@Research Paper <#LINE#>Soil characterization and rehabilitation of catchment area around Ghora Katora Lake in Rajgir City, Bihar, India<#LINE#>Kumari @Tripti,Shardendu@. <#LINE#>1-6<#LINE#>1.ISCA-IRJEvS-2020-020.pdf<#LINE#>Laboratory of Environment and Biotechnology, Department of Botany, Patna Science College, Patna University, Patna 800005, India@Laboratory of Environment and Biotechnology, Department of Botany, Patna Science College, Patna University, Patna 800005, India<#LINE#>23/4/2020<#LINE#>19/9/2020<#LINE#>Monitoring of Land Use Changes (LUCs) of the site named Ghora Katora lake in Rajgir city ( Bihar, India at25° 0101N and 85° 29 51E) found three types of soils that are Red, light brown and Dark brown soils. All are sandy and highly alkaline with deficient in moisture. Red soil is very much deficient in macronutrient such as phosphorus (0.36%) and total organic carbon (TOC) (0.75%). Light brown and dark brown soils are also deficient in macronutrients contents. Micronutrients like manganese, copper and zinc are present in sufficient quantity in all three types of soils, although red soil has toxic level of manganese and copper. Presence of toxic element like chromium and arsenic are also found in soils. Quantitative assessment of LUCs have drawn picture of degraded quality of soil, so there is immense need for the rehabilitation of damaged soil and hence recommendations are proposed.<#LINE#>Salvati L (2013) Agriculture land -use changes and soil quality: Evaluating long term trends in rural Mediterranean Region. ISRN Soil Sc.1-4.@undefined@undefined@Yes$Yasin H, Asfaw B, Chama E (2020).Assessment of downstream pollution influence of urbanization on stream physicochemical characteristics structure: in case of Woliata SodoTown, Ethiopia. Int. Res. J. Environmental Sci. 9(1), 69-77@undefined@undefined@No$Salvati L, Macculi F, Toscano S and Zittu M (2007) Comparing indicators of intensive agriculture from different statistical source. Biota 8:1-2: 51-60.@undefined@undefined@Yes$Thrones JB and Brandit J (1995) Mediterranean desertification and land use. John Wiley and Sons, Chichester U.K.@undefined@undefined@No$Dumanski J, Pettapiece WW and Mc Gregor RJ (1998) Relevance of scale dependent approaches for integrating biophysical and socio-econonmic information and development of agroecological indicators. Nutrient cycling in ecosystem .50:1-3:13-22.@undefined@undefined@Yes$Ambasht R.S and Ambasht N.K (2011). A textbook of plant ecology. CBS publishers and distributors Pvt. Ltd. India. 123:113@undefined@undefined@No$Langer, CL. and P.L. Hendrix. 1982. Evaluation of a persulphate digestion method for particulate nitrogen and phosphorus. Water Res. 16: 1451-1454.@undefined@undefined@Yes$McLeod S. (1973). Studies on wet oxidation procedure for the determination of organic carbon in soils. CSIRO Division of Soils. Notes on Soil Techniques: 73-79.@undefined@undefined@Yes$APHA, AWWA, WEF (2005) In: Eaton AD, Clesceri LS, Rice EW, Greenburg AE (editors). Standards methods for the examination of water and waste water American public health association American water works association USA: Water Environment Federation Joint Publication. 3: 1-11.@undefined@undefined@Yes$Tripti K, Sayantan D, Shardendu S, Singh DN and Tripathi AK (2014) Potential of upatake and removal of arsenic [As(V) and As(III)] and reduction of As(V) to As(III) by Bacillus licheniformis (DAS-1) under different stresses. , Korean J. Microbiol. Biotechnol. 42(3): 1-1@undefined@undefined@Yes$Cherian T, Narayana B (2005) A new spectrophotometric method for determination of arsenic in environmental and biological samples. Anal Lett 38: 2207-2216.@undefined@undefined@Yes$Singh J.S, Singh S.P and Gupta S.R (2010). Ecology Environment and Resource Conservation. Anamya publisher, New Delhi, India. 73@undefined@undefined@Yes$Borner J and Varner J.E (editors) (1965). Mineral metabolism, Plant Biochemistry. Academic press, London. 438-466.@undefined@undefined@Yes$Brady N.C and Weil R.R (1999). The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersy.@undefined@undefined@Yes$Eddie Funderburg. What Does Organic Matter Do In Soil? https://www.noble.org/news/publications/ag-news-and-views/2001/august/what-does-organic-matter-do-in-soil/. 01-08-2001.@undefined@undefined@No$Gurebiyaw K., Yigzaw M., Kendie H., Melak G. et al. (2020). Evaluation of soil physical and chemical quality indices under different land use scenario in North Ethiopia. Int. Res. J. Environmental Sci.9(1), 38-47@undefined@undefined@No$Marjan Kluepfel. Changing the ph of your soil. https://hgic.clemson.edu/factsheet/changing-the-ph-of-your-soil/ 20-10- 2012.@undefined@undefined@No$Chaturvedi O.P., Jha A.N. and Mahato D. (1991). Evaluation of young multipurpose tree species in North Bihar, India. Nitrogen fixing tree Res. Report :9@undefined@undefined@Yes$Kruger G.A. Singh J.P. and Karamanos R.E. (1984). Trends in micronutrient research in Saskatchewan. Procs. Soils and Crops Workshop. University of Saskatchewan. Saskatoon.@undefined@undefined@Yes <#LINE#>Attitude versus practices of the local community of Los Banos, Laguna, Philippines toward ecotourism<#LINE#>Mark Gabriel Wagan @Aguilar <#LINE#>7-13<#LINE#>2.ISCA-IRJEvS-2020-021.pdf<#LINE#>ABE International Business College-Quezon City, Philippines<#LINE#>27/4/2020<#LINE#>27/8/2020<#LINE#>The Tourism Industry plays a vital role in the global economy. In fact, it has been coined by the World Travel and Tourism Council as one of the largest employers and biggest contributors to the Global Gross Domestic Product. Alongside with this is the intensive promotion of responsible travel as the United Nations World Tourism Organization had geared towards sustainable tourism development. This study focused on ecotourism by determining the attitude and practices of the residents of the Special Science and Nature City of the Philippines, Los Banos, Laguna. The inconsistency of the peoples attitude with their practices towards ecotourism was also determined, thus, led to a conclusion on what is the reason why air and water pollution have been major problems in the Philippines. Results show that awareness towards ecotourism is evident as people were able to identify the right terms that describe ecotourism, and were able to determine the cause and effects of environmental issues. However, it has been proven that the attitude of people towards ecotourism is inconsistent with their practices as results clearly show that despite having the right attitude; people are contributors to environmental issues with their wrong habits. Nevertheless, the community has high potential to safeguard the natural beauty of the place evident to their preference between mass tourism and ecotourism destinations.<#LINE#>Tsang, W.H. The Problems of this World Today. /http://www.iawwai.com/ProblemsOfThisWorld.htm.23/03/2020@undefined@undefined@No$Walpole, P. (2012, October 22). Low Forest Cover in the Philippines: Issues and Responses at the Community Level. ITFRN Newsletter, pp.15, 16.@undefined@undefined@No$Cinco, M. (2017): Pollution, Squatting, Industries hasten death of Laguna de Bay/ https://ani.seafdec.org.ph/handle/20.500.12174/720?show=full.05/01/2017@undefined@undefined@Yes$Jacinto G.S., Azanza R.V., Velasquez I.B., Siringan F.P. (2006) Manila Bay: Environmental Challenges and Opportunities. In: Wolanski E. (eds) The Environment in Asia Pacific Harbours. Springer, Netherlands, pp. 309-328. ISBN: 978-1-4020-3655-2@undefined@undefined@Yes$Fitzgerald, H. What Are the Causes of the Pasig River Pollution? /https://sciencing.com/info-8788724-causes-pasig-river-pollution.html.22/11/2019@undefined@undefined@No$The International Ecotourism Society. What is Ecotourism / https://ecotourism.org/what-is-ecotourism/ .07/01/2020@undefined@undefined@Yes$Weinstein N., Balmford A., DeHaan C., Gladwell C., Bradbury R., Amano T. (2015). Seeing Community for the Trees: The Links among Contact with Natural Environments, Community Cohesion, and Crime, BioScience, Volume 65, (Issue 12), pp. 1141-1153, https://doi.org/10.1093/biosci/biv151@undefined@undefined@Yes$Alcock I., White M., Phal S., Davidson R., Fleming L.(2020). Associations between pro-environmental behavior and neighborhood nature, nature visit frequency, and nature appreciation: Evidence from a nationally representative survey in England/ Environment International, Volume 136, pp. 1-10. https://doi.org/10.1016/j.envint.2019.105441@undefined@undefined@Yes$United Nations Population Division. World Urbanization Prospects/ https://population.un.org/wup/.2018@undefined@undefined@No$Isaacs J.(2000). The limited potential of ecotourism to contribute to wildlife conservation. Wild Life Society Bulletin, Volume 28 (Issue 1), pp. 61-69.@undefined@undefined@Yes$Swanston B. Positive & Negative Effects of Ecotourism. https://traveltips.usatoday.com/positive-negative-effects-ecotourism-63682.html. 24/04/2018@undefined@undefined@No$Lanier P.(2014). The positive impacts of ecotourism in protected areas/WIT Transactions on Ecology and The Environment, Volume 187, pp. 199-209. doi:10.2495/ST140161@undefined@undefined@Yes$Deyro E.Is the Philippines The Next Icon of Sustainable Tourism? /https://ph.asiatatler.com/society/is-the-philippines-the-next-icon-of-sustainable-tourism. 12/08/2019@undefined@undefined@No$Bocco D. 12 Best Places to Visit in Southeast Asia /https://www.planetware.com/asia/best-places-to-visit-in-southeast-asia-tha-1-49.htm. 23/10/2019@undefined@undefined@No$Asian Development Bank (2007). Asian Water Development Outlook 2007. Asian Development Bank, Philippines, pp. 1-66. ISBN 978-981-4136-06-8@undefined@undefined@No$Lasco R., Visco R., Pulhin J. (2001). Secondary forests in Asia: Formation and Transportation in the 20th Century. Journal of Tropical Forest Science, Volume 13, (Issue 4), pp. 652-670@undefined@undefined@No$Alave K. Metro Manila Air Polluted beyond Acceptable Levels / https://web.archive.org/web/20051203095144/http://www.cleanairnet.org/caiasia/1412/article-58903.html. 18/08/2014@undefined@undefined@No$Iizuka M. (2000). Role of environmental awareness in achieving sustainable development. Prepared for the project Enhancement of citizens awareness in formulation of pollution control policies in major Latin American Cities, Environment and Human Settlements Division of ECLAC, with the support from the Government of Japan.@undefined@undefined@Yes <#LINE#>Prediction of daily global solar radiation using different empirical models at eastern subtropical region, Nepal<#LINE#>Bishwa B. @Acharya,Yugal K. @Shrestha,Sandeep @Dhakal,Usha @Joshi,Khem N. @Poudyal <#LINE#>14-22<#LINE#>3.ISCA-IRJEvS-2020-022.pdf<#LINE#>Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal@Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal@Department of Mechanical Engineering, IOE Pulchowk Campus, TU, Nepal@Department of Physics, Patan Multiple Campus, TU, Nepal@Department of Applied Sciences and Chemical Engineering, IOE Pulchowk Campus, TU, Nepal<#LINE#>1/5/2020<#LINE#>13/10/2020<#LINE#>The current study estimates the daily global solar radiation (GSR) at subtropical region of eastern Nepal at Biratnagar Airport (lat. 26°28′53″N, long. 87°15′50″E and Alt. 72m) for 2016 using measured GSR values and meteorological parameters from 2015. The maximum of measured GSR of magnitude 15.9 MJ/m2/day was found in April while the minimum of magnitude 8.7 MJ/m2/day was found in January. Meteorological parameters such as the temperature and their relation with the GSR were utilized for this comparative study. Temperature-based multi-variable linear empirical models were used to perform regression analysis and determine the regression coefficients. The calculated regression coefficients from these models were utilized to predict the GSR values for subsequent year. The variation in the GSR estimated from these models were compared. Variation between measured GSR and estimated GSR for 2015 was also studied for each of these models. Performance comparison of these models was carried out by employing mean bias error (MBE), relative root mean square error (RRMSE) and adjusted coefficient of determination (R2). Such study is relevant in situations where reliable data for sunshine duration is not adequately available. The Falayi model has the highest adjusted R2 value of 0.61 but the largest MBE of 14.1%. The Garcia model has least adjusted R2 value of 0.55 but least MBE of 6.6%. Both the Garcia and Chen and Li model predict similar GSR value of 12.8 and 12.5 MJ/m2/day.<#LINE#>Karanth, V. (2007). Modernization and global warming. Current Science, 93, 7-8.@undefined@undefined@Yes$WECS (2010). Energy Sector Synopsis Report 2010, Water and Energy Commission Secretariat, Kathmandu, Nepal, pp 1-98.@undefined@undefined@No$Fadare, D. A. (2009). Modelling of solar energy potential in Nigeria using an artificial neural network model. Applied Energy, 86(9), 1410-1422. https://doi.org/ 10.1016/ j.apenergy.2008.12.005@undefined@undefined@Yes$Amrouche, B.,& le Pivert, X. (2014). Artificial neural network based daily local forecasting for global solar radiation. Applied Energy, 130, 333-341. https://doi.org/10.1016/j.apenergy.2014.05.055@undefined@undefined@Yes$Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798-821. https://doi.org/10.1016/ j.rser.2012.12.043@undefined@undefined@Yes$Chen, J. L., He, L., Yang, H., Ma, M., Chen, Q., Wu, S. J., & Xiao, Z.L. (2019). Empirical models for estimating monthly global solar radiation: A most comprehensive review and comparative case study in China. Renewable and Sustainable Energy Reviews, 108, 91-111. https://doi.org/10.1016/j.rser.2019.03.033@undefined@undefined@Yes$Voyant, C., Darras, C., Muselli, M., Paoli, C., Nivet, M. L., & Poggi, P. (2014). Bayesian rules and stochastic models for high accuracy prediction of solar radiation. Applied Energy, 114, 218-226. https://doi.org/10.1016/ j.apenergy.2013.09.051@undefined@undefined@Yes$Pinker, R. T., Frouin, R., & Li, Z. (1995). A review of satellite methods to derive surface shortwave irradiance. Remote Sensing of Environment, 51(1),108-124.