant.@Indian Journal of Pharmacology, 38(1), 25.@Yes$Naredndra kumar. (1974).@Terpenoids of Pterocarpus santalinus heartwood.@Phytochemistry, 13(3), 633 - 636.@Yes$Krishnaveni, K.S. and Srinivasa Rao, J.V. (2000).@A new acylated Isoflavone glucoside from Pterocarpus santalinus.@Chemical and Pharmaceutical Bulletin, 48(9), 1373-1374.@Yes$Cho, J.Y., Park, J., Kim, P.S., Yoo, E.S., Baik, K.U. and Park, M.H., (2001).@Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation.@Biol Pharm Bull, 24(2), 167-171.@Yes$Kesari, A.N., Gupta, R.K. and Geeta Watal. (2004).@Two aurone glycosides from heartwood of Pterocarpus santalinus.@Phytochemistry, 65(23), 3125-3129.@Yes$Shou-Fang Wu, Tsong-Long Hwang, Shu-Li Chen, Chin-Chung Wu, Emika Ohkoshi, Kuo-Hsiung Lee, Fang-Rong Chang and Yang-Chang Wu, (2011).@Bioactive components from the heartwood of Pterocarpus santalinus.@Bioorg Med Chem Lett., 21(18), 5630-5632.@Yes$Mohammad Azamthulla. (2016).@Isolation and characterisation of Pterocarpus santalinus heartwood extract.@Scholars Research Library, Der Pharmacia Lettre, 8(12), 34-39.@Yes$Raaman N. (2006).@Phytochemical techniques.@New India Publishing Agency, India, 19-22.@Yes$Barry, A. L. (1976).@The antimicrobic susceptibility test: principles and practices.@Lippincott Williams & Wilkins.@Yes$Jan Hudzicki. (2009).@Kirby - Bauer disk diffusion susceptibility test protocol.@American Society for Microbiology.@Yes$Vaishnavi, C., Singh, S., Grover, R. and Singh, K. (2001).@Bacteriological study of Indian cheese (paneer) sold in Chandigarh.@Indian Journal of Medical Microbiology, 19(4), 224-226.@Yes$Bufotenine-SWG Drug, (2005).@Monographs Bufotenine.@www.swgdrug.org > Monographs > Bufotenine.pdf; http://www.swgdrug.org/ Monographs / BUFOTENINE.pdf@No$Stromberg, V.L. (1954).@The isolation of Bufotenine from Piptadenia peregrine.@Journal of the American Chemical society, 76(6), 1707-1707.@Yes$Michael, C., Bride, Mc. and Phr, B.S. (2000).@Bufotenine: towards an Understanding of possible psychoactive mechanisms.@Journal of Psychoactive Drugs, 32(3), 321-331.@Yes$Part 1308- Section 1308.11 Schedule-I of controlled substances. (2017).@Diversion control division, Drug Enforcement Administration, U.S. Department of Justice.@https://www.deadiversion.usdoj.gov/21cfr/cfr/1308/1308_1 1. htm@No$Report (2015).@Amounts of prohibited drugs determining court of trial, Schedule-III. Misuse of Drugs Act 1981.@Western Australia, pp-72.@No <#LINE#>Phytochemical analysis of medicinal plant vitex negundo found in Pathalgaon block district-Jashpur, CG, India<#LINE#>Pramod @Yadaw,Shilpi @Shrivastava <#LINE#>53-55<#LINE#>7.ISCA-RJCS-2019-053.pdf<#LINE#>Department of Chemistry, Kalinga University, Naya Raipur, CG, India@Kalinga University, Naya Raipur, CG, India<#LINE#>26/11/2019<#LINE#>15/3/2020<#LINE#>Medicinal plant have been observed to very effective and the treatment of various diseases. The rural Sendhwar plant has been used in maximum quantity in its daily life in the Pathalgaon block of Jashpur District, full of tribal population and important medicinal properties are also available in it, which are available in the highest quantity in the hedge and roadside. According to the statement of local vaidyaraj's of Pathalgaon block region the leaf, stem, oil of vitex negundo plant is used for killing grain pests, asthma, Joint pain, swelling and also the obtained wood by the villagers to build houses and burnt it. Vitex negundo plant is likely to be widely used in future.<#LINE#>Tandon, V.R. (2005).@Medicinal uses and biological activities of vitex negundo.@Natural product Radiance, 4(3), 162-165.@No$Suganthi, N. and Dubey, S. (2016).@Photochemical constituents and pharmacological activites of vitex negundo linn.@Journal of chemical and Pharmaceutical research, 8(2), 800-807.@Yes$Yagik, D. and Verma, R. (2018).@Analysis of photochemical of medicinal plants (Tejbal) found in jashpur chhattisgarh.@International journal of scientific engineering and science, 2(6), 24-26.@Yes$Yadaw, P. and Shrivastava, S. (2019).@Properties and uses of some medicinal plants found in Jashpur district of Chhattisgarh.@IOSR journal of applied chemistry, 12(8), 51-54.