@Research Paper <#LINE#>FT-IR analysis and correlation studies on the antioxidant activity, total phenolics and total flavonoids of Indian commercial teas (Camellia sinensis L.) - A novel approach<#LINE#>S.R. @Senthilkumar,T. @Sivakumar,K.T. @Arulmozhi,N. @Mythili <#LINE#>1-7<#LINE#>1.ISCA-IRJBS-2016-143.pdf<#LINE#>Department of Botany, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India@Department of Botany, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India@Physics Wing (DDE), Annamalai University, Annamalainagar 608 002, Tamil Nadu, India@Department of Physics, Mohamed Sathak Engineering College, Kilakarai-623806, Ramnad, India<#LINE#>26/11/2016<#LINE#>3/3/2017<#LINE#>Fourier Transform Infrared (FT-IR) spectra were recorded to analyse the phytochemicals in six commercial green tea (Camellia sinensis L.) samples acquired from diverse locations in India. Main focus was made on the absorbance (%) of selected prominent vibrational bands relevant to the chemical compounds with antioxidant properties (polyphenols, flavonoids). The colorimetric data of the green tea samples such as antioxidant activity assayed by 1,1-diphenylpicrylhydrazyl (DPPH) – radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP) assay and total phenolic content (TPC) assayed by Folin-ciocalteu method and total flavonoids (TF) assayed by aluminium chloride method were used in the present study (Authors’ work communicated elsewhere). A novel attempt has been made to correlate the FT-IR data and the colorimetric data of the green tea samples without using advanced chemometric procedures. Very interestingly excellent correlations were observed among the studied parameters with higher values of correlation coefficients (R2 > 0.9). This implies that FT-IR analysis may be used in a simple way to rapidly estimate antioxidant potentials of plant extracts.<#LINE#>Karori S.M., Wachira F.N., Wanyoko J.K. and Nigure R.M. (2007).@Antioxidant capacity of different types of tea products.@Afr J Biotechnol, 6(19), 2287-2296.@Yes$Peterson J., Dwyer J., Bhagwat S., Haylowitz D., Hoiden J., Eldridge A.L., Beecher G. and Ala-Desamni J. (2005).@Major flavonoids in dry tea.@J Food Compost Anal , 18(6), 487-501.@Yes$Pellilo M., Bendini A., Biguzzi B., Toschi G.T., Vanzini M. and Lercker G. (2002).@Preliminary investigation into development of HPLC and UV and MS-electroscopy detection for analysis of tea catechins.@Food Chem, 78(3), 369-374.@Yes$Siddhuraju P. and Manian S. (2007).@The antioxidant activity and free radical scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds.@Food Chem, 105(3), 950-958.@Yes$Hagerman A.E., Riedi K.M., Jones G.A., Sovik K.N., Ritchard N.T. and Hartzfeld P.W. (1998).@High molecular weight plant polyphenolics (tannins) as biological antioxidants.@J Agric Food Chem, 46(5), 1887-1892.@Yes$Brand-Williams W., Cuvelier M.E. and Berset C. (1995).@Use of a free radical method to evaluate antioxidant activity.@Lebensm Wiss Technol, 28(1), 25-30.@Yes$Chand S. and Dave R. (2009).@In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview.@Afr J Microbiol Res, 3(13), 981-996.@Yes$Razali N., Razab R., Junit S.M. and Aziz A.A. (2008).@Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale).@Food Chem, 111(1), 38-44.@Yes$Khodaie L., Bamdad S., Delazar A. and Nazemiyeh H. (2012).@Antioxidant, total phenol and flavonoid contents of two Pedicularis L. species from eastern Azerbaijan, Iran.@BioImpacts, 2(1), 47-53.@Yes$Abdel-Hameed E.S.S. (2009).@Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples.@Food Chem, 114(4), 1271-1277.@Yes$Kalaivani C.S., Sathish S.S., Janakiraman N. and Johnson M. (2012).@GC-MS studies on Andrographis panicula (Burm. f.) Wall. ex Nees – A medicinally important plant.@Int J Med Arom Plants, 2(1), 69-74.@Yes$Sangeetha J. and Vijayalakshmi K. (2011).@Determination of bioactive components of ethyl acetate fraction of Punica granatum Rind extract.@Int J Pharmacol Sci Drug Res, 3(2), 116-122.@Yes$Velioglu Y.S., Mazza G., Gao L. and Oomah B.D. (1998).@Antioxidant activity and total phenolics in selected fruits, vegetables and grain products.@J Agric Food Chem, 46(10), 4113-4117.