@undefined@undefined@Yes$Feng, Y., Gong, D., Jiang, S., Zhao, L., & Cui, N. (2020). National-scale development and calibration of empirical models for predicting daily global solar radiation in China. Energy Conversion and Management, 203, 112236. https://doi.org/10.1016/j.enconman.2019.112236@undefined@undefined@Yes$Bajracharya, S.R., Shrestha, M.S., & Shrestha, A.B. (2017). Assessment of high-resolution satellite rainfall estimation products in a streamflow model for flood prediction in the Bagmati basin, Nepal. Journal of Flood Risk Management, 10(1), 5-16. https://doi.org/10.1111/jfr3.12133@undefined@undefined@Yes$Martinez-lozano, J., Tena, F., Onrubia, J., & la Rubia, J. de. (1984). The historical evolution of the Angstrom formula and its modifications: Review and bibliography. Agriculture and Forest Meteorology, 33(2-3), 109-128.https://doi.org/10.1016/0168-1923(84)90064-9@undefined@undefined@Yes$Poudyal, K.N. (2015). Estimation of global solar radiation using Modified Angstrom empirical formula on the basis of meteorological parameters in Himalaya Region Pokhara, Nepal. Journal of the Institute of Engineering, 11(1), 158-164.@undefined@undefined@Yes$Awasthi, J., & Poudyal, K.N. (2018). Estimation of global solar radiation using empirical model on meteorological parameters at Simara Airport, Bara, Nepal. Journal of the Institute of Engineering, 14(1), 143-150.@undefined@undefined@Yes$Makade, R.G., Chakrabarti, S., & Jamil, B. (2019). Prediction of global solar radiation using a single empirical model for diversified locations across India. Urban Climate, 29, 100492. https://doi.org/10.1016/ j.uclim.2019.100492@undefined@undefined@Yes$Srivastava, R.C., & Pandey, H. (2013). Estimating Angstrom-Prescott coefficients for India and developing a correlation between sunshine hours and global solar radiation for India. ISRN Renewable Energy, 1-7. https://doi.org/10.1155/2013/403742@undefined@undefined@Yes$Despotovic, M., Nedic, V., Despotovic, D., &Cvetanovic, S. (2015). Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews,52,1869-1880. https://doi.org/10.1016/j.rser.2015.08.035@undefined@undefined@Yes$Trnka, M., Zalud, Z., Eitzinger, J., &Dubrovsky, M. (2005). Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology, 131(1-2), 54-76. https://doi.org/ 10.1016/j.agrformet.2005.05.002@undefined@undefined@Yes$Mecibah, M.S., Boukelia, T.E., Tahtah, R., &Gairaa, K. (2014). Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria). Renewable and Sustainable Energy Reviews, 36,194-202. https://doi.org/ 10.1016/ j.rser.2014.04.054@undefined@undefined@Yes$Podesta, G.P., Núnez, L., Villanueva, C.A., &Skansi, M.A. (2004). Estimating daily solar radiation in the Argentine Pampas. Agricultural and Forest Meteorology, 123(1-2), 41-53. https://doi.org/10.1016/j.agrformet.2003.11.002@undefined@undefined@Yes$Hargreaves, G.H., &Samani, Z.A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Division, 108(3), 225-230.@undefined@undefined@Yes$Hassan, G.E., Youssef, M.E., Mohamed, Z.E., Ali, M.A., & Hanafy, A.A. (2016). New temperature-based models for predicting global solar radiation. Applied Energy, 179, 437-450. https://doi.org/10.1016/j.apenergy.2016.07.006@undefined@undefined@Yes$Li, M.F., Tang, X.P., Wu, W., & Liu, H.B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management,70,139-148. https://doi.org/ 10.1016/j.enconman.2013.03.004@undefined@undefined@Yes$Goodin, D.G., Hutchinson, J.M.S., Vanderlip, R.L., & Knapp, M.C. (1999). Estimating solar irradiance for crop modeling using daily air temperature data. Agronomy Journal,91(5),845-851. American Society of Agronomy. https://doi.org/10.2134/agronj1999.915845x@undefined@undefined@Yes$Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903-914. https://doi.org/ 10.1016/j.energy.2017.12.091@undefined@undefined@Yes$Falayi, E., Adepitan, J., &Rabiu, A. (2008). Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. International Journal of Physical Sciences, 3(9), 210-216.@undefined@undefined@Yes$Garcia, J.V. (1994). PrincipiosFisicos de la Climatologia, Ediciones. UNALM (Universidad Nacional Agraria La Molina: Lima, Peru.@undefined@undefined@Yes$Chen, J.L., & Li, G.S. (2013). Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basin in China. International Journal of Climatology, 33,487-498. https://doi.org/ 10.1002/joc.3442@undefined@undefined@Yes$John A. Duffie and William A. Beckman (2013). Solar engineering of thermal processes, John Wiley & Sons, Hoboken, New Jersey, pp 3-41. ISBN: 978-1-118-43348-5@undefined@undefined@Yes$Cooper, P.I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333-346.https://doi.org/ 10.1016/0038-092X(69)90047-4@undefined@undefined@Yes <#LINE#>Effect of percentage fill media on performance of moving bed biofilm reactor for dairy wastewater treatment<#LINE#>Sanket @Topale,Bharat @Ingavale <#LINE#>23-27<#LINE#>4.ISCA-IRJEvS-2020-028.pdf<#LINE#>Department of Environmental Engineering, K.I.T.s College of Engineering (Autonomous), Kolhapur, India@Department of Environmental Engineering, K.I.T.s College of Engineering (Autonomous), Kolhapur, India<#LINE#>10/6/2020<#LINE#>5/9/2020<#LINE#>Dairy industries are among the most polluting food industries as it requires large amount of fresh water and generate large amount of wastewater that may contrary affect the environment, if it is discharged untreated. The current paper assesses the performance of Moving Bed Biofilm Reactor (MBBR) process for primary treated dairy wastewater. MBBR is an attached growth biological treatment process technique, where suspended plastic media is used as biofilm carriers. The experimental investigation includes the characterization of dairy wastewater for parameters pH, COD, BOD, TDS and TSS. It also includes an optimization of percentage fill of biofilm carrier media from 60% to 30% in MBBR process for dairy wastewater treatment to achieve the disposal standards. It was investigated that the reduction in percentage fill of carrier media resulted out in decrease in microbial content of reactor thereby decreasing the removal efficiencies with decreased percentage fill of carrier media. 50% fill of biofilm carrier media was observed to be optimum percentage fill for achieving disposal standards. The average removal efficiencies observed at HRT of 44 hours for 50% carrier fill for the parameters COD, BOD, TDS and TSS are 92.64%, 98.69%, 17.18% and 85.77% respectively.<#LINE#>Sutar, A. S., Mulla, R.K., Ranveer, A. C. (2011). Effluent Treatment Plant of Dairy Wastewater- A Performance Evaluation. International Research Journal of Engineering and Technology (IRJET), Volume 02, Issue 08, e-ISSN: 2395-0056@undefined@undefined@Yes$Pal, S., Vyas, D. S., Pamnani, A. N. (2016). Study The Efficiency of Moving Bed Biofilm Reactor (MBBR) for Dairy Wastewater Treatment. International Journal of Advance Research and Innovative Ideas in Education. (IJARIIE), Vol-2, Issue 03, ISSN: 2395-4396@undefined@undefined@Yes$Padmajan, A., Riyas, A. E., Aysha K S, Muhammed, R. P., Sunny, N., (2018). Dairy Farm Waste Water Treatment Using MBBR as an Attached Media. International Research Journal of Engineering and Technology (IRJET), Vol. 05, Issue 05, e-ISSN: 2395-0056@undefined@undefined@No$Chavda, P., Rana, A. (2014). Performance Evaluation of Effluent Treatment Plant of Dairy Industry. International Journal of Engineering Research and Applications (IJERA), Vol. 4, Issue 9, ISSN: 2248- 9622, pp.37-40@undefined@undefined@Yes$Pinjarkar, A. B., Jagtap, R.D., Solanke C.K., Mehta, H. H. (2017) The Moving Bed Biofilm Reactor (MBBR). International Advanced Research Journal in Science, Engineering and Technology (IARJSET), Vol. 4, Issue 3, ISSN:2393-8021@undefined@undefined@No$Gulhane, M., Ingale, A. (2015). Moving Bed Biofilm Reactor: A Best Option for Wastewater Treatment. International Journal for Scientific Research & Development (IJSRD), Vol. 3, Issue 01, ISSN: 2321-0613@undefined@undefined@Yes$Rusten, B., 0degaardand, H., Lundar, L. (1992). Treatment of Dairy Wastewater In A Novel Moving Bed Biofilm Reactor (MBBR). Journal of Water Science and Technology, Vol. 26, pp.703-711@undefined@undefined@Yes$Metcalf and Eddy, (2003). Wastewater Engineering- Treatment and Reuse, 4th edition. Tata McGraw-Hill Inc., New York City, Moving Bed Biofilm Reactor (MBBR) Technology (2013).@undefined@undefined@No$Odegaard, H., (1999a). The Moving Bed Biofilm Reactor. In: Igar-ashi T., Watanabe Y., Tambo N., Water Environmental Engineering and Reuse of Water. Hokkaido Press, Sapporo, pp 250-305.@undefined@undefined@No$Odegaard, H., (2006). Innovations in Wastewater Treatment: The Moving Bed Biofilm Process. Water Science Technology, 53(9):17-33.@undefined@undefined@Yes$Odegaard, H., Gisvold B., Strickland J., (2000). The Influence of Carrier Size and Shape in the Moving Bed Biofilm Process, Water Science & Technology, Vol. 41, No. 4-5 pp 383- 391.@undefined@undefined@Yes$Odegaard H., Rusten B., Westrum T., (1994). A New Moving Bed Biofilm Reactor- Applications and Results, Water Science & Technology, 29(10/11):157-165.@undefined@undefined@Yes$Shaha, S., Munavalli, G., Joshi S., 2019. Study on Domestic Wastewater Treatment by Moving Bed Sequencing Batch Reactor, International Journal of Engineering Sciences and Management - A Multidisciplinary Publication of VTU 2019; Vol: 1, No: 2, pp: 71-79.@undefined@undefined@Yes$Andreottola, G., Foladori, P., Ragazzi, M., Villa, R. (2002). Dairy wastewater treatment in a moving bed biofilm Reactor. Journal of Water Science and Technology, Vol. 45.No.12, pp: 321-328@undefined@undefined@Yes$Gulhane, M., Ingale, A. (2015). Modified Moving Bed Biofilm Reactor (MMBBR). Journal of Environmental Research and Development, Vol. 9, No. 3A@undefined@undefined@Yes$Mane, S., Kotwal, R., Mandave, S., Landge, N., Kedari, H., Mane, S. (2018). Performance Evolution of Different MBBR Media in Wastewater Treatment. International Research Journal of Engineering and Technology (IRJET), Vol 05, Issue 06, ISSN: 2395-0056@undefined@undefined@No$Wang, S., Rao, C.N., Qiu, R., Moletta, R. (2009). Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Journal of Bioresource Technology. Pp: 5641-5647@undefined@undefined@Yes$Haandel, A.C.V., Lubbe J.G.M.V., (2012). Handbook of Biological Wastewater Treatment- Design and Optimization of Activated Sludge Systems. Chapter-11, Moving Bed Biofilm Reactors, 2nd edition. IWA Publishing.@undefined@undefined@Yes$Ingale, A. (2016). Moving Bed Biofilm Reactor Leading Edge Wastewater Technology. International Journal of Innovative and Emerging Research in Engineering, Volume 3, Issue 01.@undefined@undefined@Yes$Rusten, B. (2006). Design and operation of moving bed biofilm reactor, Elsevior Journal. 322-324.@undefined@undefined@No <#LINE#>Fabrication of nano-adsorbent and its kinetics studies for sorption of textile reactive dye<#LINE#>K.V. @Radha,V. @Gopalakrishnan,B. @Vijayalakshmi <#LINE#>28-38<#LINE#>5.ISCA-IRJEvS-2020-029.pdf<#LINE#>Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India@Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India@Bioproducts Laboratory, Department of Chemical Engineering, A.C.Tech., Anna University, Chennai 600025, India<#LINE#>10/6/2020<#LINE#>9/10/2020<#LINE#>The present study details on the synthesis of Silver nanoparticles using the leaves of Tamarindus indica for application as dye removal agent as a first attempt. Effort has been made using the obtained nanomaterial for environmental applications as bio sorbent. Characterization of the obtained nanoparticles was done ed using X-Ray Diffraction Spectrometer (XRD), Fourier Transform Infra-Red Spectrometer (FTIR) and Raman spectroscopy. The novel nanomaterial resulted from the synthesis had organic surface molecules due to the phyco-chemicals that was confirmed through FTIR. The incorporation of the phyco-chemicals was identified from the X-ray diffraction patterns of silver nano particles. The morphology of the nanoparticles as observed from SEM was found to be smooth, spherical,and homogeneously distributed of size around 20 nm, also confirmed through TEM.Adsorption studies using the nano sorbent showed significant dye reduction of 97.4% atoptimum conditions of 7.0 pH at 27°C with 300 mg of Silver nano particles. kinetic studies on adsorption were carried out, which showed pseudo second order kinetics fits well the adsorption studies with favourable adsorption of reactive dye used. The obtained nanomaterial can be instantly used for controlling the dye that is polluting the environment from textile industries.<#LINE#>Literathy P(1981)Industrial effluent treatment, vol. 1. Water and solid wastes: Edited By J. K. Walter and A. Wint. Applied Science Publishers Ltd, London. 1981. Pp. 351. ISBN 0 85334 981.https://doi.org/10.1016/0143-1471(82) 90147-7@undefined@undefined@Yes$Mohamed A. Hassaan, Ahmed El Nemr.(2017) Health and Environmental Impacts of Dyes: Mini Review. Amer.Jl. of Env. Sci.and Engg.1 (3) 64-67. doi: 10.11648/j.ajese. 20170103.11.@undefined@undefined@Yes$Chakraborty J.N. and Chakraborty J.N. (2015). Fundamentals and practices in colouration of textiles. CRC Press. pp.248ISBN 13: 9788190800143.@undefined@undefined@Yes$Lellis, B., Favaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. https://doi.org/10.1016/ j.biori.2019.09.001https:// doi.org/10.1016/j.biori.2019.09.001@undefined@undefined@Yes$Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II: Hybrid methods. Advances in Environmental Research, 8(3-4), 553-597. https://doi.org/10.1016/s1093-0191(03)00031-5@undefined@undefined@Yes$Nayantara, & Kaur, P. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnology Research and Innovation, 2(1), 63-73. https://doi.org/ 10.1016/j.biori. 2018.09.003@undefined@undefined@Yes$McNamara, K., & Tofail, S. A. (2016). Nanoparticles in biomedical applications. Advances in Physics: X, 2(1), 54-88. https://doi.org/10.1080/23746149.2016.1254570@undefined@undefined@Yes$Thamilselvi, V., & Radha, K. V. (2017). Silver nanoparticle loaded silica adsorbent for wastewater treatment. Korean Journal of Chemical Engineering, 34(6), 1801-1812. https://doi.org/10.1007/s11814-017-0075-4@undefined@undefined@Yes$Jayakumar, A., & Vedhaiyan, R. K. (2019). Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: Its antibacterial and antioxidant activities. Korean Journal of Chemical Engineering, 36(11), 1869-1881. https://doi.org/10.1007/s11814-019-0389-5@undefined@undefined@Yes$Anu Mary Ealia, S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, 032019. https:/ /doi.org/10.1088/1757-899x/263/3/032019@undefined@undefined@Yes$Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons. pp.464ISBN: 978-0-471-86606-0@undefined@undefined@Yes$Tang, L., Zhang, S., Zeng, G., Zhang, Y., Yang, G., Chen, J., Wang, J., Wang, J., Zhou, Y., & Deng, Y. (2015). Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. Journal of Colloid and Interface Science, 445, 1-8. https://doi.org/10.1016/j.jcis.2014.12.074@undefined@undefined@Yes$Escalona-Arranz, J., Peres-Roses, R., Urdaneta-Laffita, I., Camacho-Pozo, M., Rodriguez-Amado, J., & Licea-Jimenez, I. (2010). Antimicrobial activity of extracts from Tamarindus indica L. leaves. Pharmacognosy Magazine, 6(23), 242. https://doi.org/10.4103/0973-1296.66944@undefined@undefined@Yes$Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K., & Latha, L. (2010). Extraction, isolation and characterization of Bioactive compounds from plants extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1). https://doi.org/10.4314/ajtcam.v8i1.60483@undefined@undefined@Yes$Ndikau, M., Noah, N. M., Andala, D. M., & Masika, E. (2017). Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. International Journal of Analytical Chemistry, 2017, 1-9. https://doi.org/10.1155/2017/8108504@undefined@undefined@Yes$Elamawi, R. M., Al-Harbi, R. E., & Hendi, A. A. (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control, 28(1). https://doi.org/10.1186/s41938-018-0028-1@undefined@undefined@Yes$Zhang, X., Liu, Z., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/ 10.3390/ijms17091534@undefined@undefined@Yes$Chen, L., Liao, J., Chuang, Y., & Fu, Y. (2010). Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template. Journal of Nanoparticle Research, 13(2), 783-790. https://doi.org/10.1007/s11051-010-0078-0@undefined@undefined@Yes$Sasikumar, R., Ranganathan, P., Chen, S., Sireesha, P., Chen, T., Veerakumar, P., Rwei, S., & Kavitha, T. (2017). Economically applicable Ti2O3 decorated M-aMinophenol-forMaldehyde resin microspheres for dye-sensitized solar cells (DSSCs). Journal of Colloid and Interface Science, 494, 82-91. https://doi.org/10.1016/j.jcis.2017.01.061@undefined@undefined@Yes$Premasudha, P., Venkataramana, M., Abirami, M., Vanathi, P., Krishna, K., & Rajendran, R. (2015). Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bulletin of Materials Science, 38(4), 965-973. https://doi.org/ 10.1007/s12034-015-0945-5@undefined@undefined@Yes$Burks, T., Avila, M., Akhtar, F., Göthelid, M., Lansåker, P., Toprak, M., Muhammed, M., & Uheida, A. (2014). Studies on the adsorption of chromium (VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 425, 36-43. https://doi.org/10.1016/ j.jcis.2014.03. 025@undefined@undefined@Yes$Duran, N., Marcato, P. D., Conti, R. D., Alves, O. L., Costa, F. T., & Brocchi, M. (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society, 21(6), 949-959. https://doi.org/ 10.1590/s0103-50532010000600002@undefined@undefined@Yes$Ho, Y., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/s0032-9592(98)00112-5@undefined@undefined@Yes$Vinay, S. P. (2019). Green synthesis and characterization of silver nanoparticles using cassia Auriculata leaves extract and its efficacy as a potential antibacterial and cytotoxic effect. Advanced Materials Letters, 10(11), 844-849. https://doi.org/10.5185/amlett.2019.0046@undefined@undefined@Yes$Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/s12951-018-0334-5@undefined@undefined@Yes$Gopalakrishnan, V., Radha, K. V., & Devasena, T. (2019). Silver nanoparticles synthesised using Andrographis paniculata ameliorates oxidative stress in erythrocyte model. Materials Research Express, 6(8), 0850b6. https://doi.org/10.1088/2053-1591/ab24ea@undefined@undefined@Yes$Han, C., Han, J., Li, Q., & Xie, J. (2013). Wet chemical controllable synthesis of hematite ellipsoids with structurally enhanced visible light property. The Scientific World Journal, 2013, 1-5. https://doi.org/10.1155/2013/410594@undefined@undefined@Yes$Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002@undefined@undefined@Yes$Anastopoulos, I., Robalds, A., Tran, H. N., Mitrogiannis, D., Giannakoudakis, D. A., Hosseini-Bandegharaei, A., & Dotto, G. L. (2018). Removal of heavy metals by leaves-derived biosorbents. Environmental Chemistry Letters, 17(2), 755-766. https://doi.org/10.1007/s10311-018-00829-x@undefined@undefined@Yes$Silva, F., Nascimento, L., Brito, M., Da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural Biosorbents made from weeds. Materials, 12(15), 2486. https://doi.org/10.3390/ ma12152486@undefined@undefined@Yes$Cardoso, N. F., Lima, E. C., Pinto, I. S., Amavisca, C. V., Royer, B., Pinto, R. B., Alencar, W. S., & Pereira, S. F. (2011).Application of cupuassu shell as bio sorbent for the removal of textile dyes from aqueous solution. Journal of Environmental Management, 92(4), 1237-1247. https://doi.org/10.1016/j.jenvman.2010.12.010@undefined@undefined@Yes$Adeogun, A. I., Akande, J. A., Idowu, M. A., & Kareem, S. O. (2019). Magnetic tuned sorghum Husk biosorbent for effective removal of cationic dyes from aqueous solution: Isotherm, kinetics, thermodynamics and optimization studies. Applied Water Science, 9(7). https://doi.org/10.1007/s13201-019-1037-2@undefined@undefined@Yes$Ahmad, M. A., Ahmad, N., & Bello, O. S. (2015). Removal of Remazol brilliant blue reactive dye from aqueous solutions using watermelon rinds as adsorbent. Journal of Dispersion Science and Technology, 36(6), 845-858. https://doi.org/10.1080/01932691.2014.925400@undefined@undefined@Yes$Jarusiripot, C. (2014). Removal of reactive dye by adsorption over chemical Pretreatment coal-based bottom ash. Procedia Chemistry, 9,121-130. https://doi.org/ 10.10 16/j.proche.2014.05.015doi: 10.1016/j.proche.2014.05.015@undefined@undefined@Yes <#LINE#>Effects of temperature and humidity and effectiveness of some selected antioxidants on lipid oxidation of fresh nile tilapia (Oreochromis niloticus L.) of Lake Victoria, Kenya<#LINE#>Chrispin O. @Kowenje,David M. @Onyango,Luciana @Okwiri,Victor O. @Shikuku,Anthony @Sifuna,Erick @Omondi,David @Barasa,Andrew @Oduor,Henry B.O. @Lungayia,Rosemary @Owigar,Petronila @Otuya <#LINE#>39-47<#LINE#>6.ISCA-IRJEvS-2020-032.pdf<#LINE#>Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Kaimosi Friends University College, P.O.Box 385-50309, Kaimosi, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya and Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya@Maseno University, P.O. Box 333 - 40105, Maseno, Kenya@St. Pauls University, P.O. Box Private Bag 00217, Limuru, Kenya<#LINE#>29/6/2020<#LINE#>29/11/2020<#LINE#>Spoilage of fish and its related products due to oxidation is a primary problem leading to both loses in income and environmental degradation. Various methods such as sun-drying, smoking and refrigeration as currently used to prevent such loses are either costly, unavailable to the intended users or ineffective. In addition, the anti-oxidants available in the market to mitigate loses occasioned by oxidation to the fish are mainly artificial and yet to be optimized for Oreochromis niloticus. This study quantified the interactive effects between the storage temperature and ambient humidity and the effectiveness of Citric acid, Vitamin E (tocopherol), Rosemarinic acid, Propyl gallate and Vitamin C in arresting fish tissue oxidation. This study observed the fish, starts to rot from the head and this spoilage could only be controlled by temperature at low to medium humidity (< ca. 35 %) values. At high humidity, ca. 65%, the rate of spoilage was purely humidity controlled. The effectiveness order of Vitamin E ≥ Rosmarinic acid > Propyl gallate >Citric acid > Vitamin C was realized and their molecular rotatable bond counts and the kinetic diameters were the most influential properties. Thus, for effective storage, separating the head from the rest of fish and doing the refrigeration in less humid environments is recommended. The relative efficacy of the anti-oxidants could be predicted by evaluation of their relative rotatable bond counts and the kinetic diameters.<#LINE#>World Health Organization, (WHO) (2002). World Health Organization global strategy for food safety: safer food for better health. Geneva, Switzerland:@undefined@undefined@No$Kaferstein, F.K. (2002). Food Safety-a worldwide public health issue.Action to reverse the upward curve of food borne illness.In Smulders J.M., Collins J.D., (Eds).Safety assurance and veterinary public health vol 2.Amstelveen, Netherlands: Wageningen, Academic Publishers p. 19-31@undefined@undefined@Yes$Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S.,&Robards, K. (2001). Methods for testing antioxidant activity. Analyst, 127, 183-19.@undefined@undefined@Yes$Huang, D., Boxin, O.,&Prior, R.L. (2005).The Chemistry behind antioxidant capacity assays.J. Agric. Food Chem.53:1841-1856.@undefined@undefined@Yes$European Food Safety Authority, (EFSA) (2015). Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Fish Oil for Human Consumption. Food Hygiene, including Rancidity. EFSA Journal 2010;8(10):1874. [48 pp.]Food and Public Health 2015, 5(3): 61-69.@undefined@undefined@No$Chen, Q., Shi, H.,&Ho, C.T. (1992). Effects of Rosemary extracts and major constituents on lipid oxidation and soy bean lipooxygenase activity.J. Am. Oil Chem. Soc. 69(10):999-1002).@undefined@undefined@Yes$Kelleher, S.D., Laurie, S., Herbert, H., &Kurt, W. (1992). Inhibition of lipid oxidation during processing of washed, Minced Atlantic Mackerel. J. Food Sci. 57, 5, 1103-1119@undefined@undefined@Yes$Timbo, B., Koehler, K.M., Wolyniaks, C.S., &Klontz, K.C. (2004).Sulphites-A food and drug administration review of recalls and reported adverse events.J. Food Prot. 67 (8):1806-11@undefined@undefined@Yes$Clucas, I.J. (1982). Fish handling, processing and preservation in the tropics.Report of the tropical products institute, London.G144.Part 2.p.145@undefined@undefined@No$Kikugawa, K.,& Beppu, M. (1987). Involvement of lipid oxidation products in the formation of flourescent5 and cross-linked proteins.Chem. Phy. Lipids, 44, 277-297@undefined@undefined@Yes$Frankel, E.N., Huang, S.W., Robert, A., Eschbach, R.,&Prior, E. (1996). Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agric. Food Chem. 1996, 44, 131-135.@undefined@undefined@Yes$Wong, J.W., Hashimoto, K., & Shibamoto, T.(1995). Antioxidant activities of rosemary and sage extracts and vitamin E in a model meat system.J.Agric. Food Chem., 43:2707-2712@undefined@undefined@Yes$Davidson, P.M.,& Naidu, A.S. (2000). Phyto-phenols. In: Naidu, A.S. (Ed.), Natural Food Antimicrobial Systems. Boca Raton, FL, USA, CRC Press LLC, p. 265-294.@undefined@undefined@Yes$Drugbank (2016). Small Molecule Drug. www.drugbank.ca/drugs.Accessed on 16th May, 2016.@undefined@undefined@No$Hras, A.R., Hadolin, M., Knez, Z.,&Bauman, D. (2002).Comparison of antioxidative and synergistic of rosemary extract with alpha-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem. 71:229-33.@undefined@undefined@Yes$Stika, J.F., Suman, S.P.,&Xiong, Y.L. (2008). Frozen storage stability of vacuum -packaged precooked restructured steaks manufactured from mature cow-beef.Food Sci.Technol.41 (9):1535-1540@undefined@undefined@Yes$Richheimer, S.L.,Bernart, M.W., King, G.A.,Kent, M.C., &Bailey, D.T. (1996).Antioxidant activity of lipid soluble phenolic diterpenes from rosemary.J. Am. Oil Chem. Soc. 73(4):507-514@undefined@undefined@Yes$Reverte, D.,Xiong, Y.L.,&Moody, W.G. (2003). Properties of restructured beef steaks from forage and grain fed cattle as affected by antioxidant and flavouring agents.Meat Sci.65(1), 539-546@undefined@undefined@Yes$Nicolalde, C., Stetzer, A.J., Tucker, E.M., McKeith, F.K.,&Brewer, M.S. (2006).Effects of antioxidants on pork bone discolouration.Meat Sci. 72(4), 713-718@undefined@undefined@Yes$Branen, A.L., Davidson, P.M.,&Salminen, S. (2002). Food Additives.New York: John H Gante III, Marcel, Dekker, Inc.935 p. 15@undefined@undefined@No$Ahn, D.U., & Nam, K.C. (2004).Effect of ascorbic acid and antioxidant on colour, lipid oxidation and volatiles of irradiated ground beef.Rad.Phy. Chem. 71, 149-54.@undefined@undefined@Yes$Kowenje, C.O.,& Osewe E.T. (2015). OptimisingZeolitic Catalysis for Environmental Remediation: In Ashutosh Tiwari and Salam Titinchi (eds.) Advanced Catalytic Materials. Scrivener Publishing LLC. Beverly, MA. USA pages.411-438. ISBN: 978-1-118-99828-1.@undefined@undefined@Yes$Lemon, D.W. (1975).An improved TBA test for rancidity. New Series Circular No.51, Halifax Laboratory, Nova Scotia.@undefined@undefined@Yes$Bataringaya,A. (2007).Analysis of quality deterioration at critical steps/points in fish handling in Uganda and Iceland and suggestions for improvement, united nations university - fisheries training program, final report, Kampala, Uganda.@undefined@undefined@Yes$Brigitte, M., Brigiet, B.,&Corlien, H.(2004). In Marja de Goffau-Markusse (Ed) Preservation of fish and meat. Digigrafi, Wageningen, the Netherlands p. 8-15. ISBN: 90-72746-01-9@undefined@undefined@No$Onyango, D.M., Nyirima, J., Busisa, T. S., Sifuna, A. W., Namuyenga, N., Otuya, P., Owigar, R., Kowenje C., Oduor, A., &Lungayia H. (2015). Evaluation of the Effectiveness of Traditional RastrineobolaargenteaSun-drying Process Practiced along the Shores of Lake Victoria, Kenya. Food and Public Health 5(3):61-69@undefined@undefined@Yes$Howgate, P.F. (1982). Fish handling and processing. Torry Research Station pp 20-42.