@Research Paper <#LINE#>Screening of Some Microbial Isolates from Soil Samples for Solubilization of Inorganic Phosphate<#LINE#>Ekundayo@E. A.,Ogunnusi@ T. A.,Ogunmefun @O. O.,Alegbe @M. O.,Oso @A. O. <#LINE#>1-6<#LINE#>1.ISCA-IRJBS-2015-119.pdf<#LINE#>Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Nigeria@Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Nigeria@Department of Biological Sciences, Afe Babalola University, Ado-Ekiti,Nigeria@Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Nigeria@Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria<#LINE#>3/8/2015<#LINE#>7/7/2016<#LINE#>Thirty two bacterial and six fungal strains isolated from different soil samples collected from the Federal University of Technology, Akure and Afe Babalola University, Ado Ekiti, Nigeria were qualitatively and quantitatively screened for phosphate solubilization ability using National Botanical Research Institute phosphate agar and broth containing tricalcium phosphate as the single source of phosphorus. The result of the qualitative screening showed that none of the isolates formed any halo zone which was indicative of phosphate solubilization. However, in liquid medium, fifteen bacterial isolates showed phosphate solubilization which was evident by decrease of pH in National Botanical Research Institute phosphate broth after 24, 48, 72, 96 and 120 hours. All the fungal isolates showed more efficiency in solubilization of phosphate with Aspergillus parasiticus solubilizing most of the phosphate in the medium.<#LINE#>Ahmad A. K., Ghulam J., Mohammad S. A., Syed M. S. and Mohammad R. (2009).@Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and their Role in Crop Production.@Journal of Agriculture and Biological Science, 1, 48-58.@Yes$Tamilarasi S., Nanthakumar K,. Karthikeyan K. and Lakshmanaperumalsamy P. (2008).@Diversity of root associated microorganisms of selected medicinal plants and influence of rhizomicroorganisms on the antimicrobial property of Coriandrum sativum.@Journal of Enviromental Biology 29, 127-134.@Yes$Jose M. B., Marıa J., Pozo Rosario A. and Concepcion A. A. (2005).@Microbial co-operation in the rhizosphere.@Journal of Experiment of Botony, 56, 1761–1778.@Yes$Chunqiao X., Ruan C., Huan H., Guanzhou Q., Dianzuo W. and Wenxue Z. (2009).@Isolation of Phosphate-Solubilizing Fungi from Phosphate Mines and Their Effect on Wheat Seedling Growth.@Applied Biochemistry Biotechnology, 159, 330-342.@Yes$Whitelaw M. A. (2000).@Growth promotion of plants inoculated with phosphate solubilizing fungi.@Advanced Agronomy, 69, 99-151.@Yes$Maliha R., Samina K., Najma A., Sadia A. and Farooq L. (2004).@Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions.@Pakistan Journal of Biological Science, 7, 187-196.@Yes$Zaidi A., Khan M. S., Ahemad M., Oves, M. and Wani P. A. (2009).@Recent Advances in Plant Growth Promotion by Phosphate-Solubilizing Microbes.@Khan MS et al (eds) Microbial Strategies for Crop Improvement, Springer-Verlag, Berlin Heidelberg, 23-55.@Yes$Atlas R. and Bartha R. (1997).@Microbial ecology.@Addison Wesley Longman, New York.@No$Trolove S. N., Hedley M. J., Kirk G. J. D., Bolan N. S. and Loganathan P. (2003).@Progress in selected areas of rhizosphere research on P acquisition.@Australian Journal of Soil Research, 41, 471-499.@Yes$Omar S. A. (1998).@The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate.@World Journal of Microbiology and Biotechnology, 14, 211-219.@Yes$Pikovskaya R. I. (1948).@Mobilization of phosphorus in soil in connection with vital activity of some microbial species.@Microbiology., 17, 362-370.@Yes$Gupta R. R., Singal R., Shanker A., Kuhad R. C. and Saxena R. K. (1948).@A modified plate assay for secreening phosphate solubilizing microorganisms.@Journal of General Applied Microbiology, 40, 255-260.@Yes$Nautiyal C. S. (1999).@An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms.@Microbiological Letters, 170, 265-270.@Yes$Bashan Y., Kamnev A. A. and de Bashan L. E. (2013).@A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth.@Biology of Fertilized Soils, 49, 1-2.@Yes$Fawole M. O. and Oso B. A. (2001).@Laboratory manual of microbiology.@3rd edition, Spectrum books Limited, Ibadan, 127.@Yes$JPE Anderson (1982).@Methods of Soil Analysis, Part 2, Chemical and Microbial Properties.@Soil Science Society of America, Society of Agronomy, Madison, Wisconsin, 403-430.@Yes$Vassilev N. and Vassileva M. (2003).@Biotechnological solubilisation of rock phosphateon media containing agro-industrial waste.@Applied Microbiology Biotechnology, 61, 435-440.@Yes$Del-Campillo S.E. and Van Z. (1999).@Modelling long-term phosphorous leaching and changes in phosphorous fertility in selectively fertilized acid sandy soils.@European Journal of Soil Science, 50, 391-399.@Yes$Kpomblekou K. and Tabatabai M. A. (1994).@Effect of organic acids on release of phosphorus from phosphate rocks1.@Soil Science, 158, 442-453.@Yes$Kesaulya H., Zakaria B. B. and Syaiful S. A. (2015).@The ability phosphate solubilization of bacteria rhizosphere of potato Var. Hartapel from Buru Island.@Int. J. Curr. Microbiol. App. Sci, 4(1), 404-409.@Yes$Deubel A. and Merbach W. (2005).@Influence of microorganisms on phosphorous bio-avalability in the soil.@American Journal, 22, 177-191.@No$Cherif-Silini H., Silini A., Ghoul M., Yahiaoui B. and Arif F. (2013).@Solubilization of phosphate by the Bacillus under salt stress and in the presence of osmoprotectant compounds.@African Journal of Microbiology Research, 7(37), 4562-4571.@Yes$T. Reena, H. Dhanya, M.S Deepthi and DL Pravitha (2013).@Isolation of Phosphate Solubilizing Bacteria and Fungi from Rhizospheres soil from Banana Plants and its Effect on the Growth of Amaranthus cruentus L.@IOSR Journal of Pharmacy and Biological Sciences, 5(3), 6-11.@Yes$Shin D., Kim J., Kim B., Jeong J. and Lee J. (2015).@Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore.@Minerals, 5, 189-202.@Yes$Kadari Rajya Laxmi K. R., Merugu R., Girisham S. and Reddy S. M. (2015).@Phosphate solubilization by Allochromatium sp. Gskrlmbku-01 isolated from marine water of Visakhapatnam.@International Journal of Applied Biology and Pharmaceutical Technology, 6(2), 1-6.@Yes$Venkateswaran K. and Natarajan R. (1983).@Seasonal distribution of inorganic phosphate solubilizng bacteria and phosphatase producing bacteria in Porto Novo waters.@Indian Journals of Science, 12, 213-217.@Yes$Nahas E., Banzatto D. A. and Assis L. C. (1990).@Fluorapatite solubilisation by Aspergillus niger in vinasse medium.@Soil Biology and Biochemistry, 22, 1097-1101.@Yes$Istina I. N., Widiastuti H., Joy B. and Antralina M. (1992).@Phosphate solubilising microbe from saprists peat soil and their potency to enhance oil palm growth and P uptake.@Procedia Food Science, 3, 426-435@Yes$Illmer P.A. and Schinner F. (1992).