@Yes$Li H.B., Cheng K.W., Wong C.C., Fan K.W., Chen F. and Jiang Y. (2007).@Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae.@Food Chem, 102(3), 771-776.@Yes$Turkmen N., Sari F. and Velioglu Y.S. (2006).@Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Foil-ciocalteu methods.@Food Chem, 99(4), 835-841.@Yes$Ruan Z.P., Zhang L.L. and Lin Y.M. (2008).@Evaluation of the antioxidant activity of Syzygium cumini leaves.@Molecules, 13(10), 2545-2556.@Yes$McDonald S., Prenzler P.D., Antolovich M. and Robards K. (2001).@Phenolic content and antioxidant activity of olive extracts.@Food Chem, 73(1), 73-84.@Yes$Lu X., Wang J., Al-Quadiri H.M., Ross C.F. and Powers J.R. (2011).@Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy.@Food Chem, 129(2), 637-644.@Yes$Leopold I.F., Leopold N., Diehl H.A. and Socaciu C. (2012).@Prediction of total antioxidant capacity of fruit juices using FTIR spectroscopy and PLS regression.@Food Anal Method, 5(3), 405-407.@Yes$Lam H.S., Proctor A., Howard L. and Cho M.J. (2005).@Rapid fruit extracts antioxidant capacity determination by Fourier transform infrared spectroscopy.@J Food Sci C Food Chem Toxicol, 70(9), 545-549.@Yes$Versari A., Parpinello G.P., Scazzina F. and Rio D. (2010)@Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy.@J Food Control, 21(5), 786-789.@Yes$Rohman A. and Man Y.B.C. (2012).@The chemometrics approach applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil.@Chemometr Intell Lab, 110(1), 129-134.@Yes$Lu X. and Rasco B.A. (2012).@Determination of antioxidant content and antioxidant activity in foods using infrared spectroscopy and chemometrics: a review.@Crit Rev Food Sci Nutr, 52(10), 853-875.@Yes$Siju E.N., Rajalakshmi G.R., Kavitha V.P. and Joseph A. (2010).@In vitro antioxidant activity of Mussaenda frondosa.@Int J Pharm Tech Res, 2(2), 1236-1240.@Yes$Patel V.R., Patel P.R. and Kajal S.S. (2010).@Antioxidant activity of some selected medicinal plants in Western Region of India.@Adv Biol Res, 4(1), 23-26.@Yes$Orcic D.Z., Mimica-Dukic N.M., Franciskovic M.M., Petrovic S.S. and Jovin E.D. (2011).@Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L.@Chem Cent J, 5(1), 34.@Yes <#LINE#>Fabrication and operation of a novel mediator and membrane-less microbial fuel cell<#LINE#>Geetha @S.,Subha @Ranjani S. <#LINE#>8-13<#LINE#>2.ISCA-IRJBS-2017-008.pdf<#LINE#>Department of Microbiology, The Standard Fireworks Rajaratnam College for Women Sivakasi, Tamilnadu, India@Department of Microbiology, The Standard Fireworks Rajaratnam College for Women Sivakasi, Tamilnadu, India<#LINE#>21/1/2017<#LINE#>6/3/2017<#LINE#>This present study deals with the Microbial Fuel Cells (MFC) using waste water and waste organic matter in its organic content to generate electricity using microorganisms. Microorganisms were able to utilize the carbon source in the substrate for generation of bioelectricity. This study is concentrated on the comparison of electricity generation by two different organic substrates like whey, rotten tomato juice, and electricity generation with Saccharomyces cerevisiae and Escherichia coli and also the comparative study on two different combinations of electrodes Carbon-Copper and Graphite-Copper. Electrodes play an important role in microbial fuel cells. In Carbon-Copper electrode whey water produced maximum voltage of 934mV at 2nd day of incubation. The result as electricity output was recorded as open circuit voltage (OCV) by Digital multimeter.<#LINE#>Davis F. and Higson S.P.J. (2007).@Biofuel cells—recent advances and applications.@Biosens Bioelectron., 22(7), 1224-1235.@Yes$Lovley D.R. (2006).@Microbial fuel cells: novel microbial physiologies and engineering approaches.@Curr Opin Biotech., 17(3), 327-332.@Yes$Bond D.R., Holmes D.E., Lovley D.R. and Tender L.M. (2002).@Electrode-reduction Microorganisms that Harvest Energy from Marine Sediments.@Science, 295(5554), 483-485.@Yes$Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M. and Kim B.H. (2002).@A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens.@Enzyme. Microb. Technol., 30(2), 145-152.@Yes$Larminie J. and Dicks A. (2003).@Fuel Cell Systems Explained.