@undefined@undefined@Yes$Jonsdottir, S. (1992). Quality IndexMethod and TQM-System. Quality issues in the Fish industry. The research Liaison Office. University of Iceland. p. 81-94@undefined@undefined@No$Rezaeizadeh, A., Zakaria, Z. B. A. B., Abdollahi, M., Yong Meng, G., Mustapha, N. M., Bin Hamid, M., &Ibrahim, T. A. B. T (2011). Antioxidant and antihyperglycaemic effects of an aqueous extract from Momordicacharantiafruit in a type II diabetic rat model. J. Med. Plants Res., 5(14), 2990-3001@undefined@undefined@Yes$Marcio, C. & Ferreira, I. (2003). C.F.R.: 1 A review on antioxidants, prooxidants and related controversy:natural and synthetic compounds, screening and analysismethodologies and future perspectives. Food Chem.Toxicol. doi:10.1016/j.fct.2012.09.021.@undefined@undefined@Yes$Shikuku, V.O., Donato, F.F., Kowenje, C.O. Zanella, R.,& Prestes, O.D. (2015).A Comparison of Adsorption Equilibrium, Kinetics and Thermodynamics of Aqueous Phase Clomazone between Faujasite X and a Natural Zeolite from Kenya.S. Afr. J. Chem.,68, 245-252.@undefined@undefined@Yes <#LINE#>Investigation of inorganic nutrients available in Mula and Mutha River from Origin to Pune City, India<#LINE#>Pande Shruti @Dhananjay,Vedanti @Tejal,Mane Ashish @Vilas,Supekar @Ashwini <#LINE#>48-54<#LINE#>7.ISCA-IRJEvS-2020-033.pdf<#LINE#>Department of Environmental Science, Fergusson College (Autonomous), Pune, India@Department of Environmental Science, Fergusson College (Autonomous), Pune, India@Department of Environmental Science, Fergusson College (Autonomous), Pune, India@Department of Geology, Savitribai Phule Pune University, Pune, India<#LINE#>2/7/2020<#LINE#>5/11/2020<#LINE#>The study was aimed to identify the availability of inorganic nutrients in Mula and Mutha River. These were checked at selected locations from their origin to Pune city. The nutrients play an important role in the growth of plants and maintenance of overall aquatic diversity. Even as it becomes very necessary to understand the extent of nutrient pollution levels in rivers as waste discharges are on the rise day by day. The study was based on the hypothesis that lower concentrations of inorganic nutrients are available in waters of Mula and Mutha at the origin places as watershed areas while nutrients are in high concentrations in the city plains. Changes in nutrients could also give ideas about sources of pollution levels alongside the rivers. Overall, the purpose was to collect useful baseline data related to variations in nutrients for designing a river restoration plan.<#LINE#>Johnson, N. M., Likens, G. E., Bormann F. H., Fisher D. W. and Pierce, R. S. (1969). A Working Model for the Variation in Stream Water Chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Water Resour.Res.,5 (6): 1353-1363 https://doi.org/10.1029/WR005i006p01353@undefined@undefined@Yes$Hall, F. R. (1970). Dissolved Solids-Discharge Relationships: I. Mixing models. Water Resour. Res.,6(3): 845-850. https://doi.org/10.1029/WR006i003p00845@undefined@undefined@Yes$Lawrence, G. B. and Driscoll, C. T. (1990). Longitudinal Patterns of Concentration-Discharge Relationships in Streamwater Draining the Hubbard Brook Experimental Forest, New Hampshire. J. Hydrol. 116: 147 -165.https://doi.org/10.1016/0022-1694(90)90120-M@undefined@undefined@Yes$Peterson, C., Scheidegger, K. and Komar, P. (1984). Sediment Composition and Hydrography in Six High-Gradient Estuaries of the Northwestern United States. J. Sediment. Petrol, 54(1): 86-97. https://doi.org/10.1306/212F83AF-2B24-11D7-8648000102C1865D@undefined@undefined@Yes$Mihov S. and Hristov I. (2011). River Ecology. WWF Letters.@undefined@undefined@No$Padmalal, D. and Maya, K. (2014). Rivers-Structure and Functions. In Book ‘Sand Mining: Environmental Impacts and Selected Case Studies. 9-22, ISBN 978-94-017-9144-1.@undefined@undefined@Yes$Davies T. C. (1993). Chemistry and Pollution of Natural Waters in Western Kenya. J. Afr. Earth Sci., 23(4): 547-563. https://doi.org/10.1016/S0899-5362(97)00018-3@undefined@undefined@Yes$Sheibley, R. W., Konrad, C. P. and Black, R. W. (2015). Nutrient Attenuation in Rivers and Streams, Puget Sound Basin, Washington. U.S. Geological Survey. 2015-5074. ISSN 2328-0328 (online)@undefined@undefined@Yes$Schindler, D. W. (1976). Biogeochemical Evolution of Phosphorus Limitation in Nutrient-Enriched Lakes of the Precambrian Shield, 647-664. In: J. Nriagu (ed.). Environmental Biogeochemistry. Volume 2. Metals Transfer and Ecological Mass Balances. Ann Arbor Science Publ., Ann Arbor, MI.@undefined@undefined@Yes$Caraco, N., (2009). Phosphorus. In: Encyclopedia of Inland Waters, Likens, G.E. (Ed.). Elsevier, Amsterdam, ISBN: 0120884623, pp: 73-78.@undefined@undefined@Yes$Wijsman, J.W.M., Middelburg, J. J., Herman, P. M.J., Böttcher, M. E., andHeip, C. H.R. (2001). Sulfur and Iron Speciation in Surface Sediments along the Northwestern Margin of the Black Sea. Mar. Chem., 74(4): 261-278. https://doi.org/10.1016/S0304-4203(01)00019-6@undefined@undefined@Yes$Kaushal, S. S. (2009). Chloride. Encyclopedia of Inland Waters.@undefined@undefined@No$Gustafsson, A. and Johansson, M. (2006). An Investigation of Nutrient Levels Along the Mbuluzi River. A Background for Sustainable Water Resources Management. A Minor Field Study (MFS) conducted in Mozambique and Swaziland. Master of Science Thesis in Environmental Engineering Department of Water Resources Engineering Faculty of Engineering Lund University .@undefined@undefined@Yes$Deely, J. M. and Sheppard, D. S. (1996). Whangaehu River, New Zealand: Geochemistry of a River Discharging from an Active Crater Lake. Applied Geochemistry. 11: 447-460. https://doi.org/10.1016/0883-2927(96)00023-6@undefined@undefined@Yes$Palmer, S. C. J.,Van Hinsberg V. J., McKenzie J. M. and Sophia Y. (2011). Characterization of Acid River Dilution and Associated Trace Element Behavior through Hydrogeochemical Modeling: A Case Study of the Banyu Pahit River in East Java Indonesia. Appl. Geochem., 26: 1802-1810.https://doi.org/10.1016/0883-2927(96)00023-6@undefined@undefined@Yes$Gilmour, C. and Riedel, G. (2009). Biogeochemistry of Trace Metals and Metalloids. In: Encyclopedia of Inland Waters, 7-15. Edited by G.E. Likens. Amsterdam: Elsevier. [Chapter on the Biogeochemistry of Trace Metals and Metalloids].ISBN: 9780128102244@undefined@undefined@Yes$Holt, R. F., Timmons, D. R. andLatterell, J. J. (1970). Accumulation of Phosphates in Water. J. Agric. Food Chem., 18 (5): 781-784. https://doi.org/10.1021/jf60171a004@undefined@undefined@Yes$Mueller, D. K., Hamilton, P. A., Helsel D. R., Hitt K. J.,andRuddy, B. C. (1995). Nutrients in Ground Water and Surface Water of the United States- An Analysis and Data Through (1992). U.S. Geological Survey Water-Resources Investigations Report. 95-4031: 74 . https://doi.org/10.3133/wri954031@undefined@undefined@Yes$Michalski, R. and Kurzyca, I. (2005). Determination of Nitrogen Species (Nitrate, Nitrite and Ammonia Ions) in Environmental Samples by Ion Chromatography. Pol. J. Environ. Stud., 15(1): 5-18.@undefined@undefined@Yes$Neal, C., Jarvie, H. P., Neal, M., Hill, L.andWickham H. (2006). Nitrate Concentrations in River Waters of the Upper Thames and Its Tributaries. Sci. Total Environ., 15: 365 (1-3): 15-32. https://doi.org/10.1016/j.scitotenv.2006.02.031@undefined@undefined@Yes$Sievert, S. M ., Kiene, R. P. andSchulz-Vogt, H. N. (2007). The Sulphur Cycle. Ocenography. Section IV. Processes. Chapter 9. Microbes and Major Elemental Cycles.@undefined@undefined@No$Kelly, W. R., Panno, S. V., Hackley, K. (2012). The Sources, Distribution and Trends of Chloride in the Waters of Illinois. Illinois State Water Survey. Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois.@undefined@undefined@Yes$Grochowsk, J. andTandyrak, R. (2009). The Influence of the Use of Land on the Content of Calcium, Magnesium, Iron and Manganese in Water Exemplified in Three Lakes in Olsztyn Vincinity. Limnological Review. 9(1). 9-16.@undefined@undefined@Yes$Nikanorov, A.M. and Brazhnikova, L.V. Variation in the Chemical Composition of Rivers,Lakes and WetlandsTypes and Properties of Water - Vol. II ©Encyclopedia of Life Support Systems (EOLSS).@undefined@undefined@Yes$Jolly, J. H. (1993). Materials Flow of Zinc in the United States 1850-1990. Resour. Conserv. Recy., 9 (1-2): 1:30. https://doi.org/10.1016/0921-3449(93)90031-A@undefined@undefined@Yes$Giblin, A. E. (2009). Iron and Manganese. Elsevier. Marine Biological Laboratory. Woods Hole. MA USA.@undefined@undefined@No$Stokes, P.M., Campbell, P.G.C., Schroeder, W.H., Trick, C., France, R.L., Puckett, K.J., LaZerte, B., Speyer, M., Hanna, J.E., Donaldson, J. (1988). Manganese in the Canadian Environment. Ottawa, Ontario, National Research Council of Canada, Associate. Committee on Scientific Criteria for Environmental Quality (NRCC No. 26193).@undefined@undefined@Yes <#LINE#>Study, manufacture and testing of a hybrid Solar domestic water heater for a sustainable approach in West African climatic conditions<#LINE#>Guidi Tognon @Clotilde,Alihonou Agnimoan @Constant,Chegnimonhan K. @Victorin,Adomou @Alain <#LINE#>55-61<#LINE#>8.ISCA-IRJEvS-2020-035.pdf<#LINE#>Laboratory of Processes and Technological Innovations, National Institute of Industrial Technology (INSTI) of Lokossa, Lokossa, Benin@Laboratory of Processes and Technological Innovations, National Institute of Industrial Technology (INSTI) of Lokossa, Lokossa, Benin@Laboratory of Processes and Technological Innovations, National Institute of Industrial Technology (INSTI) of Lokossa, Lokossa, Benin and PTAA, CRA Agonkanmey, National Institute for Agricultural Research of Benin, Cotonou, Benin@Laboratory of Processes and Technological Innovations, National Institute of Industrial Technology (INSTI) of Lokossa, Lokossa, Benin<#LINE#>13/7/2020<#LINE#>17/11/2020<#LINE#>Sanitary hot water is needed in many industrial processes but can also be found in the habitat where it contributes to household comfort. In industrial applications, hot water is used in food processing or as a heat transfer fluid. It is sometimes used to operate machines such as absorption refrigeration systems for the production of cold for the preservation of foodstuffs, etc. Producing hot water from energy sources that are not harmful to the environment, such as solar energy, is a challenge to limit the negative impacts of the use of fossil fuels on nature. Despite the advantages of solar hot water production and the potential of solar energy in Africa, this technique remains little used in Sub-Saharan Africa due to the lack of equipment and its high price. The objective of the project is to help design, manufacture and test a local, efficient and affordable solar water heater for the African market. The first experimental tests on the hot water production showed that the hot water storage temperature in the equipment\'s tank can reach 80°C, on sunny days under the test conditions in Benin. On non-sunny days, the completed collector should operate with an electric booster to reach the hot water storage temperature of 80°C required for some industrial applications (absorption machines). These first tests are conclusive and this low environmental impact device can be improved and popularised for industrial and domestic applications in sub-Saharan climatic conditions.<#LINE#>Alihonou A. C., GuidiC. T., VissohM. L., AdjagodoA., SanyaE. A. and TchibozoM. A. D., Absorption solar air conditioning, mode of operation and description of the different components of a solar air conditioning unit in the world: Literature review. International Journal Biological and Chemical Sciences, 13(3), 2019, pp 1890-1902. (In french) Climatisation solaire à absorption, mode de fonctionnement et description des differents elements dune unite de climatisation solaire dans le monde : Revue de litterature. International Journal Biological and Chemical Sciences, 13(3), 2019, pp 1890-1902.@undefined@undefined@No$Tabet Ismail, Study, Realization and Simulation of a Solar Sensor, Ph.D. thesis in Physical Sciences, University of Constantine, Algeria, 2016, pp 264. (In french) Etude, Realisation et simulation dun capteur Solaire, Thèse de Doctorat en Sciences Physique, Universite de Constantine, Algerie, 2016, pp 264.@undefined@undefined@No$AlihonouA. C.,Parametric study and exergetic analysis of solar absorption machines in the climatic conditions of Benin, 2019, PhD thesis, pp 235.(In french) Etude parametrique et analyse exergetique des machines à absorption solaire dans les conditions climatiques du Benin, 2019, Thèse de doctorat, pp 235.@undefined@undefined@No$Voyant C., Prediction of time series of global solar radiation and photovoltaic energy production from artificial neural networks, PhD thesis, University of Corsica-Pascal Paoli, France, 2011. (In French) Prediction de series temporelles de rayonnement solaire global et de production denergie photovoltaïque à partir de reseaux de neurones artificiels, thèse doctorat, universite de Corse-Pascal Paoli, France, 2011.@undefined@undefined@Yes$Chegnimonhan V. K.,Guidi C. T, and MensahG. A., Limitation of environmental damage linked to refrigerants: towards zero pollution objectives. Data sheet, UNSTIM/MESRS/ and INRAB/MAEP, 2018, 6p. Legal deposit N°10399 of 08/06/2018, 2nd quarter National Library (BN) of Benin, ISBN: 978-99919-76-32-7. (French) Limitation des degâts environnementaux lies aux refrigerants : vers les objectifs zero pollution. Fiche technique, UNSTIM/MESRS/ et INRAB/MAEP, 2018, 6p. Depôt legal N°10399 du 08/06/2018, 2ème trimestre Bibliothèque Nationale (BN) du Benin, ISBN : 978-99919-76-32-7.@undefined@undefined@Yes$Peuser F.A., RemmersK.H., SchanaussM.,Solar thermal installations design and implementation, 2005, Ed. Le moniteur, France ISBN13: 978-2-281-11266-5. (French) Installations solaires thermiques conception et mise en œuvre, 2005, Ed. Le moniteur, France ISBN13: 978-2-281-11266-5.@undefined@undefined@No$Bernard J., SolarEnergy, Calculations and Optimization, New Edition, 2011, France. (French). Energie solaire, calculs et optimisation, Nouvelle Edition, 2011, France.