@Research Paper <#LINE#>Growth and phytoremediative capacity of Axonopus compressus in a copper-polluted soil<#LINE#>Ikhajiagbe@Beckley ,Edegbai@Boniface O. ,Eweka@Melody A. <#LINE#>1-10<#LINE#>1.ISCA-RJCS-2019-003.pdf<#LINE#>Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria@Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria@Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria<#LINE#>21/1/2019<#LINE#>12/9/2019<#LINE#>The importance of lawn grasses in both landscaping and recovery of degraded lands is a practice that is becoming somewhat popular in many climes. To better explore the capacity for any known lawn plant, like Axonopus compressus, for landscaping, which ultimately considers its phytoremediative capacities, the presented study investigated growth and phytoremediative capacity of the test plant in a heavy metal-polluted soil. Experimental soils were polluted with copper (as CuSO4) in 4 different concentration; 100, 200, 300 and 400mg/kg. Copper-polluted soils and control soils were sown with tillers of Axonopus compressus. The study was observed for 3 months. Afterwards, results showed that plant growth was adversely impacted as concentration of Cu increased. This reduction intensified as Cu concentration increased. Accumulation of Cu in leaves, stem, sheath, and root of Axonopus compressus in Cu-polluted soil as well as residual soil metal concentration after 3 months of exposure was reported. Leaf accumulation was 18.06-61.08mg/kg, whereas stem accumulations were 13.27-50.87mg/kg. Comparatively, there were differences in the phytoaccumulations of metal across the plant organs. The root had better accumulation levels. However, at higher soil metal levels, this trend was somewhat distorted; the highest accumulation being in the leaf (61.08mg/kg) in the 200mg Cu/kg soil treatment level, when compared with stem (35.15mg/kg), sheath (23.77mg/kg), and root (40.99mg/kg). This suggests perhaps, that the preferred organ of metal deposition depend on the soil concentration of the polluting metal. Antioxidant composition of the leaves of metal-exposed plants showed that contents of CAT, SOD, MDA and to copherol significantly (p<0.01) increased. Significant increases in CAT and SOD levels in the roots of the test plant implied that metal effects necessitated the heightened activity of the enzymes in question. Root CAT was 17.01mol/g tissue in the control, compared to 21.05-23.74mol/g tissue in the Cu-exposed plants. SOD contents of root was 49.33mol/g tissue in the 400mg Cu/kg soil treatments compared to 30.12mol/g tissue in the control. Minimal changes (p>0.05) in peroxidase and ascorbate concentrations however were. This study has established that Axonopus compressus has the capacity to withstand the deleterious effects of copper contamination and the capability to remove copper from polluted soils, and hence a good candidate for landscaping.<#LINE#>Garbisu C. and Alkorta I. (2001).@Phytoextraction:Acost-effectiveplant-basedtechnology for the removal of metals from the environment.@Bioresource Tecnology, 77(3), 229- 236.@Yes$Noll M.R. (2003).@Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals.@Journal of Environmental Quality, 32(1), 374.@Yes$McLaughlin M.J., Smolders E. and Merckx R. (1998).@Soil-root interface: Physicochemical processes.@Soil Chemistry and ecosystem health, (soilchemistryan), 52, 233-277.@Yes$McLaughlin M.J., Zarcinas B.A., Stevens D.P. and Cook N. (2000).@Soil testing for heavy metals.@Communications in Soil Science and Plant Analysis, 31(11-14), 1661-1700.@Yes$Jadia C.D. and Fulekar M.H. (2009).@Phytoremediation of heavy metals, recent techniques.@African Journal of Biotechnology, 8(6), 921-928.@Yes$Taiz L. and Zeiger E. (2002).@Plant Physiology.@Sinauer Associates, Sunderland, Mass, USA Toxic Metals, Using Plantsto clean up the Environment, 53-70.@Yes$Schaller A. and Diez T. (1991).@Plant specific aspects of heavy metal up take and comparison with quality standards for food and forage crops.@In, Sauerbeck D. and L¨ubben L. (Eds). Der Einflußvon festen Abf¨allen aufB¨oden,Pflanzen. KFA, J¨ulich, Germany (German), 92-125.@Yes$McKinney J. and Rogers R. (1992).@ES&T metal bioavailability.@Environmental Science & Technology, 26(7), 1298-1299.@Yes$Eriksson J.A., Andersson A. and Andersson R. (1997).@The state of Swedish farmlands.@Technical Report, Swedish Environmental Protection Agency, Stockholm, 4778.@Yes$Khodadoust A.P., Reddy K.R. and Maturi K. (2004).@Removal of nickel and phenanthrene from kaolin soil using different extractants.@Environmental Engineering Science, 21(6), 691-704.@Yes$Salt D.E., Blaylock M., Kumar N.P., Dushenkov V., Ensley B.D., Chet I. and Raskin I. (1995).@Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.@Bio/technology, 13(5), 468.@Yes$Lasat M.M. (2000).@Phytoextraction of metals from contaminated soil, A review of plant/soil/metalinter action and assessment of pertinent agro economic issues.@Journal of Hazardous Substances, 2(5-1), 5-25.@Yes$Bordoloi S., Basumatary B., Saikia R. and Das H.C. (2012).@Axonopus copressus (Sw.) P. Beauv. A native grass species for phytoremediation of hydrocarbon contaminated soil in Assam, India.@Journal of Chemical Technology and Biotechnology, SpecialIssue, Bioremediation, 87(9), 1335-1341.@Yes$Anoliefo G.O. and Ikhajiagbe B. (2011).@Plant-microbial interaction in the degradation ofcrude oil in soil, Synergism in bioremediation.@Nigerian Journal of Life Sciences, 1(1), 40-52.@Yes$Chukwu V.N., Anoliefo G.O. and Ikhajiagbe B. (2017).@Assessment of plant species distribution within scrap metal dump sites in Benin City, Nigeria.@Nigerian Research Journal of Engineering and Environmental Sciences, 2(2), 305-314.@Yes$Ikhajiagbe B., Chijioke-Osuji C.C. and Osazee J.O. (2014).@Heavy metal contents and microbial diversity of waste engine oil-polluted soil in somepublic and commercial centres in Benin City metropolis, Nigeria.@The Bioscientist, 2(1), 41-53.@Yes$Ikhajiagbe B., Chijioke-Osuji C., Obonodi N. and Osaruese U. (2014).@Effects of soil amendments on the intrinsic qualities and development of soil seed bank of a monitored naturally attenuated petroleum hydrocarbon-polluted soil.@Journal of natural sciences research, 4(2), 59-71.@Yes$Ikhajiagbe B., Anoliefo G.O. and Imoni A.E. (2015).@Rhizoremediation of poly aromatic hydrocarbon content of a model waste diesel engine oil-polluted soil by some local lawn plant species in Benin City, Nigeria.