@Solubilization of inorganic phosphates by microorganisms isolated from forest soil.@Soil Biological Biochemistry, 24, 389-395.@Yes <#LINE#>Fundamental Idea of Evolutionary Relationships among Cyanobacteria using 16s RRNA and RBCL Gene Sequences<#LINE#>Mahana@Abhijeet <#LINE#>7-16<#LINE#>2.ISCA-IRJBS-2016-058.pdf<#LINE#>Department of Botany, Mizoram University, Aizawl-796004, Mizoram, India<#LINE#>5/6/2016<#LINE#>30/7/2016<#LINE#>Cyanobacteria are aquatic and autotrophic organisms. They are found all over the world, generally in terrestrial, freshwater and marine habitats. But the blooms are found in fresh water. 16S rRNA is used for identification of diversity of prokaryotic organisms as well as other organisms. So it helps in the study of phylogeny among them. Here we have collected 16S gene sequences of 122 cyanobacterial species determine the phylogeny among them. rbcL (Ribulose-biphosphate carboxylase/oxygenase) is also a gene which is widely sequenced from numerous plant taxa and the resulting database is aided in plant physiology. So we have collected rbcL gene sequences of 46 cyanobacterial species and determine the evolutionary relationship among them. The evolutionary relationships between all organisms are called phylogeny and are represented by phylogenetic tree. Phylogenetic tree not only give the relationship among the species but also gives the proper position of the species in cyanobacterial classification.<#LINE#>Schirrmeister B. E., Baracaldo P. S. and Wacey D. (2016).@Cyanobacterial evolution during the Precambrian.@Int. J. Astrobiol., 15(3), 187-204. http://dx.doi:10.1017/S1 473550415000579.@Yes$Paul J. H., Cazares L. and Thurmond J. (1990).@Amplification of the rbcL Gene from Dissolved and Particulate DNA from Aquatic Environments.@Appl. Environ. Microbiol., 56(6), 1963-1966.@Yes$Pruitt K. D., Tatusova T., Brown G. R. and Maglott D. R. (2012).@NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy.@Nucleic. Acids. Res., 40, D130–D135. http://dx.doi:10.1093/nar/gkr1079.@Yes$Nelissen B., Peer Y. V., Wilmotte A. and Wachter R. D. (1995).@An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences.@Mol. Biol. Evol., 12(5), 1166-1173.@Yes$O’Neill S. C., Giordano R., Colbert A. M. E., Karr T. L. and Robertson H. M. (1992).@16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects.@Proc. Natl. Acad. Sci. U. S. A., 89(7), 2699-2702.@Yes$Kitts P. A., Church D. M., Choi J., Hem V., Smith, R., Tatusova T., Thibaud-Nissen F., DiCuccio M., Murphy T. D., Pruitt K. D. and Kimchi A. (2016).@Assembly: a resource for assembled genomes at NCBI.@Nucleic. Acids. Res., 44(D1), D73-D80. http://dx.doi: 10.1093/nar/gkv1226.@Yes$Tamura K., Kumar S., Peterson D., Peterson N., Stecher G. and Nei M. (2011).@MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.@Mol. Biol. Evol., 28(10), 2731-2739.@Yes$Blank C. E. and Sanchez-Baracaldo P. (2010).@Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen.@Geobiology., 8(1), 1-23. http://dx.doi: 10.1016/j.tim.2009.05.010.@Yes$Logares R., Bråte J., Bertilsson S., Clasen J. L., Shalchian-Tabrizi K. and Rengefors K. (2009).@Infrequent marine–freshwater transitions in the microbial world.@Trends. Microbiol., 17(9), 414–422, http://dx. doi: 10.1016/j.tim.2009.05.010.@Yes$Castresana J. (2000).@Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.@Mol. Bio. Evol., 17(4), 540-552.