@undefined@undefined@Yes$GergaudO., Energy modelling and economic optimisation of a grid-connected wind and photovoltaic production system associated with an accumulator, EcoleNormaleSuperieure de Cachan, France, 2002.(French). Modelisation energetique et optimisation economique d@undefined@undefined@No$AdouaneM., Study of the reliability of solar hybrid systems in the Sahara, PhD thesis, EcoleNationalePolytechnique, Algeria, 2014. Etude de la fiabilite des systèmes solaires hybrides dans le Sahara, thèse de doctorat, ecole nationale polytechnique, Algerie, 2014.@undefined@undefined@No$KalogirouA. S., solar thermal collectors and applications, progress in energy and combustion science, (30), 2004, pp 231-295.@undefined@undefined@Yes$FosterR.,GhassemiM.,and CotaA., solar energy, renewable energy and the environment, 2009.@undefined@undefined@Yes$Sushil KumarS., Singh P., KushwahaK. V., and KumarV., Analytical study of a solar absorption refrigeration system, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), ISSN(P): 2249-6890, Vol. 4, Issue 5,2014, pp27-34@undefined@undefined@No$KhannaD., and JoseA., Assessment of the use of solar flat plate collectors for solar thermal refrigeration, International Research Journal of Engineering and Technology (IRJET), ISSN: 2395-0056, Volume: 04, 2017,pp 773-779.@undefined@undefined@No$Aziz RahamanM., Abdul RaheemM. J., AhmedN., and RizwanM., 2014, Design and Fabrication of Vapor Absorption Refrigeration System [Libr-H20], International Journal of Modern Engineering Research (IJMER), ISSN: 2249-6645, Vol. 4, 2014, pp 13-18.@undefined@undefined@No <#LINE#>Assessment of rainwater quality and potential for rainwater harvesting in Dallu Awas area, Kathmandu, Nepal<#LINE#>Nepal @Sabita,Ghimire Narayan @Gopal,Maharjan @Rajana,Shakya @Sudarshana,Shakya Bindra @Devi,Tamrakar @Amrita,Shakya Pawan @Raj <#LINE#>62-73<#LINE#>9.ISCA-IRJEvS-2020-045.pdf<#LINE#>Department of Environmental Science, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal@Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal@Nepal Naya Aayam Multidisciplinary Instititute, University of Northampton, Jorpati, Kathmandu Nepal@Department of Botany, Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal@Department of Mathematics and Statistics, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal@Department of Botany, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal@Department of Chemistry, Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal<#LINE#>20/9/2020<#LINE#>5/12/2020<#LINE#>Nepal is rich in natural resources and it is among the richest in terms of water resource availability. The average annual rainfall of the country is in between 1500-3000mm. However, water scarcity is a major problem in Kathmandu valley as well as in some major cities of the country. In this context, rainwater harvesting may serve as one of the promising ways of supplementary water supply system to meet water demand in the valley. This study is aimed to analyze the potential for rainwater harvesting, the rainfall pattern and rainwater quality at Dallu Awas area which lies within the central-western part of the Kathmandu valley. Potential rainwater harvesting was determined by the questionnaire survey method and using a mathematical formula. The rainfall pattern was determined by analyzing the rainfall data supplied by the Department of Hydrology and Metrology, Government of Nepal and, the quality of rainwater was determined by analyzing its physico-chemical and microbial parameters in the laboratory. The study showed 90.33m3 of rainwater harvesting capacity per household. Between 2006-2015 AD, the highest amount of rainfall (1829.4mm) was recorded in 2011 and the lowest (98.25mm) in 2009. For rainwater quality, a total of 81 rainwater samples were collected directly from atmospheric precipitation during rainy season from three different cluster zones viz., residential, school and hospital of the study area. The assessed physico-chemical, and microbial quality parameters were turbidity, electrical conductivity (EC), pH, biogenic compound, heavy metals (Fe, Mn, Pd and Zn) and total coliforms. Results revealed that the values of tested parameters were found within the guideline values set out by the NDWQS and WHO. Hence, the present study suggests that water scarcity in Kathmandu may be solved to some extent if proper rainwater harvesting system is adopted and collected rainwater may be used for multiple purposes following proper disinfection process.<#LINE#>Orlińska-Woźniak, P., Wilk, P. and Gębala, J. (2013). Water availability in reference to water needs in Poland. Meteorology Hydrology and Water Management. Research and Operational Applications, 1, 45-50.@undefined@undefined@Yes$Słyś, D. (2009). Potential of rainwater utilization in residential housing in Poland. Water and Environment Journal, 23(4), 318-325.@undefined@undefined@Yes$Evans, C.A., Coombes, P.J., Dunstan, R.H. and Harrison, T. (2007). Identifying the major influences on the microbial composition of roof harvested rainwater and the implications for water quality. Water Science and Technology, 55(4), 245-253.@undefined@undefined@Yes$Pochwat, K., Słyś, D. and Kordana, S. (2017). The temporal variability of a rainfall synthetic hyetograph for the dimensioning of storm water retention tanks in small urban catchments. Journal of Hydrology, 549, 501-511.@undefined@undefined@Yes$Jones, M.P. and Hunt, W.F. (2010). Performance of rainwater harvesting systems in the southeastern United States. Resources, Conservation and Recycling, 54(10), 623-629.@undefined@undefined@Yes$Zhang, Y., Grant, A., Sharma, A., Chen, D. and Chen, L. (2010). Alternative water resources for rural residential development in Western Australia. Water Resources Management, 24(1), 25-36.@undefined@undefined@Yes$Khan, S.T., Baksh, A.A., Papon, M.T.I. and Ali, M.A. (2017). Rainwater harvesting system: An approach for optimum tank size design and assessment of efficiency. International Journal of Environmental Science and Development, 8(1), 37-43.@undefined@undefined@Yes$Stec, A. and Zeleňakova, M. (2019). An analysis of the effectiveness of two rainwater harvesting systems located in central Eastern Europe. Water, 11(3), 458.@undefined@undefined@Yes$Shrestha, T.K. (1990). Resource ecology of the Himalayan waters. Curriculum Development Centre, Tribhuvan University, Kathmandu, Nepal, 645.@undefined@undefined@Yes$Shrestha, R.R. (2009). Rainwater harvesting and groundwater recharge for water storage in the Kathmandu Valley. ICIMOD Newsletter, 56, 27-30.@undefined@undefined@Yes$Myers, L.E. (1975). Water harvesting--2000 BC to 1974 AD. ARS W Agric Res Serv US Dep Agric.@undefined@undefined@Yes$Smet, J. and Moriarty, P. (2001). DGIS policy support paper: Rooftop rainwater harvesting. IRC. Delft.@undefined@undefined@Yes$Fink, D.H., Frasier, G.W. and Cooley, K.R. (1980). Water harvesting by wax-treated soil surfaces: progress, problems, and potential. Agricultural Water Management, 3(2), 125-134.@undefined@undefined@Yes$Frasier, G.W. (1980). Harvesting water for agricultural, wildlife, and domestic uses. Journal of Soil and Water Conservation, 35(3), 125-128.@undefined@undefined@Yes$Pretus, L.D. (2009). Field study on feasibility of rainwater harvesting for human consumption and for livelihood enhancement in rural Nepal. WHO, Nepal.@undefined@undefined@No$Hatibu, N., Mahoo, H.F. and Gowing, J.W. (2000). Rainwater harvesting for natural resources management: A planning guide for Tanzania. Technical Handbook, (22).@undefined@undefined@Yes$Aladenola, O.O. and Adeboye, O.B. (2010). Assessing the potential for rainwater harvesting. Water Resources Management, 24(10), 2129-2137.@undefined@undefined@Yes$Dahal, R., Ban, J., Makaju, S., Shrestha, R.S. and Dwa, N. (2010). Rainwater Harvesting (RWH) in Nepal. Retrieved August, 10, 2020.@undefined@undefined@Yes$Ghimire, Y.N., Shivakoti, G.P. and Perret, S.R. (2010). Household-level vulnerability to drought in hill agriculture of Nepal: implications for adaptation planning. International Journal of Sustainable Development & World Ecology, 17(3), 225-230.@undefined@undefined@Yes$Gwenzi, W., Dunjana, N., Pisa, C., Tauro, T. and Nyamadzawo, G. (2015). Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustainability of Water Quality and Ecology, 6, 107-118.@undefined@undefined@Yes$Zdeb, M., Zamorska, J. and Papciak, D. (2016). Studying microbiology of rain water for of their use in economy. Journal of Ecological Engineering, 17(3), 203-208.@undefined@undefined@Yes$Despins, C., Farahbakhsh, K. and Leidl, C. (2009). Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology—AQUA, 58(2), 117-134.@undefined@undefined@Yes$Friedler, E., Gilboa, Y. and Muklada, H. (2017). Quality of Roof-Harvested Rainwater as a Function of Environmental and Air Pollution Factors in a Coastal Mediterranean City (Haifa, Israel). Water, 9(11), 896.@undefined@undefined@Yes$Helmreich, B. and Horn, H. (2009). Opportunities in rainwater harvesting. Desalination, 248(1-3), 118-124.@undefined@undefined@Yes$National Drinking Water Quality Standard (NDWQS, 2005). Implementation Directives for National Drinking Water Quality Standards, Ministry of Physical Planning and Works, Government of Nepal.@undefined@undefined@No$WHO (2004). Guidelines for drinking-water quality, 3rd ed. World Health Organization, Geneva, Switzerland.@undefined@undefined@Yes$Makaju, R. (2007). Roof rainwater harvesting: A case study in Bhaktapur municipal area. M.Sc. Thesis, Tribhuvan University, Nepal.@undefined@undefined@No$Ghisi, E., Montibeller, A. and Schmidt, R.W. (2006). Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Building and Environment, 41(2), 204-210.@undefined@undefined@No$APHA (2012). Standard methods for the examination of water and waste water, American Public Health Association, 21th edition, 1015, Fifteenth Street, NW.@undefined@undefined@Yes$Pandey, S.P., Yadav, C.R., Sah, K., Pande, S. and Joshi, P.K. (2000). Legumes in Nepal. 71-97.@undefined@undefined@Yes$Youn, S.G., Chung, E.S., Kang, W.G. and Sung, J.H. (2012). Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change. Resources, Conservation and Recycling, 65, 136-144.@undefined@undefined@Yes$Bartlett, R., Bharati, L., Pant, D., Hosterman, H. and McCornick, P.G. (2010). Climate change impacts and adaptation in Nepal (Vol. 139). IWMI.@undefined@undefined@Yes$Baidya, S.K., Shrestha, M.L. and Sheikh, M.M. (2008). Trends in daily climatic extremes of temperature and precipitation in Nepal. Journal of Hydrology and Meteorology, 5(1), 38-51.@undefined@undefined@Yes$Shrestha, A.B., Wake, C.P., Dibb, J.E. and Mayewski, P.A. (2000). Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(3), 317-327.@undefined@undefined@Yes$Palazzoli, I.R.E.N.E., Maskey, S., Uhlenbrook, S., Nana, E.S.T.E.R. and Bocchiola ,D.A.N.I E.L.E. (2015). Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal. Agricultural Systems, 133, 143-157.@undefined@undefined@Yes$Shrestha, M.L. (2000). Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteorology and Atmospheric Physics, 75(1-2), 21-28.@undefined@undefined@Yes$Parihar, S.S., Kumar, A., Kumar, A., Gupta, R.N., Pathak, M., Shrivastav, A. and Pandey, A.C. (2012). Physico-Chemical and Microbiological Analysis of Underground Water in and Around Gwalior City, MP, India, Research Journal of Recent Science, 1, 62-65.@undefined@undefined@Yes$Naddeo, V., Scannapieco, D. and Belgiorno, V. (2013). Enhanced drinking water supply through harvested rainwater treatment. Journal of Hydrology, 498, 287-291.@undefined@undefined@Yes$Trivedy, R.K. and Goel, P.K. (1986). Chemical and Biological Methods for Water Pollution Studies, Environmental Publications, Oriental Printing Press, Aligarh.@undefined@undefined@Yes$Leong, J.Y.C., Oh, K.S., Poh, P.E. and Chong, M.N. (2017). Prospects of hybrid rainwater-greywater decentralised system for water recycling and reuse: A review. Journal of Cleaner Production, 142, 3014-3027.@undefined@undefined@Yes$Zdeb, M., Zamorska, J., Papciak, D., and Słyś, D. (2020). The quality of rainwater collected from roofs and the possibility of its economic use. Resources, 9(2), 1-17.@undefined@undefined@Yes$Xu, Z., Wu, Y., Liu, W.J., Liang, C.S., Ji, J., Zhao, T. and Zhang, X. (2015). Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China. Atmospheric Research, 164, 278-285.@undefined@undefined@Yes$Bai, L. and Wang, Z.L. (2014). Anthropogenic influence on rainwater in the Xi@undefined@undefined@Yes$McCarty, M.F. (2004). Should we restrict chloride rather than sodium? Medical Hypotheses, 63(1), 138-148.@undefined@undefined@Yes$Purohit, S.S. and Saxena, M.M. (1990). Water, Life and Pollution. Agro Botanical Publishers.@undefined@undefined@Yes$Manivasakam N. (1984). Physico-chemical examination of water, sewage and industrial effluents. 2nd edn., Pragati Prakashan.@undefined@undefined@Yes$Versari, A., Parpinello, G.P. and Galassi, S. (2002). Chemometric survey of Italian bottled mineral waters by means of their labelled physico-chemical and chemical composition. Journal of Food Composition and Analysis, 15(3), 251-264.@undefined@undefined@Yes$Krouse, R. and Mayer, B. (1999). Sulfur and oxygen isotopes in sulphate. In: Cook PG, Herczeg AL, editors. Environmental Tracers in Subsurface Hydrology. Kluwer; Boston, 195-231.@undefined@undefined@Yes$Duncan, H.P. (1995). A review of urban stormwater quality processes (Report No 95/9): Cooperative Research Centre for Catchment Hydrology. Melbourne, Australia.@undefined@undefined@Yes$Lai, Y.H., Ahmad, Y., Yusoff, I., Bong, C.W. and Kong, S.Y. (2018, September). Effects of roof pitch gradient and material to harvested rainwater quality. In IOP Conf. Ser. Mater. Sci. Eng (Vol. 401).@undefined@undefined@Yes$Lee, J.Y., Yang, J.S., Han, M. and Choi, J. (2010). Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 408(4), 896-905.@undefined@undefined@Yes$Gunawardena, J., Egodawatta, P., Ayoko, G.A. and Goonetilleke, A. (2013). Atmospheric deposition as a source of heavy metals in urban stormwater. Atmospheric Environment, 68, 235-242.@undefined@undefined@Yes$Dobrowsky, P.H., De Kwaadsteniet, M., Cloete, T.E. and Khan, W. (2014). Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater. Applied and Environmental Microbiology, 80(7), 2307-2316.@undefined@undefined@Yes$Llopart-Mascar0, A., Ruiz, R., Martinez, M., Malgrat, P., Rusinol, M., Gil, A., ... and Rubio, P. (2010). Analysis of rainwater quality. Towards a sustainable rainwater management in urban environments-Sostaqua Project. NOVATECH 2010.@undefined@undefined@Yes$Mendez, C.B., Klenzendorf, J.B., Afshar, B.R., Simmons ,M.T., Barrett, M.E., Kinney, K.A. and Kirisits, M.J. (2011). The effect of roofing material on the quality of harvested rainwater. Water Research, 45(5), 2049-2059.@undefined@undefined@Yes$Puth, M.T., Neuhauser, M. and Ruxton, G.D. (2014). Effective use of Pearsons product-moment correlation coefficient. Animal Behavior, 93, 183-189.@undefined@undefined@Yes <#LINE#>Assessment of toothpaste from local and imported origins for its heavy metals and minerals composition<#LINE#>Asia @Khan,Nazeefa @Fatima,Muhammad Shuaib @Kabeer <#LINE#>74-80<#LINE#>10.ISCA-IRJEvS-2020-052.pdf<#LINE#>Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan@Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan@Environmental Consultancies & Options (ECO), Lahore, Pakistan<#LINE#>3/10/2020<#LINE#>18/12/2020<#LINE#>The purpose of this study was to assess the concentration of heavy metals (Pb, Zn, Mn, Ni, Se, Cr, Cu & Fe) and minerals (Na, Ca, P& F) in different regular and herbal toothpaste collected from local markets and pharmacies of Lahore. They were divided into five groups each containing five toothpastes. Samples were digested in fume hood by using the diacid method. Mineral samples (Na, Ca & P) were analyzed by using Multi-channel Flame photometer. While Samples of heavy metals were measured using Atomic Absorption Spectrophotometer. Fluoride was determined by spectrophotometer. The result showed that Ca, Zn, Fe, Cr, Ni and Mn was above than permissible limit while K and Pb were within permissible limit. Cu was not detected at all. Fluoride was present within permissible limit in three groups while in remaining groups its concentration was slightly higher than permissible limit. Seand Na was above permissible limit in four group while in imported regular it was within permissible limit.<#LINE#>Odukudu, F. B., Ayenimo, J. G., Adekunle, A. S., Yusuff, A. M., & Mamba, B. B. (2014). Safety evaluation of heavy metals exposure from consumer products. Int J Consu Stud., 38(1), 25-34.https://doi.org/10.1111/ijcs.12061@undefined@undefined@Yes$FDA. (2016). Are all personal care products regulated as cosmetics? US Food and Drug administration: New Hampshire Avenue; http://www.fda.gov/AboutFDA/Transparency/Basics/ucm242716.htm.@undefined@undefined@No$Orisakwe, O. E. Okolo, K. O. Igweze, Z. N. Ajaezi, G. C. and Udowelle, N. A. (2016). Potential hazards of toxic metals found in toothpastes commonly used in Nigeria. RoczPaństwowZakłHig., 67(2), 197-216.@undefined@undefined@Yes$Mangilal, T. and Ravikumar, M. (2016). Preparation and evaluation of herbal toothpaste and compared with commercial herbal toothpastes: an in vitro study. IJAHM., 6(3), 2266-2273. ISSN: 2249-5746@undefined@undefined@Yes$Saeed, M. Muhammad, N. and Khan, H. (2011). Assessment of heavy metal content of branded Pakistani herbal products. Trop J Pharm Res., 10(4), 499-506. http://doi.org/10.4314/tjpr.v10i4.16@undefined@undefined@Yes$Umar, M. A. and Caleb, H. (2013) Analysis of metals in some cosmetic products in FCT-Abuja, Nigeria. Inter. J. Res. Cos. Sci., 3(2), 14-18.@undefined@undefined@Yes$Muhamad, N., Saeed, M., Ali Shah, W., Ali, T. and Khan, H. (2012). Analysis of arsenic in Pakistani herbal medicines using atomic absorption spectrometer equipped with MHS-10 flow injection system. J. Med. Plan. Res., 6(45), 5684-5687. https://doi.org/10.5897/JMPR11.1274@undefined@undefined@Yes$Occupational health and safety administration (2004). Safety and health topics: Heavy metals.@undefined@undefined@No$Kabeer, M.S. Hameed, I. Kashif, S.U.R. Khan, M. Tahir, A. Anum, F. Khan, S. and Raza, S. (2020). Contamination of heavy metals in poultry eggs: a study presenting relation between heavy metals in feed intake and eggs. Arch Environ Occup Health., pp.1-13.https://doi.org/ 10.1080/19338244.2020.1799182@undefined@undefined@No$Martin, S. and Griswold, W. (2009). Human health effects of heavy metals. Environ. Sci. Technol.BriefCit., 15, 1-6.@undefined@undefined@Yes$Bhatia, S. C. (2001). Environmental pollution and control in chemical process industries. Khanna ub, Delhi, 365-391. ISBN: 978-81-7409-106-2@undefined@undefined@No$Chang, L.W. and Verity, M. Mercury neurotoxicity. (1995). A handbook of neurotoxicology. New York31-95.@undefined@undefined@No$Wataha, J. C. Lockwood, P. E. Messer, R. L. Lewis, J. B. and Mettenburg, D. J. (2008). Brushing-induced surface roughness of nickel-, palladium-, and gold-based dental casting alloys. J.Prosthet. Dent., 99(6), 455-460. https://doi.org/10.1016/S0022-3913(08)60107-9@undefined@undefined@Yes$Navada, R. Kumari, H. Le, S. and Zhang, J. (2008). Oral malodor reduction from a zinc-containing toothpaste. J. clinic. dent., 19(2), 69-73.@undefined@undefined@Yes$Mahmood, S.J., Taj, F., Parveen, F., Usmani, T.H., Azmat, R. and Uddin, F. (2007). Arsenic, fluoride and nitrate in drinking water: the problem and its possible solution. Res. J. Environ. Sci., 1(4), 179-184. DOI: 10.3923/rjes. 2007.179.184@undefined@undefined@Yes$Ogbeh, E. (2014) Quality assessment of some selected toothpaste used in Nigeria. Ahmedu bello university Zaria, Nigeria, 6.@undefined@undefined@No$Denholm, J. (2010). Complementary Medicine and Heavy Metal Toxicity in Australia. Web. MedCentral Toxi., 1(9), 1-6.http://doi.org/10.9754/journal.wmc.2010.00535@undefined@undefined@Yes$Health Canada (2016). Guidelines on heavy metals impurities in cosmetics. http://www.hc-sc.gc.ca/cps-spc/pubs/indust/heavy_metals-metaux_lourds/index-eng.php.@undefined@undefined@No$Pakistan standard specification for toothpaste. (2009) (1st revision). 1-22 (2009)@undefined@undefined@No$McConville, M. J., and Ralph, S. A. (2013). Chronic arsenic exposure and microbial drug resistance.PNAS., 110(49), 19666-19667. https://doi.org/ 10.1073/ pnas.1319659110@undefined@undefined@Yes @Research Article <#LINE#>Soil characteristics in the forest patches of Jungle Mahal in WB, India<#LINE#>Gautam Kumar @Das <#LINE#>81-85<#LINE#>11.ISCA-IRJEvS-2020-047.pdf<#LINE#>19, Raj Krishna Pal Lane, Kolkata, WB, India<#LINE#>28/9/2020<#LINE#>24/12/2020<#LINE#>Jungle Mahal is popular for its numerous forest patches and elephant corridor and is embarrassing to both the villagers and forest department regarding man-elephant conflict in and around the forest areas of south-east part of West Bengal. The forest area of the Jungle Mahal (composed of four districts and part of two districts) once is in depleting status, which is now reviving as reported by the Forest Survey of India in 2019. The probable reasons for this increasing scenario of Jungle Mahalare the impact of climate change, change of soil chemical parameters and local peoples direct participation with the forest department for forest restoration. As the study of the impact of climate change is still continuing, a pilot survey has been taken up to review the physico-chemical parameters of soil in the selected areas of Joypur and Beliatore Forest Ranges of Bankura, Lodhasuli and Mayur Jharna Elephant Reserve in Jhargram, Arabari in Paschim Medinipur, Bundowan and Garh Panchakot of Purulia, Garh Jangal and Aduria forest in Paschim Bardhaman and 11 Mile forest in the Birbhum district.Result obtained from the soil chemical analysis of the sampled soils up to rooting depth of 30 cm show status quofor the forest stands of Jungle Mahal of West Bengal.<#LINE#>FSI. (2019). India State of Forest Report 2019. Ministry of Environment, Forest & Climate Change, Government of India.@undefined@undefined@No$Das, G. K. (2020). Solitary Tree Behaves like a Nuclear Family in the Forest Stands.Frontier., 26 September 2020.@undefined@undefined@No$Das, G. K. (2020). Bioeconomy and Forest Bathing Models for Green Recovery of Bengal.Indian Science Cruiser., 34 (3), 8-9.@undefined@undefined@Yes$Wang, Q. K., Wang, S. L. (2007). Soil organic matter under different forest types in Southern China. Geoderma., 142, 349-356. doi:10.1016/j. Journal Geoderma, 2007.09.006.@undefined@undefined@Yes$Wang, C. K., Yang, J. Y. (2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology., 13,123-131. doi:10.1111/j.1365-2486.2006.@undefined@undefined@Yes$Yang, K., Zhu, J, Zhang, M, Yan Q, Sun OJ (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal Plant Ecology., 3,175-182. doi:10.1093/jpe/rtq022.@undefined@undefined@Yes$Zhao, D., Li, F, Wang, R. (2012). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil, China. Acta EcologicaSinica., 32, 144-149. doi:10.1016/S1002-0160(08)60073-9.@undefined@undefined@Yes$Melle, S., Frossard, E, Spohn, M and Luster, J. (2020). Plant Nutritional Status Explains the Modifying Effect of Provenance on the Response of Beech Sapling Root Traits to Differences in Soil Nutrient Supply., Frontiers in Forest and Global Change. doi:10.3389/ffgc.2020.535117.@undefined@undefined@Yes$Yu, L., Ahrens, B, Wutzler, T, Zaehle, S and Schrumpf, M. (2020). Modelling soil responses to nitrogen and phosphorus fertilization along a soil phosphorus stock gradient., Frontiers in Forest and Global Change.doi: 10.3389/ffgc.2020.543112.@undefined@undefined@Yes$Landesman, W., Dighton J (2011). Shifts in microbial biomass and the bacteria: fungi ratio occur under field conditions within 3 h after rainfall. Microbial Ecology., 62,228-236. doi:10.1007/s00248-011- 9811-1@undefined@undefined@Yes$Tripathi, N., Singh, R. S. (2013). Cultivation impacts soil microbial dynamics in dry tropical forest ecosystem in India. Acta Ecologica Sinica., 33, 344-353. doi:10.1016/j.chnaes.2013.09.009@undefined@undefined@Yes$Paudel, S., Sah J. P. (2003). Physiochemical characteristics of soil in tropical Sal (Shorea robusta) forests in eastern Nepal. Himalayan Journal of Sciences., 1,107-110.@undefined@undefined@Yes$Recous, S., Mary, B. (1990). Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biology and Biochemistry., 22, 913-922. doi:10.1016/0038-0717(90)90129-N@undefined@undefined@Yes$Six J., Bossuyt, H, Degryze, S, Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research., 79, 7-31. doi:10.1016/j.still. 2004.03.008@undefined@undefined@Yes$Das, G. K. (2020). Impact of Climate Change in the Forests of West Bengal. Frontier., 26 March 2020.@undefined@undefined@No$Noguez., A. M, Escalante, A. E, Forney, L. J, Mendoza, M. N, Rosas, I, Souza, V, Oliva, F. G. (2008). Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs., Biogeochemistry. 89, 209-220. doi:10. 1007/s10533-008-9214-7.@undefined@undefined@Yes$Nsabimana., D, Haynes, R. J, Wallis, F. M. (2004). Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology., 26, 81-92. doi:10.1016/j.apsoil.2003.12. 005.@undefined@undefined@Yes$Chandra, L.R., Gupta, S, Pande, V, Singh, N. (2016). Impact of forest vegetation on soil characteristics: a correlation between soil biological and physico-chemical properties. Biotech., 6(188),1-12.@undefined@undefined@Yes$Sharma, J.C. and Sharma, Y. (2004). Effect of Forest Ecosystems on Soil Properties - A Review. Agricultural Reviews., 25(1), 16-28.@undefined@undefined@Yes$Horwath, W. R. (2005). The importance of soil organic matter in the fertility of organic production systems, Western Nutrient Management Conference.@undefined@undefined@No$Aciego, J. P., Brookes, P. (2009). Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil., Soil Biology and Biochemistry. 41, 1396-1405. doi:10.1016/ j.soilbio.2009.03.017@undefined@undefined@Yes$Das, G. K. (2020). Green Infrastructure of Trees - Forests Symbolic Socialization. Frontier., 10 October 2020.@undefined@undefined@Yes$Fierer, N., Schimel, J. P, Holden P. A. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry., 35,167-176.@undefined@undefined@No$Holden S. R., Treseder K. K. (2013). A meta-analysis of soil microbial biomass responses to forest disturbances. Frontiers in Microbiology., 4,1-17.@undefined@undefined@Yes @Case Study <#LINE#>Study on source inventory and assessment of air pollution load of Patna, Bihar, India - A case study<#LINE#>Koushik @Dutta <#LINE#>86-88<#LINE#>12.ISCA-IRJEvS-2020-056.pdf<#LINE#>SACT I (State Aided College Teacher, Category - I), Department of Environmental Science, T.D.B. College (affiliated to Kazi Nazrul University), Raniganj, Paschim Bardhaman, West Bengal, India<#LINE#>1/9/2020<#LINE#>30/12/2020<#LINE#>Air pollution in urban India has become a great concern now-a-days. Most of the Indian cities and metropolis are situated on the edge of health risk because of atmospheric contamination. Patna - the capital of Bihar - is notorious for air pollution. The main culprit of air pollution of this city is vehicular emission. The present study has been carried out to assess the air pollution load of Patna city that resulted mainly due to vehicular emission and to propose some remedial options to the planners and decision makers to solve this issue. It is a survey based study that has been carried out at different sampling locations of Patna city and necessary primary data were collected. The study revealed that the atmospheric condition of Patna city is deteriorating day by day due to vehicular emission and if this situation persists for long the inhabitants of the region will fall in great distress. Hence immediate and fruitful steps should be taken to remediate this situation.<#LINE#>CPCB (Central Pollution Control Board). (2008). Emission Factor Database.@undefined@undefined@No$Dutta K. and Ghosh A.R. (2011). Physicochemical analysis of waste water coming from different chromite mines in Sukinda Valley Region, Odisha and its management. Proceedings of the 2nd International Conference on Sustainable Waste Management, ISWMAW, Kolkata, pp. 355-358.