@Studia Universitatis Babeş-Bolyai Biologia, 60(2), 5-16.@Yes$FAO (2011).@FAOSTAT.@Food and Agriculture Organization of the United Nations. http,//faostat.fao/default.aspx@No$Quattrocchi U. (2006).@CRCW or lddictionary of grasses, common names, scientificnames, eponyms, synonyms and etymology.@CRC press, Taylor and Francis Group, Boca Raton, USA.http,//www.amazon.com/CRC-Word-Dictionary-Grasses-Scientific/dp/0849313031@No$Cook B.G., Pengelly B.C., Brown S.D., Donnelly J.L., Eagles D.A., Franco M.A., llHanson J., Mullen B.F., Partridge I.J., Peters M. and Schultze-Kraft R. (2005).@Tropical forages.@CSIRO, DPI & F (Qld), CIAT and ILRI, Brisbane, Austrialia.@Yes$Manidool (1992).@Brachiariadistachya (L.) stapf. Record from proseabase.@Mannetje L.′tand Jones R.M. (Editors). PROSEA (PlantResourcesofSouth-EastAsia) Foundation, Bogor, Indonesia. http,//proseanet.org/prosea/e-prosea_detail.php@No$Anoliefo G.O., Ikhajiagbe B., Okoye P.C. and Omoregie O. (2016).@Utilizing Local Soap-Derived Biosurfactant for Degradation of Petroleum Hydrocarbon Polluted Soils: Sustainable Remediation In Focus.@Annals of Scienceand Techonology, 1(1), 43-51.@Yes$USDA. (1998).@Estimating Soil Moisture by Feel and Appearance.@United States Dept. of Agriculture, Natural Resources Conservation Service, Program Aid No. 1619. April, 6.@Yes$Rosenberg H.R. (1942).@Chemistry and physiology of the vitamins.@International Science Publisher Inc.@Yes$Cohen G., Dembiec D. and Marcus J. (1970).@Measurement of catalase activity in tissue extracts.@Analytical biochemistry, 34(1), 30-38.@Yes$Misra H.P. and Fridovich I. (1972).@The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.@Journal of Biological chemistry, 247(10), 3170-3175.@Yes$Buege J.A. and Aust S.D. (1978).@[30] Microsomal lipid peroxidation.@In Methods in enzymology, Academic Press, 52, 302-310.@Yes$Reddy K.P., Subhami S.M., Khan P.A. and Kumar K.B. (1995).@Effect of light and benzyl adenine and dark-treatedgravingrice (Oryzasativa) leaves-change sinperoxidases activity.@Plant Cell Physiology, 26, 987-994.@Yes$AOAC (2005).@Methods of Analysis.@Association of Official Analytical Chemists, Washington D.C., 326.@No$Foy C.D., Chaney R.L. and White M.C. (1978).@The physiology of metal toxicity in plants.@Annual Review of Plant Physiology, 29, 511-566.@Yes$Mengel K. and Kirkby E.A. (1982).@Principles of plant nutrition international potash Institute.@Bern, Switzerland.@Yes$Pathak P., Singh S.A.R.D.A.R. and Sudi R. (1987).@Soil and water management alternatives for increased productivity on SAT Alfisols.@Soil conservation and productivity. In, proceedings IV international conference on soil conservation, Maracay-Venezuela, 3-9, 533-550.@Yes$Mrozek Jr, E. (1980).@Effect of mercury and cadmium on germination of Spartina alterniflora Loisel seeds at various salinities.@Environmental and Experimental Botany, 20(4), 367-377.@Yes$Bernardo E., Varrasso M., Cadamuro F. and Hreglich S. (2006).@Vitrification of wastes and preparation of chemically stables intered glass-ceramic products.@Journal of Non- Crystalline Solids, 352, 4017-4023.@Yes$Probst A., Liu H., Fanjul M., Liao B. and Hollande E. (2009).@Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root.@Environmental and Experimental Botany, 66(2), 297-308.@Yes$Radotić K., Dučić T. and Mutavdžić D. (2000).@Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium.@Environmental and Experimental Botany, 44(2), 105-113.@Yes$Wang C., Tian Y., Wang X., Geng J., Jiang J., Yu H. and Wang C. (2010).@Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings.@Ecotoxicology, 19(6), 1130-1139.@Yes$Qin R., Hirano Y. and Brunner I. (2007).@Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn.@Tree physiology, 27(2), 313-320.@Yes$Ma Y., Oliveira R.S., Freitas H. and Zhang C. (2016).@Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation.@Frontiers in plant science, 7, 918.@Yes$Sunitha M.S., Prashant S., Kumar S.A., Rao S.R.I.N.A.T.H., Narasu M.L. and Kishor P. K. (2013).@Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants overexpressing phytochelatin synthase and metallothionein genes.@Plant Cell Biotechnol. Mol. Biol, 14(1-2), 33-48.@Yes$Kafel A., Nadgorska-socha A., Gospodarek J., Babezriska A., Skowronek M., kandziora M. and Rozpendek K. (2010).@The effects of Aphisfabae in festationonthe antioxidant response and heavy metal content in field grown philadelphus coronaries plants.@Science of the Total Environment, 408(5), 1111-1119.@Yes$Lin A.J., Zhang X.H., Chen M.M. and Qing C.A.O. (2007).@Oxidative stress and DNA damages induced by cadmium accumulation.@Journal of Environmental Sciences, 19(5), 596-602.@Yes$Karimi R., Fitzgerald T.P. and Fisher N.S. (2012).@A quantitative synthesis of mercury in commercial seafood and implications for exposure in the United States.@Environmental Health Perspectives, 120(11), 1512-1519.@Yes$Navari‐Izzo F., Quartacci M.F., Pinzino C., Vecchia F.D. and Sgherri C.L. (1998).@Thylakoid‐bound and stromal antioxidative enzymes in wheat treated with excess copper.@Physiologia Plantarum, 104(4), 630-638.@Yes$Drążkiewicz M., SkÓrzyńska-Polit E. and Krupa Z. (2003).@Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.).@Plant Science, 164(2), 195-202.@Yes$Mittler R. (2002).@Oxidative stress, antioxidants and stress tolerance.@Trends in plant science, 7(9), 405-410.@Yes <#LINE#>Molecular docking studies to identify secondary metabolites present in Ashwagandharishta and their effectiveness towards memory related disorders<#LINE#>Pandithavidana@Dinesh R. ,Munaweera@Rangika K.W. <#LINE#>11-16<#LINE#>2.ISCA-RJCS-2019-020.pdf<#LINE#>Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka@Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka<#LINE#>30/4/2019<#LINE#>28/10/2019<#LINE#>Ashwagandharishta is a famous Ayurveda medicine (in Asian countries) that is used to treat psychiatric conditions, dullness, memory related diseases, anxiety, schizophrenia sluggishness, epilepsy, depression and etc. Memory defects are closely allied with imperfect cholinergic neurotransmission. Repairing mechanisms for theses impaired processes afford promising treatment strategies for these kinds of disorders. Alpha-7 nicotinic acetylcholine receptor is a sub type of nicotinic acetylcholine receptor which has been recognized as one of the most useful drug target for the treatment of nervous system associated disorders. Molecular docking analyses have been carried out to detect any possible secondary metabolites present in Ashwagandharishta that could act as agonists of alpha-7 nicotinic acetylcholine receptor. According these computational findings, it has been found that two phytochemicals; anaferine and anahygrineexhibit promising agonistic activity towards the receptor. Thus anaferine and anahygrine have high possibility to serve as alpha-7nAChR agonists which demonstrate potential drug action towards memory related disorders.