@Yes$Liji, K.O. and Vasudevan, C.N.S. (2017).@Comparative Pharmacognostic and photochemical studies of Ocimum Tenuiflorum and its substitute vitex negundo.@International Journal of Ayurveda and pharma research, 5(7), 9-19.@No$Ahuja, S.C., Siddharth, A. and Ahuja, U. (2015).@Nirgundi (vitex negundo)-nature's gift to mankind.@Asian agri-history, 19(1), 5-32. 10.@Yes$Belewu M.A., Olatunde, O.A and Giva, T.A. (2009).@Underutilized medicinal plants and species: chemical composition and phytochemical properties.@Journal of medicinal plants Research, 3(12), 1099-1103.@Yes$Ajazuddin and Saraf, S. (2010).@Evaluation of physicochemical and phytochemical properties of safoof, E-Sana, a unani polyherbal formulation.@Pharmacognosy Research, 2(5), 318-322.@Yes$Joshi, B., Sah, G.P., Basnet, B.B., Bhatt, M.R., Sharma, D., Subedi, K., Pandey, J. and Malla, R. (2011).@Phytochemical extraction and Antimicrobials properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (neem).@Journal of Microbiology and Antimicrobials, 3(1), 1-7.@Yes$Cemaluk Egbounu, A.C. and Emeka, N. N., (2012).@Phytochemical properties of some solvent fractions of petroleum Ether extract of the African mistletoe (Coranthus Micranthus Linn) leaves and their antimicrobials activity.@African Journal of Biotechnology, 11(62), 12595-12599, ISSN: 1684-5315.@Yes$Ibrahim, J.A., Makinde, O. and Ibekwe, N.N. (2012).@Pharmacogynostic, Physicochemical standardization and phytochemical analysis of leaves of cultivated crotalaria lachnose,a stapf.@Journal of Applied Pharmaceutical Science, 2(9), 067-070.@Yes$Ahmad, T., Bahadur, S. and Pandey, S. (2013).@Phytochemical secreeing and physicochemical parameters of crude druge: A brief Review.@International Journal of Pharma Research & review, 2(12), 53-60.@Yes$Ekka, Amia (2013).@Some rare plants used by Hill-korwa in their heath care from Chhattisgarh.@International Journal of Age science Biotechnology and Parma Research, 2(1), 197-202.@Yes$Kushwaha, K., Tripathi, R.K. and Dwivedi, S.N. (2013).@Medicinal plants used in the treatment of same common diseases by the tribal and rural people in Korea district of Chhattisgarh.@International Journal of Pharmacy & IFE sciences, 4(10).@Yes$Ekka, A. and Ekka, N. S. (2013).@Traditional plants use for snakebite by oraon tribe of Jashpur district, Chhattisgarh.@International Journal of advanced Research in management and social sciences, 2(6), 1-9.@Yes$Tiwari, A.k. and Mehta, R. (2013).@Medicinal plants used by traditional healers in jashpur district of Chhattisgarh, India.@Life science leaflets, 1, 31-41.@Yes$Belay, K. and Sisay, M. (2014).@Phytochemical constituents and physiochemical properties of medicinal plant (Moring a Oleifera) Around Bule Hora.@International Journal of Innovation and Scientific, 8(1), 88-98.@Yes$Altemimi A., lakhassassi, N.F., Bahariouei, A. and Watson, D.G. (2017).@Phytochemicals: Extraction, Isolation and Identification of bioactive compounds from plant extracts.@Plants, 6(2), 1-23.@Yes <#LINE#>Study of effect of immersion activities on the fluoride content in water of the water bodies<#LINE#>Shaziya Mohammed Irfan @Momin <#LINE#>56-60<#LINE#>8.ISCA-RJCS-2020-010.pdf<#LINE#>Department of Chemistry, G.M. Momin Women's College, Bhiwandi, Dist Thane, Maharashtra, India<#LINE#>8/3/2020<#LINE#>29/5/2020<#LINE#>The amounts of fluoride anion in the Varaala lake water were estimated by complexometry colour bleaching reaction. The sample taken from 3 dissimilar places of lake during entire activities of Idol immersion. Comparative study about the concentration of F- with the standard value is done. There is increase in the concentration of fluoride during and after idol immersion activity, but before immersion activity the concentration of fluoride is less than the standard value prescribed by BIS and WHO at some site.<#LINE#>Bhateria, R. and Jain, D.(2016).@Water Quality Assessment of Lake Water.@Sustain. Water Resour. Manag., 2(2), 161-173. DOI 10.1007/s40899-015-0014-7@Yes$Gorain,B. and Paul, S.(2019).@Effect of Idol Immersion Activities on the Water Quality of Urban Lakes in Bengaluru, Karnataka.