@Yes$Halekoh U. and Højsgaard S. (2014).@A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models – the R package pbkrtest.@J. Stat. Softw., 59(9), 1-32, http://dx.doi:10.18637/jss.v059.i09.@Yes$Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J. and Wade W. G. (1998).@Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA.@Appl. Environ. Microbiol., 64(2), 795-799.@Yes$Tang E. P. Y., Vincent W. F. and Tremblay R. (1997).@Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature?.@J. Phycol., 33, 171-181. http:// dx.doi: 10.1111/j.0022-3646.1997.00171.x.@Yes$Baldauf S. L. and Palmer J. D. (1990).@Evolutionary transfer of the chloroplast tufA gene to the nucleus.@Nature., 344(6263), 262-265.@Yes$Tomotani A., Knoll A. H., Cavanaugh C. M. and Ohno T. (2006).@The evolutionary diversification of cyanobacteria: Molecular phylogenetic and paleontological Perspectives.@Proc. Natl. Acad. Sci. U. S. A., 103(14), 5442-5447.http://dx. doi: 10.1073/pnas.0600999103.@Yes$Gielly L. and Taberlet P. (1994).@The use of chloroplast DNA to resolve plant phylogenesis: Noncoding versus rbcl sequences.@Mol. Bio. Evol., 11(5), 769-777.@Yes$Basak P., Pramanik A., Sengupta S., Nag S., Bhattacharyya A., Roy D., Pattanayak R., Ghosh A., Chattopadhyay D. and Bhattacharyya M. (2016).@Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing.@Elsevier., 7, 76-78, .http://dx. doi:10.1016/j. gdata.2015.11.030.@Yes$Donoghun M. J., Olmstead R.G., Smith J.F. and Palmer J.D. (1992).@Phylogenetic relationship of Dipsacales based on rbcL sequences.@Ann. Missouri Bot. Gard., 79(2), 333-345. http://dx.doi.org/10.2307/2399772.@Yes$Bergsland K. J. and Haselkorn R. (1991).@Evolutionary relationship among eubacteria, cyanobacteria and chloroplasts: Evidence from the rpoC1 gene of Anabaena sp. strain 7120.@J. Bacteriol., 173(11), 3446-3455.@Yes$Delwiche C.F., Kuhsel M. and Palmer J. D. (1995).@Phylogenetic analysis of tuf A sequence indicates a cyanobacterial origin of all plastids.@Mol. Phylogenet. Evol., 4(2), 110-128, http://dx.doi: 10.1006/mpev.1995 .1012.@Yes$Hasebe M., Omori T., Nakazawa M., Sano T. and Kato M. (1994).@rbcL gene sequences provide evidence for the evolutionary lineases of leptosporanglate frens.@Proc. Natl. Acad Sci. U.S.A., 91(12), 5730-5734.@Yes$Deutsch C. A., Tewksbury J. J., Huey R. B., Sheldon K. S., Ghalambor C. K., Haak D. C. and Martin P. R. (2008).@Impacts of climate warming on terrestrial ectotherms across latitude.@Proc. Natl. Acad Sci. U.S.A., 105(18), 6668-6672.http://dx.doi: 10.1073/pnas.0709472105.@Yes$Pichard S. L., CampbelL L. and Paul J. H. (1997).@Diversity of the Ribulose Bisphosphate Carboxylase/Oxygenase form I Gene (rbcL) in Natural Phytoplankton Communities.@Appl. Environ. Microbiol., 63(9), 3600-3606.@Yes$Kunin V., Goldovsky L., Darzentas N. and Ouzounis C. A. (2005).@The net of life: reconstructing the microbial phylogenetic network.@Genome Res., 15(7) 954-959.@Yes$Giovannoni S. J., Turner S., Olsen G. J., Barns S., Lane D. J. and Pace N. R. (1988).@Evolutionary relationships among cyanobacteria and green chloroplast.@J. Bacteriol., 170(8), 3584-3592.@Yes$Wheeler D. L., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R., Federhen S., Geer L. Y., Kapustin Y., Khovayko O., Landsman D., Lipman D. J., Madden T. L., Maglott D. R., Ostell J., Miller V., Pruitt K. D., Schuler G. D., Sequeira E., Sherry S. T., Sirotkin K., Souvorov A., Starchenko G., Tatusov R. L., Tatusova T. A., Wagner L. and Yaschenko E. (2015).