<#LINE#>Wilson G.G. (2001).@Inaugural Article: Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method.@Proceedings of the National Academy of Sciences, 98(3), 1241-1248.@Yes$Kesarwani K. and Gupta R. (2013).@Bioavailability enhancers of herbal origin: An overview.@Asian Pacific Journal of Tropical Biomedicine, 3(4), 253-266.@Yes$Elsakka M., Grigorescu E., Stănescu U. and Dorneanu V. (1990).@New data referring to chemistry of Withania somnifera species.@Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 94(2), 385-387.@Yes$Taly A., Corringer P.J., Guedin D., Lestage P. and Changeux J.P. (2009).@Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system.@Nature reviews Drug discovery, 8(9), 733-750.@Yes$Davies P. and Maloney A.J.F. (1976).@Selective loss of central cholinergic neurons in Alzheimer@The Lancet, 25(2), 1403.@Yes$Arneric S.P., Holladay M. and Williams M. (2007).@Neuronal nicotinic receptors: A perspective on two decades of drug discovery research.@Biochemical Pharmacology, 74(8), 1092-1101.@Yes$Norman G.J., Morris J.S., Karelina K., Weil Z.M., Zhang N., Al-Abed Y. and DeVries A.C. (2011).@Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic α7 nicotinic receptors.@Journal of Neuroscience, 31(9), 3446-3452.@Yes$Olincy A., Harris J.G., Johnson L.L., Pender V., Kongs S., Allensworth D. and Stevens J.O. (2006).@Proof-of-concept trial of an α7 nicotinic agonist in schizophrenia.@Archives of General Psychiatry, 63(6), 630-638.@Yes$Dasgupta P., Rizwani W., Pillai S., Kinkade R., Kovacs M., Rastogi S. and Haura E. (2009).@Nicotine induces cell proliferation, invasion and epithelial‐mesenchymal transition in a variety of human cancer cell lines.@International Journal of Cancer, 124(1), 36-45.@Yes$Wang J., Lu Z., Fu X., Zhang D., Yu L., Li N. and Li L. (2017).@Alpha-7 Nicotinic Receptor Signaling Pathway Participates in the Neurogenesis Induced by ChAT-Positive Neurons in the Subventricular Zone.@Translational Stroke Research, 8(5), 484-493.@Yes$Levin E.D., McClernon F.J. and Rezvani A.H. (2006).@Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization.@Psychopharmacology, 184, 523-539.@Yes$Brejc K., van Dijk W.J., Klaassen R.V., Schuurmans M., van der Oost, J., Smit A.B. and Sixma T.K. (2001).@Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.@Nature, 411(6835), 269-276.@Yes$Pandithavidana D.R. and Jayawardana S.B. (2019).@Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.@Molecules, 24(9), 1646.@Yes$Hibbs R.E., Sulzenbacher G., Shi J., Talley T.T., Conrod S., Kem W.R. and Bourne Y. (2009).@Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor.@The EMBO journal, 28(19), 3040-3051.@Yes$Steffen C. (2010).@Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity.@Journal of computational chemistry, 31, 2967-2970.@No$Sanner M.F. (1999).@Python: A Programming Language for Software Integration and Development.@J. Mol. Graphics Mod., 17, 57-61.@Yes <#LINE#>Quality assessment of potable water from treatment plant storage reservoirs in Makurdi, Benue State, Nigeria<#LINE#>Oklo@Ahola David ,Ocheri@Maxwell Idoko ,Praise@Alimi John ,Aleke@Patricia Ani <#LINE#>17-22<#LINE#>3.ISCA-RJCS-2019-036.pdf<#LINE#>Chemistry Department, Benue State University, PMB 102119, Makurdi, Nigeria@Geography Department, Benue State University, PMB 102119, Makurdi, Nigeria@Nigerian Stored Products Research Institute, PMB 5044, Dugbe, Ibadan, Nigeria@Chemistry Department, Benue State University, PMB 102119, Makurdi, Nigeria<#LINE#>16/8/2019<#LINE#>18/12/2019<#LINE#>This research was conducted to assess the quality status of potable water in Makurdi, Nigeria. The reservoirs from which potable water was collected as samples in various surface water treatment plants was 32. The mean physicochemical and Bacteriological parameters were carried out; Range of parameters obtained were, TDS 500±3.35-1860±3.38mg/L, Conductivity 62±1.35-75±1.11μS/cm, Copper 0.08±0.01-0.09±0.02mg/L, E.coli 0-10±0.5. The results obtained can be said to be of low quality measured against standards, hence there is need for improvement in water treatment processes.<#LINE#>Meseret B.A. (2012).@Assessment of Drinking Water Quality and Determinants of house hold Portable Water Consumption in Simada District, Ethiopia.@(Master′s thesis in Professional Studies), Cornell University, Ithaca NY USA.@Yes$World Health Organization (WHO, 2011).@Guidelines for drinking water quality.@4th Edition. Available online at http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf Accessed on 25th@Yes$Efe S.I., Ogban F.E, Horsfall M. and Akporhonor E.E. (2005).@Seasonal variation of Physico-chemical Characteristics in water Resources Quality in Western Niger Delta Region, Nigeria.@Journal of Applied Science and Environmental Management, 9(1), 191-195.@Yes$Burke J.J. and Moench M.H. (2000).@Groundwater and Society: Responses and Opportunities.@United Nations Publication, No99, 11A.@Yes$FAO (2003).@Groundwater management: The Search for Practical Approaches.@Water Report, 25, Food and Agricultural Organisation.@Yes$Richardson S., Evans R., Middlemis H., Ross J., Howe P., Hiller J. and Dayson P. (2004).@Guiding principles for sustainable groundwater management.@IAH Background paper.@Yes$Villholth K.G. (2006).@Groundwater assessment and management: Implications and opportunities for globalization.@Hydrogeology Journal, 14, 330-339.@No$EPA (2012).@Environmental Protection Agency Basic information about copper in drinking water.@Available on http://water.epa.gov/drinking/contaminants/basicinformation/copper.cfm. Last update on 6 March, 2012.@No$Kolo B., Dibal J.M. and Ndakawa I.I. (2009).@Elemental analysis of tap and borehole waters in Maiduguri, semi arid region, Nigeria.@European Journal of Applied Sciences, 1(2), 26-29.@Yes$Caliandro A., Hamdy A., Lacirignola C. and Catalano M. (1995).