@Current World Environ., 14(1), 143-148. www.cwejournal.org@Yes$Watker, A.M. and Barabate, M.P. (2014).@Impact of Idol Immersion on Water Quality of Kolar River in Saoner, Dist Nagpur, India.@International Res. J. of Environ. Sci., 3(3), 39-42.@Yes$Jain, A., Nayak, J., More, B., Mehta, M., Tamakuwala, T. and Shah, G.(2018).@Impact of Idol Immersion Activities Leading to Deterioration of Water Quality.@International J. of Advanced Sci. Research and Management, 3(12), 72-77. www.ijasrm.com@No$Kaur, R. and Dhavale, O. (2013).@Comparison of Immersion Effects of Idols Made of Different Materials on The Water Quality Parameters.@Indian. J. of Fundamental and applied life Sci., 3(1), 16-23.@Yes$Ujjania, N.C and Haitali, C., Mistry. (2012).@Environmental Impact of Idol Immersion on Tapi River (India).@International J. of Geology, Earth & Environ. Sci., 2(3), 11-16. http://www.cibtech.org/jgee.htm 08/03/2020.@Yes$Andrew Eaton, AWWA Chair, Lenore Clesceri, Eugene Rice, APHA, Arnold Greenberg (2005).@Standard Methods For Examination of Water And Waste Water, American Public Health Association, American Water Work Association, Water Environment Federation.@English, Book, Illustrated, Government publication edition (21st ed. ). 2-1 to 2-2, 2-8 to 2-27, ISBN: 0875530478 https://trove.nla.gov.au/version/45704677@Yes$Rasheed, M.A.O. and Jamhour. (2005).@New Inorganic Ion Exchange Material for The Selective Removal of Fluoride From Potable Water Using Ion Selective Electrode.@American J. of Environ. Sci., 1(1), 1-4.@Yes$Grobler, S.R., Louw, A.J., Chikte, U.M.E., Rossouw, R.J., Van, W., Kotze, T.J. (2009).@The Relationships between Two Different Drinking Water Fluoride Levels, Dental Fluorosis and Bone Mineral Density of Children.@The open Dentistry J., 3, 48-54.@Yes$Peckham, S. and Awofeso, N. (2014).@Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention.@The Sci. World J., 1-10. https://doi.org/10.1155/2014/293019@Yes$Kandut, D., Sterbenk, P. and Artnik, B. (2016).@Fluoride: A Review of Use and Effects on Health.@J. of the academy of medical Sci. of Bosnia and Herzegovina., 28(2), 133-137. DOI: 10.5455/msm.2016.28.@Yes$Ruwanthi, W., Premathilaka, and Nalinda, D., Liyanagedera. (2019).@Review Article, Fluoride in Drinking Water and Nanotechnological Approaches for Eliminating Excess Fluoride.@Hindawi Journal of Nanotechnology, 1-16. https://doi.org/10.1155/2019/21923 83@Yes$Dhote, S. and Dixit, S. (2011).@Hydro Chemical Changes in Two Eutrophic Lakes of Central India After Immersion of Durga & Ganesh Idol.@Res. J. of Chemical Sci., 1(1).@Yes$Camargo, J. A. (2003).@Fluoride Toxicity to Aquatic Organisms.@A review, Chemosphere., 50(3), 251-64.@Yes$Vyas., Anju., Bajpai., Verma, A. and Dixit, N.S.J. (2007).@Heavy Metal Contamination Cause of Idol Immersion Activities In Urban Lake Bhopal India.@J. Appl. Sci. Environ. manage., 11(4), 37-39. www.bioline.org.br/ja@Yes$Trivedi, P.R. and Gurdeep Raj. (1996).@Water Pollution.@Akashdeep Publishing House, New Delhi, 1-20, ISBN: 9788171582600@No$Bright, I. C., & Chibuzo, A. A. (2018).@Analysis of Fluoride Concentration in Commercial Sachet Water Brands in Enugu, Nigeria.@8(1), 10-14. DOI: 10.5923/j.aac.20180801.03@No$Kumar, M. and Puri, A. (2012).@A Review of Permissible Limits of Drinking Water.@Indian J. Occup Environ. Med., 16(1), 40-44. DOI: 10.4103/0019-5278.99696@Yes$Indian Standard Drinking Water-Specification (Second Revision). (2020).@Bureau of Indian standards (BIS) 10500: 2012 Drinking Water Sectional Committee, FAD 25.@Amendment No.1 2015. Published by BIS. New Delhi. https://www.indiawaterportal.org/sites/indiawaterportal.org/files/bis_10500-2012_wq_standards_0.pdf. Accessed 2020-04-07.@No$Barbara, F. G. (2015).@U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries.@Public Health Rep, 130(4), 318-331. DOI: 10.1177/003335491513000 408@Yes$De, Kumar (2003).@Environmental Chemistry.@International (P) Ltd, Publishers: Fifth edition New Age. ISBN: 9788122414882.@Yes$Lone, M.I., Zhen-li, H., Peter, J.S. and Xiao-e, Y. (2008).@Phytoremediation of Heavy Metal Polluted Soils And Water: Progresses and Perspectives.@J. Zhejiang Univ. Sci. B., 9(3), 210-220. DOI: 10.1631/jzus.B0710633@Yes