@John Wiley, UK, 2.@Yes$Rabaey K., Lissens G., Siciliano S.D. and Verstraete W. (2003).@A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.@Biotechnol. Lett., 25(18), 1531-1535.@Yes$Park D.H. and Zeikus J.G. (2003).@Improved fuel cell and electrode designs for producing electricity from microbial degradation.@Biotechnol. Bioeng., 81(3), 348-355.@Yes <#LINE#>Wild edible plant species in patch vegetations of Jorhat district, Assam, India<#LINE#>Dandeswar @Dutta,Protul @Hazarika,P. @Hazarika <#LINE#>14-25<#LINE#>3.ISCA-IRJBS-2017-015.pdf<#LINE#>Rain Forest Research Institute, Jorhat-785001, Post Box No-136, Assam, India@Rain Forest Research Institute, Jorhat-785001, Post Box No-136, Assam, India@Rain Forest Research Institute, Jorhat-785001, Post Box No-136, Assam, India<#LINE#>8/2/2017<#LINE#>2/3/2017<#LINE#>Wild edible plant species and their traditional uses were studied in 32 numbers of patch vegetation of Jorhat district, Assam. A total of 119 wild edible plant species were recorded under 57 families, which includes tree, shrubs, climbers and herbs. Among them 18 and 95 plant species comes under monocots and dicots respectively. Four (4) species were recorded under Pteridophytes, whereas Gymnosperm was represented by Gnetum genemon only. Of the total 119 edibles plants species recorded for human consumption, 44 were trees, 19 shrubs, 12 climbers and 43 herbs. Moreover, 41 plants species were identified as birds food plant and 38 plant species for animals food and fodder. The villagers of the district use to collect the wild edible plant species from their nearest patch vegetations traditionally, among them 73 species were eaten as vegetables, 41 species as fruits, 2 species as edible seeds and nuts. Barks of 2 species were used as substitute of beetle nuts. Among these wild edibles 56 plant species were recorded for traditional medicine against different ailment.<#LINE#>Arenas P. and Scarpa G.F. (2007).@Edible wild plants of the Chorote Indians, Gran Chaco, Argentina.@Botanical Journal of the Linnean Society, 153(1), 73-85.@Yes$Eriksen S.H. and O’brien K. (2007).@Vulnerability, poverty and the need for sustainable adaptation measures.@Climate Policy, 7(4), 337-352.@Yes$Hazarika P., Biswas S.C. and Kalita R.K. (2014).@A case study on people’s choice conservation of biodiversity in homesteads of Assam, India.@Int. Res. J. Biological Sci., 3(1), 89-94.@No$Sarma H., Tripathi A.K., Borah S. and Kumar D. (2010).@Updated estimates of wild edible and threatened plants of Assam: A Meta-analysis.@International J Botany, 6(4), 414-423.@Yes$Sundriyal M., Sundriyal R.C., Sharma E and Purohit A.N. (1998).@Wild edibles and other useful plants from the Sikkim Himalaya, India.@Oecologia Montana, 7(1-2), 43-54.@Yes$Redzic S.J. (2006).@Wild edible plants and their traditional use in human nutrition in Bosnia-Herzegovina.@Ecology of Food and Nutrition, 45(3), 189-232. DOI: 10.1080/03670240600648963.@Yes$Mahapatra A.K., Mishra S., Basak U.C. and Panda P.C. (2012).@Nutrient analysis of selected wild edible fruits of deciduous forest of India: an explorative study towards non conventional bio-nutrients.@Advance J Food Science and Technology, 4(1), 15-21.@Yes$Patiri B. and Borah A. (2007).@Wild edible plants of Assam.@Director Forest Communication, Forest Department, Govt. of Assam, 1-169.@Yes$Sasi R. and Rajendran A. (2012).@Diversity of wild fruits in Nilgiri hills of the Southern Western Ghats - Ethno botanical aspects.@International J. Applied Biology and Pharmaceutical Technology, 3(1), 82-87.@Yes$Rongsensashi, Mozhui R., Changkija S. and Limasenla (2013).@Wild edible fruits of Fakim Wildlife Sanctuary Nagaland, North-East India.@Indian Forester, 139(5), 440-447.@Yes$Mudasir Y.M. (2014).@Documentation and ethnobotanical survey of wild edible plants used by the tribals of Kupwara, J&K, India.@International J Herbal Medicine, 2(4), 11-18.@Yes$Narzary H., Brahma S. and Basumatary S. (2013).@Wild edible fruits of kokrajhar district of assam, north-east india@Asian Journal of Plant Science and Research, 3(6), 95-100.@Yes$Pegu R., Gogoi J., Tamuli A.K. and Teron R. (2013).