@Environmental Impacts of Water Resources Development and management.@CIHEAM-Options, Mediterraneens.@No$NPC (2006).@National Population Commission, The Nigeria Census.@Federal Government of Nigeria.@No$Kogbe C.A., Torkaeshi A., Osijuk D. and Wozney D.E. (1978).@Geology of Makurdi Sheet 257 in the middle, Nigeria.@Occassional Publication 5, Department of Geology, Ahmadu Bello University, Zaria, Nigeria.@Yes <#LINE#>Seasonal occurrence, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in the superficial sediments from Vridi canal (CÔte d\'Ivoire)<#LINE#>Arthur@KONAN Kouadio F. ,Konan@YAO Marcel ,Kouamé@DONGUI Bini ,Albert@TROKOUREY <#LINE#>23-33<#LINE#>4.ISCA-RJCS-2019-039.pdf<#LINE#>Department of Mathematics-Physics-Chemistry-Computer Science, Physics Chemistry Laboratory, Jean Lorougnon Guédé University of Daloa, 12 BP V 25 Daloa 12, CÔte d\'Ivoire@Physical Chemistry Laboratory, UFR SSMT, Félix Houphouët-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, CÔte d′Ivoire@Department of Mathematics-Physics-Chemistry-Computer Science, Physics Chemistry Laboratory, Jean Lorougnon Guédé University of Daloa, 12 BP V 25 Daloa 12, CÔte d\'Ivoire@Physical Chemistry Laboratory, UFR SSMT, Félix Houphouët-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, CÔte d′Ivoire<#LINE#>6/9/2019<#LINE#>21/12/2019<#LINE#>The seasonal dynamics of Benzo[a]Anthracene, Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene, Benzo[a]Pyrene, Benzo(g,h,i) Perylene, Fluoranthene and Indeno(1,2,3-cd) Pyrene was monitored in the superficial sediments from Vridi canal over a year (from April 2014 to March 2015). In conducting this study, monthly sampling was doing at three different stations in this estuary, a collection of 36 samples over the study period. The extracts of these hydrocarbons, obtained from these samples according to MA.400-HAP 1.1 standard, were assayed by high performance liquid chromatography (HPLC) with UV/fluorescence detectors coupled to a GC-MS mass spectrometer. The results show the absence of Benzo (g,h,i) Perylene and Indeno (1,2,3-cd) Pyrene in these entities over the entire study period. The other six polycyclic aromatic hydrocarbons, with a strong seasonal dynamics, were detected in these substrates only in a few seasons and, this with relatively high concentrations (ranging between 0.020 ± 0.001 and 123.40 ± 6.17mg/kg per dry weight). As a result, significant seasonal mean values of Σ8PAHs (ranging between 0.020 ± 0.001 and 158.07 ± 2.13mg/Kg per dry weight) with its annual mean value of 48.08 ± 0.83mg/kg per dry weight, were observed on this period. Thus, the superficial sediments from Vridi Canal are heavily contaminated by polycyclic aromatic hydrocarbons. The immediate consequence of this situation is the advanced state of degradation of Vridi canal, with very high ecological risks, as illustrated by four marine sediment quality guidelines (Apparent Effect Threshold Approach, Consensus Based Sediment Quality Guidelines, Toxic BaP equivalent quotient, Hazard quotients) used in this study. This pollution is of petrogenic origin, essentially of the only and great oil-producing industrial area of CÔte d\'Ivoire, located near of this ecosystem.<#LINE#>SCS (2009).@Texte et Annexes telle qu′amendée en 2009. Secrétariat de la Convention de Stockholm.@Programme des Nations Unies pour l′Environnement (PNUE), Genève, Suisse, 6-8 Mai., 60.@No$UNECE (1998).@Convention on access to information, public participation in decision making and access to justice in environmental matter.@Aarhus, Denmark, 25 June. 35.@No$Gachanja A.N. (2019).@Polycyclic Aromatic Hydrocarbons| Environmental Applications.@Reference Module, In Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Analytical Science (Third Edition), Elsevier publication, 341-349, ISBN: 978-00-81019-83-2@Yes$Gachanja A.N. and Maritim P.K. (2019).@Polycyclic Aromatic Hydrocarbons| Determination.@In Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Analytical Science (Third Edition), Elsevier publication, 328-340, ISBN: 978-00-81019-83-2@Yes$Grova N., Faÿs F., Hardy E.M. and Appenzeller B.M.R. (2017).@New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: identification of relevant metabolites and influence of elimination kinetics.@Environmental Pollution, 228, 484-495.@Yes$SPARFEL LYDIE (2018).@EFFETS IMMUNOTOXIQUES DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES.@ÉTUDE DES EFFETS GÉNOTOXIQUES ET IMMUNOTOXIQUES DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES DANS LES LYMPHOCYTES HUMAINS : IDENTIFICATION DE BIOMARQUEURS GÉNIQUES D′EXPOSITION À CES CONTAMINANTS, LES CAHIERS DE LA RECHERCHE N°12, ÉDITEUR ANSES, FRANCE, 29-31, ISBN: 979-10-286-0248-2@Yes$Ramzi A., Habeeb R.K., Gireeshkumar T.R., Balachandran K.K., Chacko J. and Chandramohanakumar N. (2017).@Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India.@Marin. Pollut. Bull., 114(2), 1081-1087.@Yes$Mirza R., Faghiri I. and Abed E. (2012).@Contamination of polycyclic aromatic hydrocarbons in surface sediments of Khure-Musa Estuarine, Persian Gulf.@World J. Fish Marin. Sci., 4(2), 136-141.@Yes$Mirza R., Mohammady M., Dadoloahi A., Safahieh A.R., Savari A. and Hajeb P. (2011).@Hydrocarbons in seawater, sediment and oyster (Saccostrea cucullata) from the northern part of the Persian Gulf (Bushehr Province).@Water, Air Soil Pollut., 223, 189-198.@Yes$Al-Agroudy N., Soliman Y.A., Hamed M.A. and Zaghloul G.Y. (2017).@Distribution of PAHs in water, sediments samples of Suez Canal during 2011.@J. Aquat. Pollut. Toxicol., 1(1), 1-10.@Yes$Gorleku M.A., Carboo D., Palm L.M.N., Quasie W.J. and Armah A.K. (2014).@Polycyclic aromatic hydrocarbons (PAHs) pollution in marine waters and sediments at the Tema Harbour, Ghana.@Acad. J. Environ. Sci., 2(7), 108-115.@Yes$Yao M.K., Brou Y.S., Trokourey A. and Soro M.B. (2017).@Metal Pollution and Ecological Risk Assessment in Sediment of Artificial Estuary: Case of Vridi Channel, CÔte d′Ivoire.@J. Appl. Sci. Environ. Manag., 21(4), 785-792.@Yes$Konan Y.M. and Albert T. (2018).@Fractionation distribution and ecological risk assessment of some trace metals in artificial estuary: Vridi channel (CÔte d@Advances In Natural And Applied Sciences, 12(6), 1-6.@Yes$Yao M.K. and Trokourey A. (2018).@Influence de l′hydroclimat sur la dynamique saisonnière de certains éléments traces métalliques dans un estuaire marin : Cas d′étude.@J. Soc. Ouest-Afr. Chim., 45, 31-41.