@undefined@undefined@Yes$Dutta K. (2012). Tourism Vis-à-vis Safe Environment. Proceedings of the National Seminar on Changing Society, Culture and Its Impacts on People, pp. 39-45.@undefined@undefined@No$Dutta K. and Ghosh A.R. (2012). Comparative study of physicochemical parameters and heavy metals of some groundwater sources from Sukinda Valley Region in Odisha. The Ecoscan, 1(special issue), 155-160.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2013). Limnological status and bioconcentration of some heavy metals in Damsal nala of Sukinda Valley Region in Odisha and consequent histopathological lesions observed in liver and kidney of air-breathing fish Channa sp. The Ecoscan, 3(special issue), 191-197.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2013). Comparative study on limnological parameters and bioconcentrations of heavy metals in an air-breathing carnivorous teleostean fish, Gaducia sp. of the upstream and downstream regions of Damsalnala in Sukinda Valley Region, Odisha. International Journal of Environmental Sciences, 3(6), 1831-1840.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2013). Analysis of physico-chemical characteristics and metals in water sources of chromite mining in Sukinda Valley, Odisha, India. Journal of Environmental Biology, 34(3), 783-788.@undefined@undefined@Yes$Dutta K. (2015). Impact of Mining on Environment: An Overview. Proceedings of the National Workshop on Challenges and Opportunities for Management of Water Supplies in Rural Areas. COMWRA, pp. 161-163. Key Resource Centre (Ministry of Drinking Water and Sanitation, GOI, New Delhi) Department of Environmental Science and Engineering, ISM, Dhanbad, India.@undefined@undefined@Yes$Dutta K. (2015). Human Tide: An Environmentally Induced Migration. Research Journal of Recent Sciences, 4(IVC-2015), 22-24.@undefined@undefined@Yes$Dutta K. (2015). Chromite Mining: Disbalancing the Aquatic Environment of Sukinda Valley. Research Journal of Recent Sciences, 4(IYSC-2015), 80-93.@undefined@undefined@Yes$Dutta K. (2015). Chromite Mining: Poisoning the Environment of Sukinda Valley - A Critical Review. Minenvis Newsletter, 87(4), 01-03.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2016). Comparative Study on Bioaccumulation and Translocation of Heavy Metals in some Native Plant Species along the Bank of Chromite Contaminated Damsal Nala of Sukinda Valley, Odisha, India. International Research Journal of Biological Sciences, 5(7), 32-52.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2016). Comparative Study on Phytoplankton Distribution and Bioaccumulation of Heavy Metals in Microspora sp. of Chromite Contaminated Damsal Nala of Sukinda Valley, Odisha, India. Research Journal of Chemical Sciences, 6(9), 27-35.@undefined@undefined@Yes$Dutta K. (2017). Role of Women in Maintaining Environmental Sustainability. Proceedings of the National Conference on Women Empowerment: Challenges and Strategies, pp. 174-180, Arpan Publications, New Delhi.@undefined@undefined@Yes$Dutta K. (2017). Environmental Panorama of Sukinda Valley - a critical study. International Research Journal of Earth Sciences, 5(11), 34-37.@undefined@undefined@Yes$Dutta K. and Ghosh A.R. (2018). Contamination and Bioaccumulation of Heavy Metals in Water, Bottom Sediment and Two Teleostean Fish Species of Sukinda Valley, Odisha, India. Environica, Proceedings of the 3rd International Conference on Mother Earth: Environmental Crisis & Sustainable Strategies, ICME III, Purba Bardhaman, West Bengal (India), Vol. 2, 268-286, Levant Books, Kolkata, India.@undefined@undefined@Yes$Dutta K. (2018). Assessment of environmental, health and socio-economic status of a village of Purba Bardhaman, West Bengal, India - A Pilot Study. Research Journal of Agriculture and Forestry Sciences, 6(5), 1-6.@undefined@undefined@Yes$Guttikunda S. (2008). Four simple equations for vehicular emission inventory. SIM-air working paper series, Vol. 2.@undefined@undefined@Yes @Review Paper <#LINE#>A literary criticism on sources and effects of Heavy Metals on plants, humans and environment around the world and heavy metal pollution status in the Buriganga River, Bangladesh<#LINE#>Dhrubo @Barua ,Shahriar @Abdullah <#LINE#>89-102<#LINE#>13.ISCA-IRJEvS-2020-008.pdf<#LINE#>Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh@Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh<#LINE#>8/2/2020<#LINE#>24/8/2020<#LINE#>Heavy metal contamination has become a worldwide ecological issue, attracting substantial public attention, largely due to the growing health and environmental issues. Their numerous commercial, residential, rural, health, and technical uses have contributed to their broad environmental dissemination. The following analysis addresses the findings of the various authors past work on Pollution of heavy metals in Buriganga River, together with heavy metals source and its effect of on plant, human and environment all over the world. Concentrations of 8 heavy metals in Buriganga River water and dregs are explored in the analysis to evaluate their levels and compare them with other major Bangladesh rivers. Indiscriminate disposal and redemption of toxic waste into rivers contribute to environmental pollution that might be viewed as a potential source of impendence to the biotic community. Although certain are important, a significant number of trace elements might be noxious to all embodied soul at a severe level because of the advancement of complex mixes inside the cell. Introduction to heavy metals is related to mental hindrance, kidney harm, numerous maladies, and even mortality in occurrences of extremely high exposure.<#LINE#>Miller, C.V., Foster, G.D. and Majedi, B.F. (2003).@Baseflow and stormflow metal fluxes from two small agricultural catchments in the coastal plain of Chesapeake Bay Basin, United States.@Appl. Geochem., 18(4), 483-501.@Yes$Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A.H. and Yousef, N. (2009).@Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential.@Environ Earth Sci., 59(2), 315-323.@Yes$Islam, M.M., Akhtar, M.K. andMasud, M.S. (2006).@Prediction of environmental flow to improve the water quality in the river Buriganga.@Proceedings of the 17th IASTED International Conference on Modelling and Simulation, Montreal, QC, Canada.@Yes$Islam, S.M.D.U. and Azam, G. (2015).@Seasonal variation of physicochemical and toxic properties in three major rivers; Shitalakhya, Buriganga and Turag around Dhaka city.@J. Bio. & Env. Sci., 7(3), 120-131.@Yes$Mohiuddin, K., Alam, M., Ahmed, I. andChowdhury, A. (2016).@Heavy metal pollution load in sediment samples of the Burigangariver in Bangladesh.@Journal of the Bangladesh Agricultural University, 13, 229-238. https://doi.org/10.3329/jbau.v13i2.28784@Yes$Khan, M.A.I., Hossain, A.M., Huda, M.E., Islam, M.S., and Elahi, S.F. (2007).@Physico-chemical and biological aspects of monsoon waters of Ashulia for economic and aesthetic applications: preliminary studies.@Bangladesh Journal of Science and Industry Research, 42(4), 377-396.@Yes$Alam, A.M.S., Islam M.A., Rahma, M.A., Siddique M.N. and Matin M.A. (2003).@Comparative study of the toxic metals and non-metal status in the major river system of Bangladesh.@Dhaka Univ. J. Sci., 51(2), 201- 208.@Yes$Oves, M., Khan, M.S., Zaidi, A. and Ahmad, E. (2013).@Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview.@Toxicity of heavy metals to legumes and bioremediation, 20(1), 21-27.@Yes$Chen, H.M., Zheng, C.R., Tu, C. and Zhu, Y.G. (1999).@Heavy metal pollution in soils in China: status and countermeasures.@Ambio, 13, 1-4.@Yes$Wang, Q.R., Dong, Y., Cui, Y. and Liu, X. (2001).@Instances of soil and crop heavy metal contamination in China.@Soil Sediment Contam., 10, 497-510.@Yes$Nabulo, G., Young, S.D. and Black, C.R. (2010).@Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils.@Sci. Total Environ., 4(2), 38-51.@Yes$Dong, J., Yang, Q.W., Sun, L.N., Zeng, Q., Liu, S.J. and Pan, J. (2011).@Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China.@Environ Earth Sci., 64(13), 17-21.@Yes$Saha, P.K. and Hossain, M.D. (2011).@Assessment of Heavy Metal Contamination and Sediment Quality in the Buriganga River, Bangladesh.@Souvanir from 2nd international conference on environmental science and technology, IPCBEE, Singapore. pp 26-28.@Yes$Tak, H.I., Ahmad, F. and Babalola, O.O. (2013).@Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.@In Reviews of Environmental Contamination and Toxicology, 33-52.@Yes$Gaur, N., Flora, G., Yadav, M. and Tiwari, A. (2014).@A review with recent advancements on bioremediation-based abolition of heavy metals.@Environ. Sci. Process. Impacts, 16, 180-193.@Yes$Dixit, R., Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shukla, R., Singh, B.P., Rai, J.P., Sharma, P.K. and Lade, H. (2015).@Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes.@Sustainability, 7, 2189-2212.@Yes$Williams, C. (1996).@Combating marine pollution from land-based activities: Australian initiatives.@Ocean Coast. Manag., 33, 87-112.@Yes$Mokaddes, M., Nahar, B. and Baten, M. (2013).@Status of Heavy Metal Contaminations of River Water of Dhaka Metropolitan City.@J. Environ. Sci. & Natural Resources, 5, 349-353. https://doi.org/10.3329/jesnr.v5i2.14842@Yes$Clesceri, L.S., Greenberg, A.E. and Trussel, R.R. (1989).@Standard Method for the Examination of Water and Waste Water.@Baltimore, Md, USA: American Public Health Association.@Yes$Bhuiyan, M.A.H., Dampare, S.B., Islam, M.A. and Suzuki, S. (2015).@Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices.@Environmental Monitoring and Assessment, 187(1), 4075. https://doi.org/10.1007/s10661-014-4075-0@Yes$Department of Environment, Government of the Peoples Republic of Bangladesh (1997).@ECR (The Environment Conservation Rules).@Poribesh Bhaban E-16, Agargaon, Shere Bangla Nagar Dhaka 1207, Bangladesh, 179-226.@No$USEPA (2007).@The use of soil amendments for remediation, revitalization and reuse.@http://www. epa.org. Accessed on 4 Feb 2019.@Yes$WHO (2011).@Guidelines for drinking-water quality (4th ed.).@Geneva, Switzerland: environmental health criteria. http://www.who.int@Yes$USEPA (2004).@Integrated risk information system (IRIS) on lead and compounds (inorganic).@National Center for Environ mental Assessment. Washington, DC: Ofce of Research and Development. http://www.epa.gov/ iris/subst/0277.htm@No$Rudnick, R.L. and Gao, S. (2003).@Composition of the continental crust.@Treatise Geochem., 3(1), 1-64.@No$MacDonald, D.D., Ingersoll, C.G. and Berger, T.A. (2000).@Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems.@Arch Environ Conta. Toxicol., 39(1), 20-31.@Yes$Turekian, K.K. and Wedepohl, K.H. (1961).@Distribution of the elements in some major units of the earths crust.@Geol. Soc. Am. Bull., 72, 175-192.@Yes$Persuad, D., Jaagumagi, R. and Hayton, A. (1993).@Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario.@Ontario Ministry of the Environment, Canada.@Yes$Banu, Z., Chowdhury, M.S.A., Hossain, M.D. and Nakagami, K. (2013).@Contamination and Ecological Risk Assessment of Heavy Metal in the Sediment of Turag River, Bangladesh: An Index Analysis Approach.@JWARP., 5, 239-248. https://doi.org/10.4236/jwarp.2013. 52024@Yes$Ali, M. M., Ali, M.L., Islam, Md. S. and Rahman Md. Z. (2016).@Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh.@Environmental Nanotechnology, Monitoring & Management, 5, 27-35. https://doi.org/10.1016/j.enmm. 2016.01.002@Yes$Rashid, H., Hasan, N., Tanu, M.B., Parveen, R., Sukhan, Z.P., Rahman, S. and Mahmud, Y. Heavy Metal Pollution and Chemical Profile of Khiru River, Bangladesh. International Journal of Environment, 2(1), 57-63.@undefined@undefined@Yes$Ahmed, K., Ahamed, S., Rahman, S., Haque, R. and Islam, M. (2009).@Heavy Metals Concentration in Water, Sediments and their Bioaccumulations in Some Freshwater Fishes and Mussel in Dhaleshwari River, Bangladesh.@Terrestrial and Aquatic Environmental Toxicology, 3(1), 33-41.@Yes$Rahman, M.S., Saha, N., and Molla, A.H., (2014).@Potential ecological risk assessment of processing zone, Bangladesh.@Environ. Earth Sci., 71, 2293-2308.@Yes$Islam, M.S., Ahmed, M.K., Habibullah-Al-Mamun, M. and Hoque, M.F. (2015).@Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh.@Environ Earth Sci., 73, 1837-1848. https://doi.org/10.1007/s12665-014-3538-5@Yes$Islam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M. and Islam, M.K. (2015).@Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country.@Ecol. Indic., 48, 282-291.@Yes$Datta, D.K. and Subramanian, V. (1998).@Distribution and fractionation of heavy metals in the surface sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin.@Environ. Geol., 36, 93-10.@Yes$Rahman, M.T., Rahman, M.S., Quraishi, S.B., Ahmad, J.U. Choudhury, T.R. and Mottaleb, M.A. (2011).@Distribution of Heavy Metals in Water and Sediments in Passur River, Sundarban Mangrove Forest, Bangladesh.@Journal of International Environmental Application and Science, 6(4), 537-46.@Yes$Islam, S.M.D., Bhuiyan, M.A.H., Rume, T. and Mohinuzzaman, M. (2016).@Assessing Heavy Metal Contamination in the Bottom Sediments of Shitalakhya River, Bangladesh; Using Pollution Evaluation Indices and Geo-spatial Analysis.@Pollution., 2(3), 299-312. https://doi.org/10.7508/pj.2016.03.005.@Yes$Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F. and Koyoma, H. (2000).@Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type.@Bulletin of Environmental Contamination and Toxicology, 64, 33-39.@Yes$Amarlal, A., Cruz, J.V., Cunha, R.T. and Rodrigues, A. (2006).@Baseline levels of metals in volcanic soils of the Azores (Portugal).@Journal on Soil & Sediment Contamination, 15, 123-130.@Yes$Muradoglu, F., Gundogdu, M., Ercisli, S.,Encu T., Balta F., Jaafar H.Z.E., and Zia-Ul-HaqM. (2015).@Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry.@Biol. Res., 48, 1-7. https://doi.org/10.1186/ S40659-015-0001-3@Yes$Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M.B., Bharwana, S.A. and Tauqeer, H.M. (2013).@Heavy metals contamination and what are the impacts on living organisms.@Greener J Environ. Manag. and Public Saf., 2(4), 172-179.