@Ethno botanical study of wild edible plants in Poba Reserve Forest, Assam, India: multiple functions and implication for conservation.@Research Journal of Agriculture and Forestry Sciences, 1(2), 1-10.@Yes$Hazarika P., Kakati N. and Kalita R.K. (2015).@Indigenous knowledge in relation to conservation and management of forest biodiversity of Assam.@Life Sciences Leaflets, 63, 64-93.@Yes$Hooker J.D. (1872).@Flora of British India.@Vol-I, L Reeve & Co, 5, Henrietta Street, Covent Garden, London. 1-740.@Yes$Kanjilal U.N., Kanjilal P.C., Das A. and De R.N. (1940).@Flora of Assam.@Vol I-IV, Allied Book Centre 15-A, Rajpur Road Dehradun, India.@Yes$Choudhury S. (2005).@Assam’s Flora: Present Status of vascular plants.@Assam Science Technology and Environment Council, U.N. Bezbaruah Road, Silpukhuri, Guwahati – 781003, Assam, 1-368. http://trove.nla.gov.au/version/177684205.@Yes$Begam S.S. and Gogoi R. (2007).@Herbal recipe prepared during Bohag or rangali bihu in Assam.@Indian J Traditional Knowledge, 6(3), 417-422.@Yes$Zhasa N.N., Hazarika P. and Tripathi Y.C.(2015).@Indigenous knowledge on utilization n of plant biodiversity for treatment and cure of diseases of human beings in Nagaland india: A case study.@Int. Res. J. Biological Sci. 4(4), 89-106.@Yes$Gadgil M., Berkes F. and Folke C. (1993).@Indigenous knowledge for biodiversity conservation.@Ambio, 22(2-3), 151-156.http://www.jstor.org/stable/4314060.@Yes <#LINE#>Edible marine molluscan fauna found at Digha coast, West Bengal, India<#LINE#>Manotosh @Das <#LINE#>26-41<#LINE#>4.ISCA-IRJBS-2017-017.pdf<#LINE#>Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, West Bengal, India and Department of Fishery, Govt. of West Bengal, India<#LINE#>13/2/2017<#LINE#>3/3/2017<#LINE#>At present, the total population of India is about 127 crores. Among them a huge number of our children have been suffering from mal-nutritional diseases. They need protein feed and molluscs meat is a good source of protein. India harvested 1.73 lakh tones of Cephalopods, 0.04 lakh tones of Bivalves and 0.02 lakh tones of Gastropods from Indian marine resources in the year 2013-2014. In Southern part of India especially Andhra Pradesh, Tamilnadu, Kerala, Karnataka etc, the poor people including fisher folk population considered the molluscan meat as their feed. At Digha, the beach is about 10 kms long from Digha Mohana to Paschim Gadadharpur and 54 bivalve species, 35 gastropod species and 4 cephalopod species are found as per present study. Out of them 12 bivalves, 2 gastropods and 4 cephalopods are edible species but local people do not consume them except Cephalopods because they are getting different varieties of marine fishes in low price value. But in future the molluscan meat may be eaten by local poor people due to containing high protein in comparation with marine fishes and also scarcity of marine fishes.<#LINE#>Winckworth R. (1940).@New species of shells from Madras.@Journal of Molluscan Studies, 24(2), 41-43.@Yes$Subba Rao N.V., Dey A. and Barua S. (1992).@Estuarine & marine molluscs.@Fauna of West Bengal, State Fauna Series, 3, Part-9: 129-268. Zool. Survey of India.@Yes$Subba Rao N.V., Dey A. and Barua S. (1995).@Molluscs of Hughli Matla Estuary.@Estuarine Ecosystems Series, 2: 41 - 91. Zool. Surv. India.@No$Ramakrishna S.C. and Dey M.A. (2010).@Annotated Checklist of Indian Marine Molluscs.@Rec. Zool. Surv. India, Oce. Paper No. 320.@Yes$Yennawar Prasanna and Tudu Prasad (2014).@Study of Macro benthic (Invertebrate) Fauna Around Digha Coast.@Marine Aquarium and Regional Centre, ZSI, Digha – 721428, WB. Rec. Zool. Surv, 114 (Part- 2), 341-351.@Yes$Ramkrishna, Sarkar Jaydip and Talukdar Shankar (2003).@Marine Invertebrates of Digha Coast and some Recommendation on their Conservation.@Zoological Survey of India, M. Block, New Alipore, Kolkata- 700053, India. Rec. Zool. Surv :101 (Part 3-4): 1-23.@Yes$Goswami Bharati B.C. (1992).@Marine fauna of Digha coast of West Bengal, India.@J. Mar. Biol. Ass. India, 34 (1), 115-137.@Yes$Rao Subba N.V., Dey A. and Barua S. (1992).@Molluscs in Hugli-Matla Estuary.@Zool. Surv. India, Esturarine Ecosystem Series, 2, 41-90.@No$Nair D.V. and Rao K.S. (1997).