@Yes$N@Seasonal dynamics of phosphorus fractions in artificial marine estuary: Vridi channel (CÔte d@Inter. J. Adv. Biol. Res., 8(4), 458-469.@Yes$Affian K. (2003).@Approche environnementale d′un écosystème lagunaire microtidal (la lagune Ébrié en CÔte d′Ivoire), par des études géochimiques et hydrologiques, bathymétriques et hydrologiques : contribution du S.I.G. et de la télédétection.@Thèse de doctorat, UFR Biosciences, Université Félix Houphouët-Boigny de Cocody Abidjan, (Abidjan-CÔte d@Yes$Gnagne Y.A., Yapo B.O., Meité L., Kouamé V.K., Gadji A.A., Mambo V. and Houenou P. (2015).@Caractérisation physico-chimique et bactériologique des eaux usées brutes du réseau d′égout de la ville d′Abidjan.@Inter. J. Biol. Chem. Sci., 9(2), 1082-1093.@Yes$AFNOR X 31-100 Standard (1992).@Qualité des sols-échantillonnage, méthode de prélèvement d′échantillons de sols.@Méthode d@No$AFNOR NF EN ISO 16720 Standard (2007).@Qualité du sol-prétraitement des échantillons par lyophilisation pour analyse subséquente.@Méthode d@No$MA. 400 HAP 1.1 standard (2016).@Détermination des hydrocarbures aromatiques polycycliques: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse. 5ème révision.@Édition Centre d@No$Adeniji Abiodun Olagoke, Okoh Omobola Oluranti and Okoh Anthony Ifeanyi (2017).@Chapitre 19: Analytical Methods for Polycyclic Aromatic Hydrocarbons and their Global Trend of Distribution in Water and Sediment: A Review, Recent Insights in Petroleum Science and Engineering.@Eds intechopen, 343-372. ISBN: 978-953-51-3810-5@No$Busetti F., Heitz A., Cuomo M, Badoer S. and Traverso P. (2006).@Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant.@J. Chromatogr. A, 1102(1-2), 104-115.@No$Statistica (2010) [software] Statsoft Inc. Available from: http://www.statsoft.fr/v10.@undefined@undefined@No$Barrick R., Becker S., Brown L., Beller H. and Pastorok R. (1988).@Sediment-quality values refinement: 1988 update and evaluation of Puget Sound AET (Apparent Effects Threshold).@Prepared for U.S. Environmental Protection Agency, Region 10-Office of Puget Sound, Seattle (USA), 193. Report n° PB-89-200106/XAB@No$Swartz R.C. (1999).@Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures.@Environ. Toxicol. Chem., 18(4), 780-787.@Yes$Long E.R., Field L.R. and MacDonald D.D. (1998).@Predicting toxicity in marine sediments with numerical sediment quality guidelines.@Environ. Toxicol. Chem., 17 (4), 714-727.@Yes$MacDonald D.D., Dipinto L.M., Field J., Ingersoll C.G., Lvong E.R. and Swartz R.C. (2000).@Development and evaluation of consensus‐based sediment effect concentrations for polychlorinated biphenyls.@Environmental Toxicology and Chemistry: An International Journal, 19(5), 1403-1413.@Yes$Bortey-Sam N., Ikenaka Y., Nakayama S.M.M., Akoto O., Yohannes Y.B., Baidoo E., Mizukawa H. and Ishizuka M. (2014).@Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana.@Sci. Total Environ., 496, 471-478.@Yes$Pérez-Fernández B., Viñas L., Franco M.Á. and Bargiela J. (2015).@PAHs in the Ría de Arousa (NW Spain): a consideration of PAHs sources and abundance.@Marin. Pollut. Bull., 95, 155-165.@Yes$Rajan S., Geethu V., Sampath S. and Chakraborty P. (2019).@Occurrences of polycyclic aromatic hydrocarbon from Adayar and Cooum Riverine Sediment in Chennai city, India.@International Journal of Environmental Science and Technology, 16(12), 7695-7704. https://doi.org/10.1007/s13762-018-2125-9@Yes$Amine H., Halwani J., Gomez E. and Merhabi F. (2018).@Aromatiques polycycliques dans les eaux au Nord Liban: Rivières, zones de transition et sites portuaires.@Lebane. Sci. J., 19(3), 343-372.@Yes$INERIS (2005).@DONNÉES TECHNICO-ÉCONOMIQUES SUR LES SUBSTANCES CHIMIQUES EN FRANCE : PYRÈNE.@RAPPORT DRC-02-25590-02DF51., 36.@Yes$HSDB (Hazardous Substances Data Bank) (2000).@Benzo[a]pyrene. Hazardous Substances Data Bank, National Library of Medicine.@htpp://www.toxnet.nlm.nih.gov.@No$Josefsson Sarah (2011).@Fate and transport of POPs in the aquatic environment.@PhD thesis, Department of Chemistry, Umea University (USA), 73.@Yes$Danhiez François-Pierre (2015).@Relations entre les propriétés optiques de la matière organique dissoute colorée et le carbone organique dissous dans des eaux cÔtières aux caractéristiques contrastées.@Thèse de doctorat, École doctorale 104 Sciences de la Matière, du Rayonnement et de l′Environnement, Spécialité Océanologie Biologique, Université du Littoral CÔte d′Opale (Lille, France), 264.@Yes$Fayeulle Antoine (2013).@Étude des mécanismes intervenant dans la biodégradation des hydrocarbures aromatiques polycycliques par les champignons saprotrophes telluriques en vue d′applications en bioremédiation fongique de sols pollués.@Thèse de doctorat, Ecole doctorale 104 Sciences de la Matière, du Rayonnement et de l′Environnement, Filière Ingénierie des Fonctions Biologiques, Université du Littoral (CÔte d′Opale, France), 205.@Yes$Dariush M.T., Saeed M. and Herfatmanesh A. (2009).@Effect of Salinity on Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) of Heavy Crude Oil in Soil.@Bull. Environ. Contam. Toxicol., 82, 179-184.@Yes$Mesbaiah F.Z. and Badis A. (2013).@Traitement biologique des milieux aquatiques contaminés par les hydrocarbures aromatiques polycycliques.@Rev. Sci. Tech. LJEE, 21-22, 48-55.@No$Inza B. and Yao K.M. (2015).@Paramètres physiques et chimiques et métaux lourds des eaux de la Lagune Ebrié (CÔte d′Ivoire): influence de la marée et des effluents liquides urbaines.@J. Mater. Environ. Sci., 6(5), 1321-1329.@Yes$Salla M., Kouhete P.D., Koffi O.S. and Traoré D. (2011).@Cyanobactéries des rivières Boubo et Mé dans le Sud cÔtier de la CÔte d′Ivoire.@Inter. J. Biol. Chem. Sci., 5(4), 1365-1373.@Yes$Tremblay L., Kohl S.D., Rice J.A. and Gagné J-P. (2004).@Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles.@Marin. Chem., 96(1), 21-34.@Yes$Ouattara I., Kamagaté B., Dao A., Noufé D. and Savané I. (2016).@Processus de minéralisation des eaux souterraines et transfert de flux en milieu desocle fissuré: cas du bassin versant transfrontalier de la Comoé (CÔte d@Inter. J. Innov. Appl. Studies, 17(1), 57-69.