@Yes$He, Z.L., Yang, X.E. and Stoffella, P.J. (2005).@Trace elements in agroecosystems and impacts on the environment.@Journal of Trace Elements in Medicine and Biology, 19(2-3), 125-140.@Yes$Chen, Z. F., Zhao, Y., Fan, L. D., Xing, L. T. and Yang, Y. J. (2015).@Cadmium (Cd) Localization in Tissues of Cotton (Gossypiumhirsutum L.) and its phytoremediation potential for Cd-contaminated soils.@Bull. Environ. Contam. Toxicol., 95, 784-789. https://doi.org/10.1007/s00128-015-1662-x.@Yes$Khan, I., Ghani, A., Rehman, A. U., Awan, S. A., Noreen, A. and Khalid, I. (2016).@Comparative analysis of heavy metal profile of Brassica campestris (L.) and Raphanussativus (L.) irrigated with municipal waste water of sargodha city.@J. Clin. Toxicol., 6, 1-4. https://doi.org/10.4172/2161-0495.1000307@Yes$Ogunlade, M. O. and Agbeniyi, S. O. (2011).@Impact of pesticides use on heavy metals pollution in cocoa soils of Cross-River State, Nigeria.@Afr. J. Agri. Res., 6, 3725-3728.@Yes$Sun, Y., Sun, G., Xu Y., Wang, L., Liang, X. and Lin, D. (2013).@Assessment of sepiolite for immobilization of cadmium-contaminated soils.@Geoderma., 193, 149-155.@Yes$Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian,M., Ahmadimoghaddam, M. and Mahvi, A. H. (2010).@Effect of fertilizer application on soil heavy metal concentration.@Environmental monitoring and assessment, 160(1-4), 83.@Yes$Al-Muzaini, S., Beg, M., Muslamani, K. and Al-Mutairi, M. (1999).@The quality of marine water around a sewage outfall.@Water Sci. Technol., 40(7), 11-15.@Yes$Shatti, J. and Abdullah, T. (1999).@Marine pollution due to wastewater discharge in Kuwait.@Water Sci. Technol., 40 (7), 33-39.@Yes$Wei, C., Wang, C. and Yang, L. (2008).@Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan Hunan Province, China.@Journal of Environmental Sciences, 21, 1230-1236.@Yes$Hagberg, L. and Lofgren, E. (2007).@Soil and plant contamination by textile industries at ZFILM, Managua.@Project work in aquatic and environmental engineering, 10.@Yes$Wuana, R.A. and Okieimen, F.E. (2011).@Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation.@ISRN Ecol., 2011.@Yes$Guerra, R., Pasteris, A. and Ponti, M. (2009).@Impacts of maintenance channel dredging in a northern Adriatic coastal lagoon. I: Effects on sediment properties, contamination and toxicity. Estuar.@Coast. Shelf Sci., 85, 134-142.@Yes$Hedge, L., Knott, A. and Johnston, E. (2009).@Dredging related metal bioaccumulation in oysters.@Mar. Pollut. Bull., 58, 832-840.@Yes$Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R. and Bishop, J. (2010).@The Gulf: A young sea in decline.@Mar. Pollut. Bull., 60, 3-38.@Yes$Naser, H. (2012).@Metal Concentrations in Marine Sediments Influenced by Anthropogenic Activities in Bahrain, Arabian Gulf.@In: Hong-Bo, Shao (Ed.), Metal Contaminations: Sources, Detection and Environmental Impacts, 157-175.@Yes$Newell, R., Seiderer, L. and Hitchcock, D. (1998).@The impact of dredging works in coastal waters: a review of the sensitivity to disturbance and subsequent recovery of biological resources on the sea bed.@Oceanogr. Mar. Biol. Annu. Rev., 36.@Yes$Alam, K. (2008).@Cost-Benefit Analysis of Restoring Buriganga River, Bangladesh.@Water Resources Development, 24(4), 593-607.@Yes$Fashola, M., Ngole-Jeme, V. and Babalola, O. (2016).@Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance.@Int. J. Environ. Res. Public Health, 13, 1047.@Yes$Mupa, M. (2013).@Lead content of lichens in metropolitan Harare, Zimbabwe: Air quality and health risk implications.@Greener J. Environ. Manag.,2, 75-82.@Yes$Bradl, H. B. (2005).@Sources and origins of heavy metals, in: Interface Science and Technology.@Elsevier, pp. 1-27. https://doi.org/10.1016/S1573-4285(05)80020-1@Yes$Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012).@Heavy Metal Toxicity and the Environment. In: Luch A. (eds) Molecular, Clinical and Environmental Toxicology.@Experientia Supplementum, 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_6@Yes$Chibuike, G.U. and Obiora, S.C. (2014).@Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods.@Applied and Environmental Soil Science, 1-12. https://doi.org/10.1155/2014/752708@Yes$Sankarammal, M., Thatheyus, A. and Ramya, D. (2014).@Bioremoval of cadmium using pseudomonas fluorescens.@Open J. Water Pollut. Treat, 1, 92-100. https://doi.org/10. 15764/WPT.2014.02010@Yes$Malik. A. (2004).@Metal bioremediation through growing cells.@Environ. Int., 30, 261-278.@Yes$Barakat, M. (2011).@New trends in removing heavy metals from industrial wastewater.@Arab. J. Chem., 4, 361-377.@Yes$Mohanty, M., Pattnaik, M.M., Mishra, A.K. and Patra, H.K. (2012).@Bio-concentration of chromium-An in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India.@Environ. Monit. Assess., 184, 1015-1024.@Yes$Siegel, F.R. (2002).@Environmental geochemistry of potentially toxic metals.@Germany: Springer Verlag Berlin Heidelberg, pp. 15-44.@Yes$Gumpu, M.B., Sethuraman, S., Krishnan, U.M. and Rayappan, J.B.B. (2015).@A review on detection of heavy metal ions in water-An electrochemical approach.@Sens. Actuators B Chem., 213, 515-533.@Yes$Mohammed, A.S., Kapri, A. and Goel, R. (2011).@Heavy metal pollution: source, impact, and remedies.@In Biomanagement of metal-contaminated soils, pp. 1-28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_1@Yes$Nies, D.H. (1999). @Microbial heavy-metal resistance.@Appl Microbiol Biotechno., 51, 730-750.@Yes$Bruins, M. R., Kapil, S. and Oehme, F.W. (2000). @Microbial resistance to metals in the environment.@Ecotoxicol Environ Safe., 45,198-207.@Yes$Zhang, Z.J., Lu, Q.F. and Fang, F. (1989).@Effect of mercury on the growth and physiological function of wheat seedlings.@Chinese Journal of Environmental Science, 10(4), l0-13.@Yes$Qin, T.C., Wu, Y.S. and Wang, H.X. (1994).@Effect of cadmium, lead and their interactions on the physiological and biochemical characteristics of Brassica chinensis.@Acta Ecologica Sinica., 14(1), 46-49.@Yes$Prasad, M.N.V. and Strzalka, K. (1999).@Impact of heavy metals on photosynthesis.@In Heavy metal stress in plants Springer, Berlin, pp. 117-138.@Yes$Broos, K., Beyens, H. and Smolders, E. (2005).@Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant.@Soil Biology & Biochemistry, 37, 573-579. https://doi:10.1016/j.soilbio.2004.08.018@Yes$Chaudri, A.M., Allain, C.M., Barbosa-Jefferson, V.L., Nicholson, F.A., Chambers, B.J. and McGrath, S.P. (2000).@A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment.@Plant & Soil., 221, 167-179. https://doi:10.1023/A:1004735705492@Yes$Giller, K.E., Witter, E., McGrath, S.P. (1998).@Toxicity of heavy metals to microorganisms and microbial process in agricultural soils. A review.@Soil Biology & Biochemistry, 30, 1389-1414.@Yes$Wani, P.A., Khan, M.S. and Zaidi, A. (2007).@Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea.@Australian Journal of Experimental Agriculture, 47, 712. https://doi.org/10.1071/EA05369@Yes$Hampp, R., Beulich, K. and Zeigler, H. (1976).@Effects of zinc and cadmium on photosynthetic CO2fixation and HilI activity of isolated spinach chloroplasts. Zeitschrift Für Pflanzenphysiologie, 77(4), 336-344.@undefined@Yes$Barua, B. and Jana, S. (1986).@Effect of heavy metals on dark induced changes in Hill action activity, chlorophyll and protein contents, dry matter and tissue permeability in detached Spinaciaoleracea L. leaves.@Photosynthetica (Praha), 20(1), 74-76.@Yes$Macinnis-Ng, C.M.O. and Ralph, P.J. (2002).@Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zosteracapricorni.@Marine Pollution Bulletin, 45, 100-106. https://doi.org/10.1016/S0025-326X(01)00300-9@Yes$Acar, Y.B. and Alshawabkeh, A.N. (1993).@Principles of electrokinetic remediation.@Environmental Science and Technology, 27(13), 2638-2647.@Yes$Kale, H. (1993).@Response of roots of trees to heavy metals.@Environmental and Experimental Botany, 33, 99-119.@Yes$Peters, E. C., Gassman, N. J., Firman, J. C., Richmonds, R. H. and Power, E. A. (1997).@Ecotoxicology of tropical marine ecosystems.@Environmental Toxicology and Chemistry, 16, 12-40.@Yes$Nemeth T. and Kadar, I. (2005). @Leaching of microelement contaminants: A long term feld study.@Z Naturforsch, 60(3-4), 260-264.@Yes$Gimmler, H., Carandang, J., Boots, A., Reisberg, E. and Woitke, M. (2002). @Heavy metal content and distribution within a woody plant during and after seven years continuous growth on municipal solid waste (MSW) bottom slag rich in heavy metals.@J Appl Bot Food Qual., 76, 203-217.@Yes$John, R. P., Ahmad, P., Gadgil, K. and Sharma, S. (2009). @Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L.@ Int J Plant Prod., 3, 65-76.@Yes$Crabtree, B., Dempsey, P., Johnson, I. and Whitehead, M. (2008).@The development of a risk based approach to managing the ecological impact of pollutants in highway runoff.@Water Sci. Technol., 57, 1595-1600.@Yes$Su, C., Jiang, L. and Zhang, W. (2014).@A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques.@Environmental Skeptics and Critics, 3(2), 24.@Yes$Ellis, J.B. and Revitt, D.M. (1982).@Incidence of heavy metals in street surface sediments: solubility and grain size studies.@Water Air Soil Pollut., 17, 87-100.@Yes$Yousef, Y.A., Wanielista, M.P., Hvitved-Jacobsen, T. and Harper, H.H. (1984).@Fate of heavy metals in storm water runoff from highway bridges.@Sci. Total Environ., 33, 233-244.@Yes$Szpunar, C.B.N., Bhatti, N., Buehring, W.A. and Streets, D.G. (1990).@An Energy and Environmental Overview.@Report 90-12 Oflice of Energy. United States Agency for International development.@Yes$Żukowska, J. and Biziuk, M. (2008).@Methodological evaluation of method for dietary heavy metal intake.@J Food Sci., 73(2), 1-9.@Yes$European Commission (2002). @Heavy metals in wastes, European Commission on Environment, Denmark. http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf@undefined@No$Ferner, D. J. (2001).@Toxicity, Heavy Metals.@e Med. J., 2(5), 1.@Yes$Lenntech Water Treatment and Air Purifcation (2004). @Water treatment. Lenntech, Rotter dam sewage.@www.excelwater.com/thp/flters/Water-Purifcation.htm. Accessed on 3 Nov 2019.@No$Zhang, X.W., Yang, L.S., Li, Y.H., Li, H.R., Wang, W.Y. and Ye, B.X. (2012).@Impacts of lead/zinc mining and smelting on the environment and human health in China.@Environ Monit Assess., 184, 61-73.@Yes$Udedi, S.S. (2003).@From guinea worm scourge to metal toxicity in Ebonyi State.@Chem Niger as New Millennium Unfolds., 2, 13-14.@Yes$Yabe, J. and Ishizuka, M. (2010).@Current Levels of Heavy metal contamination in Africa.@Journal of Veterinary Medical Science, 72(10), 1257-1263.@Yes$Chen, Y.F. (2011).@Review of the research on heavy metal contamination of Chinas city soil and its treatment method.@China Population, Resources and Environment, 21(3), 536-539.@Yes$Nolan, K. (2003).@Copper toxicity syndrome.@J Orthomol Psychiatry, 12, 270-282.@Yes$Rai, U. N., & Pal, A. (2002).@Health hazards of heavy metals.@Environ News letter ISEB India, 8(1).@Yes$United States Department of Labor (USDOL) (2004). @Occupational Safety and Health Administration (OSHA); Safety and health topics: heavy metals.@ USDOL Publication, Washington, DC. http://www.osha.gov/SLTC/metalsheavy/index.htmlAccessed on 28 Nov 2019.@No$Minerals Yearbook. (1992).@U.S. Department of Tnterior.@U.S Bureau of Mines, Washington, Dc.@No$Kantor, D. (2006). @Guillain-Barre syndrome, the medical encyclopedia, National Library of Medicine and National Institute of Health.@ http://www.nlm.nih.gov/medlineplus.Accessed on 30 Nov 2019.@Yes$National Institute of Neurological Disorders and Stroke, NINDS (2007). @Guillain-Barre syndrome, Guillain-Barre syndrome fact sheet.@http://www.ninds.nih.gov/disorders/gbs/details_gbs.htm. Accessed on 30 Nov 2019.@Yes$Aceves, M.B., Grace, C. and Ansorena, J. (1999).@Soil microbial biomass and organic C in a gradient of zinc concentration in soils around a mine spoil tip.@Soil Biology and Biochemisty, 31(6), 867-876.@Yes$Fliepbach, A., Martens, R. and Reber, H. (1994).@Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge.@Soil Biology and Biochemistry, 26, 1201-1205.@Yes$Kolesnikov, S.I., Kazeev, K.S. and Varkov, V.F. (2000).@Effects of heavy metal pollution on the ecological and biological characteristics of common Chernozem.@ Russ J Ecol., 31,174-18.@Yes$Lee, D.H., Zo, Y.G. and Kim, S.J. (1996).@Nonradioactive methods to study genetic Profies of natural bacterial communities by PCR-single-strand-conformation polymorphism.@Applied and Environmental Microbiology, 62(9), 3112-3120.@Yes$Levin, S.V., Guzev, V.S., Aseeva, I.V., Babeva, I.P., Marfenina, O.E. and Umarov, M.M. (1989).@Heavy metals as a factor of anthropogenic impact on the soil microbiota.@ Microorganisms and Soil Conservation, 5-46.@Yes$Chander, K., Brookes, P.C. and Harding, S.A. (1995).@Microbial biomass dynamics following addition of metal-enriched sewage sludge to a sandy loam.@Soil Biology and Biochemistry, 27(11), 1409-1421.@Yes$Donker, M. H. (1992).@Phsyiology of metal adaptation in the isopod.@Porcellioscaber.@Yes$Kolesnikov, S.I., Kazeev, K.S. and Varkov, V.F. (2000).@Effects of heavy metal pollution on the ecological and biological characteristics of common Chernozem.@Russ J Ecol., 31, 174-181.@Yes$Wasaki, J., Maruyama, H., Tanaka, M., Yamamura, T., Dateki, H., Shinano, T., Ito, S. and Osaki, M. (2009).@Over expression of the LASAP2 gene for secretory acid phosphatase in white lapin improves the phosphorus uptake and growth of tobacco plants.@Soil Sci Plant Nutr., 55, 107-113.@Yes$Bentum, J.K., Anang, M., Boadu, K.O., Koranteng-Addo E.J. and Antwi E.O. (2011).@Assessment of heavy metals pollution of sediments from Fosu Lagoon in Ghana.@Bull. Chem. Soc. Ethiop., 25 (2), 191-196.@Yes$Demirbas, A. (2008).@Heavy metal adsorption onto agro-based waste materials: a review.@J. Hazard. Mater., 157 (2), 220-229.@Yes$Bere, T., Dalu, T. and Mwedzi, T., (2016).@Detecting the impact of heavy metal contaminated sediment on benthic macro invertebrate communities in tropical streams.@Science of The Total Environment, 572, 147-156. https://doi.org/10.1016/j.scitotenv.2016.07.204@Yes