@The Commercial Molluscs of India.@Edited by CMFRI, Cochin, India.@No$Kumari L.K. and Nair V.R. (1989).@Seasonal Variation in the Proximate Composition of Rock Oyster Saccostrea cucullata from Bombay Coast.@J. India Fish. Asso., 19, 19-24.@Yes$Sing Yambem Tenjing, Krishnamoorthy Machina and Trippeswamy Seetharamaiah, (2012).@Seasonal Changes in the Biochemical Composition of Wedge Clam, Donax scortum from the Padukere Beach, Karnataka.@Department of Post- graduate Studies and Research in Biosciences, Mangalore University, Mangalagangothri–574199, Karnataka, India. Recent Research in Science and Technology, 4(12), 12-17.@Yes$Nagabhushanan R. and Talikhedkar P.M. (1977).@Seasonal variations in protein, fat and glycogen of the Wedge clam Donax cuneatus.@Indian J. Mar.Sci., 6, 85-87.@No$Giese A.C. (1969).@A new approach to the biochemical composition of the mollusks body.@Ocanogr. Mar. Biol. Ann.Rev. 7, 175-229.@Yes$Fatima M. (1996).@Growth Indices, Nutritive Value and Chemical Significance of the Green Mussel.@Ph-D Thesis, University of Karachi, Karachi.@Yes$Chakraborty S.K. (2010).@Coastal Environment of Midnapore, West Bengal: Potential threats and Management, India.@Journal of Coastal Environment, 1(1), 27-40@Yes <#LINE#>Diversity and ecology of Pteridophytes in the Skikda region (North East Algeria)<#LINE#>Tarek @Hamel,Amir @Boulemtafes,Abderachid @Slimani,Bachir El Mouaz @Madoui,Mohamed Djaber @Drid <#LINE#>42-47<#LINE#>5.ISCA-IRJBS-2017-018.pdf<#LINE#>Department of Biology, Badji Mokhtar University, Annabam-23000, Algeria@Department of Biology, Badji Mokhtar University, Annabam-23000, Algeria@Department of Biology, Badji Mokhtar University, Annabam-23000, Algeria@Ecology of terrestrial and aquatic systems laboratory, Badji Mokhtar University, Annaba-23000, Algeria@Department of Biology, Badji Mokhtar University, Annabam-23000, Algeria<#LINE#>14/2/2017<#LINE#>4/3/2017<#LINE#>The relative diversity and ecology of ferns the region of Skikda (North-East Algeria) were studied with the aim of documenting the pteridophytic flora and habit in this area. We have identified 25 taxa, one of this list is new to the Numidia sector (Pteris vittata L.). This flora is dominated by the rosale Hemicryptophyte biological type with either 60%. On the biogeographic level, we have 8 dominant subcosmopolite species, representing 32% of the studied flora. The rare flora of the region is presented by 10 taxa, 7 species considered as rare to very rare. According to habitat types, the species can be classified into 4 groups: terrestrials (20 species), lithophytes (11 species), epiphytes (1species) and aquatic plants (1 species).<#LINE#>Tryon R.M. and Tryon A.F. (2012).@Ferns and Allied Plants, with Special Reference to Tropical America.@Springer Verlag, Berlin, Heidelberg, New York, 1, 856.@Yes$Rothwell G.W. and Stockey R.A. (2008).@Phylogeny and evolution of ferns: a paleontological perspective.@Biology and Evolution of Ferns and Lycophytes, T.A. Ranker, and C.H. Haufler. Cambridge University Press, 332-366.@Yes$Verma S.C. and Khullar S.P. (2010).@Book Review on ‘Fern Ecology’.@Indian Fern J., 27(1-2), 383-387.@Yes$Kiew R. and Anthonysamy S. (1987).@A comparative study of vascular epiphytes in three epiphyte-rich habitats at Ulu Endau, Johore, Malaysia.@Malaysian Nature Journal, 41, 303-315.@Yes$Mokoso M., Diggelen R., Mwangamwanga J.C., Ntahobavuka H. and Robbrecht E. (2013).@Espèces nouvellement signalées pour la flore ptéridologique de la République Démocratique du Congo.@Int. J. Biol. Chem. Sci., 7(1), 107-124.@Yes$Moran R.C. (2008).@Diversity, biogeography and floristics.@In Ranker TA, Haufler CH eds. Biology and Evolution of Frens and Lycophytes, Cambridge University Press, 367-394.@Yes$Sermolli Pichi R.E.G. (1979).@A survey of the pteridological flora of the Mediterranean Region.@Webbia, 34(1), 175-242.@Yes$Maire R. (1952).@Flore de l’Afrique du Nord (Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïque et Sahara).@1, Lechevalier, Paris.@Yes$Quézel Pierre, Santa Sébastien and Schotter O. (1962).@Nouvelle flore de l’Algérie et des régions désertiques méridionales.@Tome I. CNRS, Paris, 1-636.