@Yes <#LINE#>Anomalistics of physical and chemical parameters variability under anthropogenic and natural conditions in the four sectors of Aby lagoon (Ebrié lagoon system, CÔte d′Ivoire)<#LINE#>Kouamé @Akpétou ,Hermann1@Yapi Yapo ,Ted-Edgar@Wango ,Sylvie@Assémian ,Alex@Koua Jérémie ,Marcel@Kouassi Aka <#LINE#>34-40<#LINE#>5.ISCA-RJCS-2019-041.pdf<#LINE#>Laboratoire des Sciences et Technologies de l′Environnement, Université Jean Lorougnon Guédé Daloa, CÔte d′Ivoire@Laboratoire des Sciences et Technologies de l′Environnement, Université Jean Lorougnon Guédé Daloa, CÔte d′Ivoire@Laboratoire de Géologie marine et de Sédimentologie, Université Félix Houphouet Boigny, Abidjan, CÔte d′Ivoire@Laboratoire de Chimie et Environnement, Centre de Recherches Océanologiques, Abidjan, CÔte d′Ivoire@Laboratoire des Sciences et Technologies de l′Environnement, Université Jean Lorougnon Guédé Daloa, CÔte d′Ivoire@Laboratoire de Chimie et Environnement, Centre de Recherches Océanologiques, Abidjan, CÔte d′Ivoire<#LINE#>30/9/2019<#LINE#>6/12/2019<#LINE#>This research aimed to determine anomalies in the physical and chemical parameters variability of the sub-lagoon Aby (Ebrié Lagoon, Ivory Coast). Data, generated from 2007-2009 at 18 study stations, were statistically partitioned using HAC, consolidated with the use of the k-means algorithm. That generated classification of the stations in two (02) groups. Group 1 is abnormally nitrogenous and has seasonal stratifications. This group consists of clusters 1 and 2 (stations 13, 10, 9 and 8; then 1, 12, 17 and 18 respectively) located in South-Aby and Ehy. Group 2 is more abnormal in nutrient than metal impacted. It is significantly influenced by nitrogen salts, phosphorus and mobilizable cadmium. This group is composed of clusters 3-7 which are mainly located in the lagoon entities Aby Nord and Tendo. In fact, beside the resuspension of the bituminous lagoon bottoms, the South-Aby and Ehy entities would have physical and chemical characteristics favourable to the human use of the Aby lagoon waters.<#LINE#>Xu Y. and Morel F.M. (2013).@Cadmium in marine phytoplankton.@In Cadmium: from toxicity to essentiality, 509-528, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5179-8_16.@Yes$Pagès J., Dufour P. and Lemasson L. (1980).@Pollution de la zone urbaine de la lagune Ebrié (CÔte d′Ivoire).@Doc. Sci. Centre Rech. Océanogr. Abidjan, Vol. XI, N°2, 79-107.@Yes$Akpetou K.L., Kouassi A.M., Goula B.T.A., Assemian S. and Aka K. (2010).@Nutrients induction on lead, cadmium, manganese, zinc and cobalt speciation in the sediments of Aby Lagoon (CÔte d′Ivoire).@International Journal of Engineering Science and Technology, 2(8), 3894-3900.@Yes$Yao K.M., Metongo B.S., Trokourey A. and Bokra Y. (2009).@La pollution des eaux de la zone urbaine d′une lagune tropicale par les matières oxydables (lagune Ebrié, CÔte d′Ivoire).@Int. J. Biol. Chem. Sci., 3(4), 755-770.@Yes$Kambiré Ollo, Adingra Ama Antoinette, Eblin S.G., Aka N., Kakou A.C. and Rose Koffi-Nevry (2014).@Caractérisation des eaux d′une lagune estuarienne de la CÔte d′Ivoire : la lagune Aby.@Larhyss Journal, 20, 95-110.@Yes$Kouassi Aka Marcel, Daniel Guiral and Mireille Dosso (1990).@Variations saisonnières de la contamination microbienne de la zone urbaine d′une lagune tropicale estuarienne cas de la ville d′Abidjan (CÔte d′Ivoire).@Revue d@Yes$Akpetou Kouamé Lazare (2011).@Variation saisonnière de la spéciation de quelques métaux lourds (plomb, cadmium, manganèse, zinc et cobalt) sous l′effet de l′hydrologie en lagune aby (CÔte d′Ivoire) : aspects physico-chimiques de la mobilisation à partir des sédiments (Unpublished Doctoral dissertation).@Thèse de l′Université d′Abobo-Adjamé, Abidjan, CÔte d′Ivoire, 149.@No$World Health Organization-WHO (2017).@Drinking water quality guidelines.@564. ISBN: 978-92-4-254995-9.@Yes$Sumathi S. and Esakkirajan S. (2007).@Fundamentals of relational database management systems.@Studies in computational intelligence, Springer, 47, 1-26.@Yes$Husson F., Lê S. and Pagès J. (2009).@Senso Mine R dans Evaluation sensorielle.@Manuel méthodologique Lavoisier, SSHA, 3ème edition, 463-470.@Yes$Chantraine J.M. and JM C. (1980).@La lagune Aby (CÔte d@Abidjan : CRO, 11(2), 39-77.@Yes$Sumathi S. and Sivanandam S.N. (2006).@Introduction to Data Mining and its Application.@29, ISBN 978-3-540-34350-9.@Yes$WANGO T.E., MOUSSA M., N′GUESSAN Y.A. and MONDE S. (2013).@Hydrodynamique du complexe lagunaire Grand-Lahou, Ebrié et Aby (CÔte d′Ivoire): Impacts des forçages fluviaux et de la marée.@Bulletin de l′Institut Scientifique, Rabat, (35), 27-38.@Yes$Villanueva Maria Concepcion S. (2004).@Biodiversité et relations trophiques dans quelques milieux estuariens et lagunaires de l′Afrique de l′ouest : adaptations aux pressions environnementales, Doctorate thesis.@Institut National Polytechnique de Toulouse, France, 1-272. ethesis.inp-toulouse.fr/archive/00000115/01/villanueva.pdf.@Yes$Charles-Dominique Emmanuel (1994).@L@Paris: ORSTOM, (120), 407 p. (Travaux et Documents Microfichés ; 120). Thèse: Biologie des Populations et Ecologie, Université des Sciences et Techniques du Languedoc, Montpellier. 1993/12/13. ISBN 2-7099-1214-7.@No$XIA J.R. and GAO K.S. (2005).@Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae.@Journal of Integrative Plant Biology, 47(6), 668-675.@Yes$Claon Stéphane (2004).@Exposition de l′écosystème et des populations riveraines de la lagune Aby au mercure, arsenic et sélénium (Unpublished Doctoral dissertation).@Thèse de doctorat de l′université de Cocody, Abidjan. 204.@Yes$Villeneuve V., Légaré S., Painchaud J. and Vincent W. (2006).@Dynamique et modélisation de l′oxygène dissous en rivière.@Revue des sciences de l@Yes <#LINE#>Characterization of adsorbents from plant source (water leaf (Talinum Triangulare), bitter leaf (Vernonia Amygdalina) and vetiver grass (Vetiveria Zizanioides) using infrared spectrometric tecnnique<#LINE#>T.N.@Chikwe ,O.O.@Mac-Arthur <#LINE#>41-47<#LINE#>6.ISCA-RJCS-2019-044.pdf<#LINE#>Department of Pure and Industrial Chemistry, University of Port Harcourt, P.M.B 5323, Choba, Port Harcourt, Nigeria@Department of Pure and Industrial Chemistry, University of Port Harcourt, P.M.B 5323, Choba, Port Harcourt, Nigeria<#LINE#>6/11/2019<#LINE#>30/1/2020<#LINE#>Powdered samples of Bitter leaf (PBL), Water leaf (PWL) and Vetiver grass (PVG) were analyzed with the use of Nicolet IS5 Fourier Transform Spectrometer to identify the functional groups present in these plants. Results obtained showed the presence of alcohol (OH-), alkane (C-C) and alkene (C=C) in all three plants as indicated by the peaks at wavelength ranges of 3600 - 3200cm-1, 2935 - 2915cm-1 and 1680- 1620cm-1 respectively. Tertiary alcohol and phenol were also present in all three plants as indicated in the wavelength ranges of 1420 - 1330cm-1 and 1390 - 1310cm-1 respectively. Carbonyl (C=O) and Nitro (N=O) functional groups were exclusively found in Bitter leaf at wavelength ranges of 1740 - 1715cm-1 and 1550 - 1500 cm-1 respectively while wavelength ranges of 1190 - 1130cm-1 and 1090 - 1020cm-1 indicates the presence of secondary and primary amines exclusively present in Bitter leaf and Vetiver grass. Functional groups such as sulfoxide (S=O) and iodo compounds (C-I) as indicated at wavelength ranges of 1070 - 1030cm-1 and 600 - 500cm-1 were present in Vetiver grass. The higher the molecular polarizability of the plants which is a function of the polar functional groups present, the higher the adsorption capacity of the plant. The presence of carbonyl functional groups in Bitter leaf will give it an advantage in terms of adsorption capacity compared to Water leaf and Vetiver grass because carbonyl functional groups are highly polarized due to their ability to form hydrogen bond as well as the presence of high dipole moments orchestrated by two electronegative atoms.<#LINE#>Ebuehi O.A.T., Abibo I.B., Shekwolo P.D., Sigismund K. I., Adoki A. and Okoro I.C. (2005).@Remediation of Crude Oil Contaminated Soil by Enhanced Natural Attenuation Technique.@Journal of Applied Sciences & Environmental Management, 103-110.@Yes$Frick C.M., Farrell R.E. and Germida J.J. (1999).@Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites.@Petroleum Technology Alliance of Canada (PTAC) Calgary, AB, 75-90.@No$Salt D.E., Smith R.D. and Raskin I. (1998).@Phytoremediation.@Annual Review of Plant Biology, 49(1), 643-668.@Yes$Robens E. and Jayaweera S.A.A. (2014).@Early History of Adsorption Measurements.@Adsorption Science & Technology, 32(6), 425-442.@Yes$Mendelssohn I.A., Andersen G.L., Baltz D.M., Caffey R. H., Carman K.R., Fleeger J.W. and Rozas L.P. (2012).@Oil Impacts on Coastal Wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater Horizon oil spill.@BioScience, 62(6), 562-574.@Yes$Susarla S., Cordoba J.A. and Saikia N. (2002).@Phytoremediation: An ecological solution to organic chemical contamination.@Ecological Engineering, 18(5), 647-658.@Yes$Gerhardt K.E., Huang X.D., Glick B.R. and Greenberg B.M. (2009).@Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges.@Plant Science, 176(1), 20-30.@Yes$Uwagboe A.I. (2008).@Assessment of Local Tropical Plants for Phytoremediation of Petroleum Contaminated Soil.@Journal of Research in National Development, 6, 11-14.@Yes$Danh L.T., Truong P., Mammucari R., Tran T. and Foster N. (2009).@Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes.@International journal of phytoremediation, 11(8), 664-691.@Yes$Ndimele P.E. (2010).@A Review on the Phytoremediation of Petroleum Hydrocarbon Pak.@Journal Biological Science, 13(15), 715-722.@Yes$Agwaramgbo L., Thomas C., Grays C., Small J. and Young T. (2012).@An evaluation of edible plant extracts for the phytoremediation of lead contaminated water.@Journal of Environmental Protection, 3(8), 722-730.@Yes$Lin Q. and Mendelssohn I.A. (1998).@The Combined Effects of Phytoremediation and Bio Stimulation in Enhancing Habitat Restoration and Oil Degradation of Petroleum Contaminated Wetlands.@Ecological Engineering, 10, 263-274.@Yes$El Bassoussi A.A., El-Sabagh S.M., Harb F.M. and El Nady M.M. (2017).@Crude oils geochemistry depended specific properties, metalloporphyrins, bulk compositions, and n-alkanes of some Egyptian oils in the Gulf of Suez, Egypt.@Energy sources, part A: Recovery, Utilization, and Environmental Effects, 39(1), 110-120.@Yes$Chikwe T.N. and Onojake M.C. (2018).@Characterization of some crude oil samples from Niger delta area of Nigeria using infrared absorption spectrometric technique.@Chemistry International, 4(3), 163-169.@Yes$Wilberforce J.O. (2016).@Phytoremediation of Metal Component of Oil Spill Site Using Common Vegetables.@Middle-East Journal Science Research, 24(3), 962-966.@Yes$Demirdöven N., Cheatum C.M., Chung H.S., Khalil M., Knoester J. and Tokmakoff A. (2004).@Two-dimensional infrared spectroscopy of antiparallel β-sheet secondary structure.@Journal of the American Chemical Society, 126(25), 7981-7990.@Yes$Munn R.W. and Popelier P.L.A. (2004).@Distributed polarizability analysis for Para-nitro aniline and meta-nitro aniline: Functional group and charge-transfer contributions.@Department of Chemistry, UMIST, Manchester, M60 1QD United Kingdom.@Yes$Villar A., Gorritxategi E., Aranzabe E., Fernandez S., Otaduy D. and Fernandez L.A. (2012).@Low-Cost Visible-Near Infrared Sensor for On-Line Monitoring of Fat and Fatty Acids Content during The Manufacturing Process Of The Milk.@Food Chemistry, 135(4), 2756-2760.@Yes @Review Paper <#LINE#>Heavy metals uptake from polluted water by biosorption-an overall review<#LINE#>Sharma@Rekha <#LINE#>48-51<#LINE#>7.ISCA-RJCS-2019-052.pdf<#LINE#>Ashoka Institute of Technology and management, Rajnandgaon CG, India<#LINE#>25/11/2019<#LINE#>13/2/2020<#LINE#>Heavy metals uptake from environment has been a matter for a long time. Conventional methods for the elimination of toxic metals has disadvantages such as high reagent requirement and generation of toxic sludge etc. Toxic substances may be resulting from metal plating, mining operations, sludge disposal, refining ores, pesticides, batteries. Hence, economic and eco-friendly techniques are requisite for water treatment. Biosorption is an affordable and effective technical process applied to eliminate pollutants from water. This technology is efficient cost effectual and sustainable technology. In this review paper investigate sorption technology for the sequestration of pollutants.<#LINE#>Lasat M.M. (1999).@Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues.@Journal of Hazardous Substance Research, 2(1), 5.@Yes$Abdi O. and Kazemi M. (2015).@A review study of biosorption of heavy metals and comparison between different biosorbents.@J Mater Environ Sci, 6(5), 1386-1399.@Yes$Tangahu B.V., Abdullah S., Basri H., Idris M., Anuar N., and Mukhlisin M.A. (2011).@Review on heavy metals (As, Pb, Hg) uptake by plants through phytoremediation.@Hindwari Publ Corp, Int J of Chem Engg., 1-31.@Yes$Gaur A. and Adholeya A. (2004).@Prospects of arbuscular mycorrizal fungi in phytoremediation of heavy metal contaminated soils.@Current Sci., 86, 528-534.