@Yes$Samia Ben rabah (2006).@Etat actuel des ressources en eau dans la wilaya de Skikda (essai de synthèse) bilan-gestion-perspective.@Thèse de Magister, université Badji Mokhtar Annaba, Algérie, 1-209.@Yes$Louhi-Haou S. (2014).@Ecologie des ptéridophytes en Numidie (Nord Est de l’Algérie).@Thèse de Doctorat en Ecologie végétale, université Badji Mokhtar Annaba, Algérie. pp. 1-172.@No$Bruguier O., Hammor D., Bosch D. and Caby R. (2009).@Miocene incorporation of peridotite into the Hercynian basement of the Maghrebides (Edough massif, NE Algeria): Implications for the geodynamic evolution of the Western Mediterranean.@Chimical Geology, 261(1), 172-184.@Yes$Prelli R. (2001).@Les fougères et plantes alliées de France et d’Europe occidentale.@Ed. Belin, Paris, , ISBN 2-7011-2802-1@Yes$Dobignard A. and Chatelain C. (2010).@Index synonymique de la flore d’Afrique du Nord.@1, C.J.B.G, Genève, ISBN: 978-2-8277-0120-9.@Yes$Raunkiaer C. (1934).@The life forms of plants and statistical plant. Geography.@The life forms of plants and statistical plant geography, Claredon press, Oxford.@Yes$Blanca G., Cabezudo B., Cueto M., Lopez C.F. and Torres C.M. (2009).@Flora Vasculair de Andalucía Oriental.@Tome 1. Consejería de Medio Ambiente. Junta de Andalucía, ISBN : 1: 978–84–92807–13–0.@Yes$Hamel T., Slimani A.R., Madoui B.E.M. and Boulemtafes A. (2017 in preparation).@Pteridophytes of Edough peninsula (North East Algeria).@8(1).@No$Medjahdi B., Letreuch-Belarouci A. and Prelli P. (2013).@Actualisation du catalogue des Ptéridophytes du Nord-Ouest algérien (région de Tlemcen).@Acta Botanica Malacitana, 38, 33-39.@Yes$Quézel P. and Médail F. (2003).@Ecologie et biogéographie des forêts du bassin méditerranéen.@Elsevier, Paris, 1-283.@Yes$Bélair De G. (2005).@Dynamique de la végétation de mares temporaires en Afrique du Nord (Numidie orientale, NE Algérie).@Ecologia mediterranea, 31(1). 1-18.@Yes$Jones N.A., Ross H., Lynam T., Perez P. and Leitch A. (2011).@Mental models: an interdisciplinary synthesis of theory and methods.@Ecology and Society, 16(1), 46. U R L : http://www.ecologyandsociety.org/vol1 th 6/iss1/art46/ - accessed 14 January, 2015.@Yes$Richard A.F., Dewar R.E., Schwartz M. and Ratsirarson J. (2000).@Mass change, environmental variability and female fertility in wild Propithecus verreauxi.@Journal of Human Evolution, 39(4), 381-391.@Yes$Dudani S.N., Chandran M.D.S., Mahesh M.K. and Ramachandra T.V. (2014).@Pteridophyte diversity in wet evergreen forests of Sakleshpur in Central Western Ghats.@Ind J PltSci,3(1), 28-39. Sahyadri E-News Issue-33. Accessed on 15th March 2011. Available: http://wgbis.ces.iisc.ernet.in/biodiversity/sahyadri_enews/newsletter/issue33/index.htm.@Yes$De Bolos Capdevila O. and Vigo Bonada J. (2015).@Flora dels Paisos Catalans.@1-125.@Yes$Véla E. and Benhouhou S. (2007).@Évaluation d’un nouveau point chaud de biodiversité végétale dans le Bassin méditerranéen (Afrique du Nord).@Comptes Rendus Biologies, 330(8), 589-605.@Yes @Short Communication <#LINE#>Phytochemical Study of Tradescantia spathacea<#LINE#>Pavan M. @Kadam,Nilesh P. @Kakde <#LINE#>48-51<#LINE#>6.ISCA-IRJBS-2017-020.pdf<#LINE#>Department of Chemistry, Shri Vyankatesh Arts, Commerce & Science College, Deulgaon Raja Dist. Buldana, Maharashtra, India@Department of Botany, Shri Vyankatesh Arts, Commerce & Science College, Deulgaon Raja Dist. Buldana, Maharashtra, India<#LINE#>7/12/2016<#LINE#>13/2/2017<#LINE#>Tradescantia spathacea, commonly called Moses-in-a-basket or oyster plant, is a clump-forming evergreen perennial that is origin from Guatemala, southern Mexico and Belize. It is widely grown in tropical areas because of its attractive foliage. It is commonly grown in the West Indies. It has shown invasive tendencies by escaping gardens and naturalizing in parts of Louisiana and Florida. It belongs to the family commelinaceae. It typically grows as a 6-12\" tall rosette consisting of narrow, spirally arranged, linear-lanceolate, stiffly-ascending, sword-shaped, dark green leaves (to 6-12\" long) with purple undersides. Plants will spread to form a dense ground cover over time. White flowers in axillary cymes are enclosed by long-lasting, boat-shaped, purple bracts, hence the common name of Moses-in-a-basket. Flowers bloom throughout the year. Flowers are followed by fruit (3-celled capsules). This plant is easily grown indoors in pots or containers. Genus name was given in honor of John Tradescant, a English horticulturist and plant collector. This work was done to study presence of phytochemicals in the leaves extract of Tradescantia spathacea. The extraction of leaves powder of Tradescantia spathacea was done using ethanol and it was used for testing the presence of various phytochemicals.