@Yes$Chopra A.K. and Pathak C. (2010).@Biosorption technology for removal of metallic pollutants-An overview.@Journal of Applied and Natural Science, 2(2), 318-329.@Yes$Gogate P.R. and Pandit A.B.A. (2004).@Review on imperative technologies for waste treatment II; hybrid method.@Advance Enviro Res., 8, 553-591.@Yes$Nagajyoti P.R., Lee K.D. and Sreekanth T.V.M. (2010).@Heavy metals, occurrence and toxicity for plants: A review.@Enviro Ch Lett., 8(3), 199-216.@Yes$Srivastava V.C., Swamy M.M., Male I.D., Prasad B. and Mishra I.M. (2006).@Adsorptive removal of phenol by pogasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics.@Colloids and Surfaces A: Physicochem Engg Aspects., 272, 89-104.@Yes$Hima K.A., Srinivasa R.R., Vijaya S.S., Jayakumar S.B., Suryanarayana V. and Venkateshwar P. (2007).@Biosorption: An eco-friendly alternative for heavy metal removal.@African Journal of Biotechnology, 6(25), 2924-2931.@Yes$Joshi N.C. (2017).@Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent.@European J Pharm Medical Res., 4, 388-393.@Yes$Joshi N.C. (2017).@Biosorption: A review on mechanism, kinetics and isotherms.@European J Pharm Medical Res, 4, 422-426.@No$Bhandari N.S., Joshi N.C. and Kumar S. (2011).@Sorption studies of Cu (II), Fe (II) and Zn (II) onto deodar leaves (Cedrus deodara).@Enviro Sci: An Indian J., 6, 75-79.@Yes$Joshi N.C., Bhandari N.S. and Kumar S. (2011).@Biosorption of copper (II), iron (II) and zinc (II) from synthetic waste water using Banjh leaves as low cost adsorbent.@Enviro Sci: An Indian, J., 6, 148-153.@Yes$Bhandari N.S., Joshi N.C., Kumar S. and Shah G.C. (2012).@Study of Cu, Fe and Zn removal using Key Lime leaves (Citrus aurentifolia) as low cost Adsorbent.@J Indian Chem Soc., 89, 383-387.@Yes$Hammaini A., González F., Ballester A., Blázquez M.L. and Munoz J.A. (2003).@Simultaneous uptake of metals by activated sludge.@Minerals Engineering, 16(8), 723-729..@Yes$Norton N., Baskaran K. and Mekenzie T. (2004).@Biosorption of Zn from aqueous solution using biosolids.@Adv Environ Res., 8, 629-635.@Yes$Keskinkan O., Goksu M.Z.L., Yuceer A., Basibuyuk M.F. C.F. and Forster C.F. (2003).@Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum).@Process Biochemistry, 39(2), 179-183.@Yes$Selvi K., Pattabhi S. and Kadir K. (2001).@Removal of Cr (VI) from aqueous solution by adsorption onto coconut tree sawdust.@Bioresour Technol., 80, 87-89.@Yes$Dakiky M., Khamis M., Manassra A. and Mereb M. (2002).@Selective adsorption of Cr(VI) in industrial waste-water using low cost abundantly available adsorbents.@Adv Environ Res., 6(4), 533-540.@Yes$Gadd G.M. (2009).@Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment.@J Chem Technol Biotechnol., 84, 13-28.@Yes$Vasu A.E. (2008).@Adsorption of Ni (II), Cu(II) and Fe(III) from aqueous solutions using activated carbon.@E J Chem., 5, 1-9.@Yes$Alam M., Aslam M. and Rais S. (2009).@Adsorption of Zn (II) and Ni (II) from aqueous solution using Syzygium aromaticum (cloves); Kinetic and isothermal studies.@Rasayan J Chem., 2(4), 791-806.@Yes$Gardea- Torresday J.L., Rosa G.D. and PeraltaVidea J.R. (2004).@Use of phytofiltration technologies in the removal of heavy metal, A review.@Pure App Chem., 76(4), 801-813.@Yes$Oboh O.I. and Aluyor E.O. (2008).@The removal of heavy metal ions from aqueous solutions using sour sop seed as biosorbents.@African J Biotec., 7(24), 4508-4511.@Yes$Devaprasth P.M., Solomon J.S. and Thomas B.V. (2007).@Removal of Cr(VI) from aqueous solution using natural plant material.@J Appl Sci Environ Sanit., 2, 77-83.@Yes$Gong R., Ding Y., Liu H., Chem Q. and Liu Z. (2005).@Lead biosorption and desorption by intact and pretreated Spirullina maxima biomass.@Chemosphere., 58, 125-130.@Yes$Rezae A., Derayat J., Martazavi S.B., Yamini Y. and Jafarzadeh M.T. (2005).@Removal of Hg from chloroalkali industry waste water using acetobacter xylinum, cellulose.@Am J Environ Stud., 1(2), 102-105.@Yes$Abdel-Ghani N.T., Hefny H. and EI-Chaghay G.A. (2007).@Removal of lead from aqueous solution using low cost abundantly available adsorbents.@Int J Environ Sci Tech., 4, 67-73.@Yes$Martins R.J., Pardo R. and Boaventura R.A. (2004).@Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness.@Water Research, 38(3), 693-699.@Yes$Asku Z. and Tezer S. (2000).@Equilibrium and kinetic modeling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system, effect of temperature.@Process Biochem., 36, 431-439.@Yes$Von Canstein H., Li Y., Timmis K.N., Deckwer W.D. and Wagner-Döbler I. (1999).@Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida Strain.@Appl. Environ. Microbiol., 65(12), 5279-5284.@Yes$Janoš P., Sypecká J., Mlčkovská P., Kuráň P. and Pilařová V. (2007).@Removal of metal ions from aqueous solutions by sorption onto untreated low-rank coal (oxihumolite).@Separation and purification technology, 53(3), 322-329.@Yes$Karthikeyan G. and Ilanga S.S. (2008).@Adsorption of Cr (VI) onto activated carbons prepared from indigenous materials.@E J Chem., 5, 666-678.@Yes$Madhavakrishnan S., Manickavasagam K., Rasappan K., Shabudeen P.S., Venkatesh R. and Pattabhi S. (2008).@Ricinus communis pericarp activated carbon used as an adsorbent for the removal of Ni (II) from aqueous solution.@Journal of Chemistry, 5(4), 761-769.@Yes$Ćurković L., Rastovčan-Mioč A., Majić M. and Župan J. (2011).@Application of different isotherm models on lead ions sorption onto electric furnace slag.@The holistic approach to environment, 1(1), 13-18.@Yes$Quinones I. and Guiochen G. (1996).@Application of different isotherm models to the description of single - component and competitive adsorption data.@J Chromatogr., 734, 83-96.@Yes$Devaprasth P.M., Solomon J.S. and Thomas B.V. (2007).@Removal of Cr(VI) from aqueous solution using natural plant material.@J Appl Sci Environ Sanit., 2(3), 77-83.@Yes$Abdelwalahs O. (2007).@Kinetic and isotherm studies of copper (II) ion removal from waste water using various adsorbents.@Egyptian J Aquatic Res., 33, 125-143.@Yes$Kiado A. and Budopest Khewer (2004).@Citation review of Langergren kinetic rate equation on adsorption reactions.@Scientomet., 59, 171-177.@Yes$Varma A.J., Deshpande S.V. and Kennedy J.F. (2004).@Metal complexation by chitosan and its derivatives: A review.@Carbohydrate Polym., 55, 77-93.@Yes$Wang J. and Chen C. (2006).@Biosorption of heavy metals by Sachhromyces cerevisiae: A review.@Biotech Adv., 24(5), 427-451.@Yes