<#LINE#>Rasool Hassan B.A. (2012).@Medicinal Plants (Importance and Uses).@Pharmaceut Anal Acta, 3, 139. doi: 10.4172/2153-2435.1000e139@Yes$Amro B., Aburjai T. and Al-Khalil S. (2002).@Antioxidative and radical scavenging effects of olive cake extract.@Fitoterapia, 73(6), 456-461.@Yes$Cai Y.Z., Luo Q., Sun M. and Corke H. (2004).@Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.@Life Sci, 74(17), 2157-2184.@Yes$Moure Andrés, Cruz Jose M, Franco Daniel, Domı́nguez J Manuel, Sineiro Jorge, Domı́nguez Herminia, Núñez Marı́a José and Parajó J. Carlos (2001).@Natural antioxidants from residual sources.@Food Chemistry, 72(2), 145-171.@Yes$Motaleb M.A. (2011).@Selected Medicinal Plants of Chittagong Hill Tracts.@1-128.@Yes$Stamps R.H. and Lance S.O. (2003).@Croton production and use.@1st ed. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, 27.@Yes$Wadood Abdul, Ghufran Mehreen, Jamal Syed Babar, Naeem Muhammad, Khan Ajmal, Ghaffar R. and Asnad C. (2013).@Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan.@Biochem Anal Biochem, 2(4), 1-4.@Yes$Harborne J.B. (1998). Methods of plant analysis.@Phytochemical methods: A guide to modern techniques of plant analysis.@3rd ed. London, UK: Chapman and Hall, 1-30.@Yes$Trease G.E. and Evan W.C. (1983).@Pharmacognosy.@Ed 12, English language Book society, Balliere Tindall, 309-315 and 706-708.@Yes$Kokate C.K., Purohit A.P. and Ghokhale S.B. (1997).@Pharmacognosy.@Nirali Prakashan, Pune, India.@Yes$Hegde Karunkar and Joshi Arun B. (2010).@Preliminary Phytochemical Screening and Antipyretic Activity of Carissa Spinarum Root Extract.@Scholars Research Library, Der Pharmacia letter, 2(3), 255-260.@Yes$Tiwari P., Kumar B., Kaur M., Kaur G. and Kaur H. (2011).@Phytochemical screening and extraction: a review.@Int Pharm Sci 1(1), 98-106.@Yes$ParivugunaV., Gnanaprabhal R., Dhanabalan R. and Doss A. (2008).@Antimicrobial properties and phytochemical constituents of rheo discolor hance.@Ethnobotanical, 12, 841-845.@Yes$Starlin T., Arul Raj C., Ragavendran P. and Gopalakrishnan V.K. ( 2012).@Phytochemical screening, functional groups and element analysis of tylophora pauciflora wight and ARN.@Int Res J Pharm, 3(6), 180-183.@Yes$Das Ayyappa M.P., Dhanabalan R., Doss A. and Palaniswam M. (2009).@Phytochemical screening and Antibacterial Activity of aqueous and Methanolic extract of two medicinal plants against Bovine Mastitis Bacterial Pathogens.@Ethnobotanical leaflets, 13, 131-139.@Yes$Dhanabalan R., Doss A., Jagadeeswari M., Balachandar S., Kezia E., Parivuguna V., Josephine Reena C.M., Vaidheki R. and Kalamani K. (2008).@In vitro Phytochemical Screening and Antibacterial Activity of Aqueous and Methanolic Leaf Extracts of Tridax procumbens against Bovine Mastitis Isolated Staphylococcus aureus.@Ethnobotanical Leaflets, 12, 1090-1095.@Yes <#LINE#>Formulation of organic medium for the cultivation of spirulina using agro-wastes<#LINE#>P. @Rajeswari,K. @Deepika <#LINE#>52-54<#LINE#>7.ISCA-IRJBS-2017-023.pdf<#LINE#>Department of Microbiology, The Standard Fireworks Rajaratnam College for Women, Sivakasi-626123, Tamil Nadu, India@Department of Microbiology, The Standard Fireworks Rajaratnam College for Women, Sivakasi-626123, Tamil Nadu, India<#LINE#>30/11/2016<#LINE#>26/2/2017<#LINE#>In the present study, attempt was made to cultivate Spirulina using agricultural wastes. Spirulina mass cultivated in the Zarrouk’s medium and morphology observed under microscope. The growth performance, biomass concentration, Chlorophyll content, Carotenoids and Phycocyanin pigments studied using skin peel of beet root (Beta vulgaris), grape leaves (Vitis vignifera), extract of rice bran and rice husk and root of Casuarina (Casuarina equisetifola). Growth of Spirulina improved 2 folds on 21st day in organic medium than control. Hence, this organic medium can be recommended for the domestic and commercial production of Spirulina.<#LINE#>Zarrouk C. (1966).@Contribution a l’etude d’une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner).@Geitler, Doctorate thesis. University of Paris, Paris, France.@Yes$Usharani G., Srinivasan G. and Sivasakthi S. (2014).@Analysis of biochemical constituents in Spirulina platensis cultivated using rice mill effluent supplementation.@International Journal of Recent Scientific Research, 5(12), 2183-2187.@Yes$Thimmaiah S.K. (2006).@Standard methods of Biochemical analysis.@Kalyani Publishers, Ludhiana, 534.@Yes$Saleha A.M., Dhar D.W. and Singh P.K. (2011).@Comparative pigment profiles of different Spirulina strains.@Research in Biotechnology, 2(2), 67-74@Yes$Sandeep K.P., Shukla S.P., Vennila A, Purushothaman C.S. and Manjulekshmi N. (2015).@Cultivation of Spirulina (Arthrospira) platensis in low cost seawater based medium for extraction of value added pigments.@Indian Journal of Geo-Marine Sciences, 44(3), 384-393.@Yes$Leema J.M., Kirubagaran R., Vinithkumar N.V., Dheeran P.S. and Karthikayulu S. (2010).@High value pigment from Arthrospira (Spirulina) platensis cultured in seawater.@Bioresource Technology, 101(23), 9221-9227.@Yes$Faucher O., Coupal B. and Leduy A. (1979).@Utilization of seawater and urea as a culture medium for Spirulina maxima.@Canadian Journal of Microbiology, 25(6), 752-759.@Yes$Materassi R., Tredici M. and Balloni W. (1984).@Spirulina culture in sea water.@Applied Microbiology and Biotechnology, 19(6), 384-386.@Yes$Tredici M.R., Papuzzo T. and Tomaselli L. (1986).@Outdoor mass culture of Spirulina maxima in sea water.@Applied Microbiology and Biotechnology, 24(1), 47-50.@Yes$Wu B., Tseng C.K. and Xiang W. (1993).@Large-scale cultivation of Spirulina in seawater based culture medium.@Botanica Marina, 36(2), 99-102.@Yes <#LINE#>Induced mutagenic effect of chemical and physical mutagens on pollen sterility in sunflower (Helianthus annus L.)<#LINE#>Vijayata P. @Jamdhade,Navnath G. @Kashid <#LINE#>55-57<#LINE#>8.ISCA-IRJBS-2017-024.pdf<#LINE#>Department of Batany, Vasant Mahavidyalaya Kaij, Dist. Beed Maharashtra-431123, India@Department of Batany, Vasant Mahavidyalaya Kaij, Dist. Beed Maharashtra-431123, India<#LINE#>29/11/2016<#LINE#>28/2/2017<#LINE#>Sunflower [Helianthus annus L.] belongs to family composite (Asteraceae). In the present study experimental seeds of two sunflower cultivars namely ‘Bhanu’ and ‘SS­56’ treated with various concentration of chemical mutagens [EMS and SA] and physical mutagen (Gamma rays). Effect of these mutagens on pollen sterility were studied in M 1 generation. The maximum pollen sterility in the variety of Bhanu (71.42%) could be observing in gamma ray 10 kR while variety of SS-­56 (42.32%) observed in EMS 0.10 %. The induced mutation plays an important role in crop improvement, either through physical and chemical mutagens.<#LINE#>Gregory W.C. (1961).@Efficiency of mutation breeding.@Mutation and plant breeding, USA. Nat. Acad. sci. Nat. Rescounc. pub., 89(1), 461-486.@Yes$Kawai T. (1963).@Mutation in rice induced by radiation and their signification in rice breeding 2. Mutation by radiophosphorus.@Bull. Nat Inst Agric. Sci. (Japan) series, 10, 1-75.@Yes$Krull C Fand (1960).@Genetic variability in oats following hybridization and radiation.@Crop sci., 1, 1-63@Yes$Nayar G.G. (1968).@Seed Colour Mutation in Brassica juncea Hook. F. and Thomas induced by radioactive phosphorus 32 p.@Sci. and Culture., 34, 421-422.@Yes$Ramya B., Nallathambi G. and Ram S.G. (2014).@The effect of mutagens on M1 population of black gram (Vignomungo L. Hepper).@Africa Journal of Biotechnology, 13(8), 951-956.@Yes$Gautum A.S., Sood K.C. and Richarria A.K. (1992).@Mutagenic effectiveness and efficiency of gamma ray, EMS and their synergistic effect in black gram (Vigna mungo L.)@Cytologia, 57(1), 85-89.@Yes