@Database resources of the National Center for Biotechnology Information.@Nucleic Acids Res., 35, D5– D12. http://dx.doi: 10.1093/nar/gks1189.@Yes$Thomas M. K., Kremer C. T. and Litchman E. (2016).@Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits.@Global. Ecol. Biogeogr., 25,75-86.http://dx.doi: 10.1111/geb.12387.@Yes$Swingly W. D., Blankenship R. E. and Raymond J. (2008).@Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families.@Mol. Biol. and Evol., 25 (4), 43-654.http://dx.doi:10.1093/molbev/msn034.@Yes$Boczar B. A., Delaney T. P. and Cattolico R. A. (1989).@Gene for the ribulose-1,5-biphosphate carboxylase small subunit protein of the marine chromatophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium.@Proc. Natl. Acad. Sci. U. S. A., 86(13), 4996-4999.@Yes$Deng S., Wang C., Philippis R. D., Zhou X., Ye C. and Chen L.(2016).@Use of quantitative PCR with the chloroplast gene rps4 to determine moss abundance in the early succession stage of biological soil crusts.@Springer., 52(5), 595-599.http://dx.doi: 10.1007/s00374-016-1107-7.@Yes$Mojzsis S. J., Arrhenius G., McKeegant K. D., Harrison T. M., Nutman A. P. and Friend C. R. L. (1996).@Evidence for life on Earth before 3,800 million years ago.@Nature., 384(7), 55-59.@Yes$Sievers F., Wilm A., Dinean D., Gibson T. J., Karplus K., Li W., Lopez R., Mcwilliam H., Remmert M., Soding J., Thompson J. D. and Higgins D.G. (2011).@Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.@Mol. Syst. Biol., 1-6. http://dx.doi: 10.1038/msb.2011.75.@Yes <#LINE#>Analysis of Cytochrome P51A1 gene, its Sequence Variants and Protein Domains<#LINE#>Raza@Shahid,Mubeen@Hira <#LINE#>17-21<#LINE#>3.ISCA-IRJBS-2016-065.pdf<#LINE#>Department of Biotechnology, University of South Asia, Lahore, Pakistan@Department of Biotechnology, University of South Asia, Lahore, Pakistan<#LINE#>15/5/2016<#LINE#>27/7/2016<#LINE#>The cytochrome gene CYP51 is a member of the cytochrome P450 (CYP) gene super family and is mainly involved in synthesis of sterolby chemical reactions in certain plants and animals. CYP51 is commonly known across eukaryotes. The study is focused on functional analysis of human CYP51 gene, which is 22 kb in size with coding region consisting of 10 exons and present on chromosome number7 long arm position 7q21.2–q21.3. However, the comparison of the human CYP51 gene with other CYP gene families from different species shows 64 different CYP51 orthologues which are located at unique chromosomal positions. Computational analysis of CYP51 gene was performed to analyze its various orthologues, genetic variants, protein domains and signatures.<#LINE#>Wishart David S. (2007).@HMDB: the Human Metabolome Database.@Nucleic Acid Research, 35(Database issue), D521-D526.@Yes$Lepesheva Galina I., and Michael R. Waterman (2008).@Sterol 14α-Demethylase Cytochrome P450 (CYP51), a P450 in All Biological Kingdoms.@BiochimBiophysActa., 1770(3), 467-77.@Yes$Daum G, Lees ND, Bard M and Dickson R. (1998).@Biochemistry, Cell Biology and Molecular Biology of Lipids of Saccharomyces cervisiae.@Yeast., 14(16), 1471-1510.@Yes$Nebert DW and Russell DW (2002).@Clinical importance of the cytochromes P450.@Lancet, 360, 1155-1162.@Yes$Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ and Guengerich FP et al. (1987).@The P450 gene superfamily. Recommended nomenclature.@DNA, 6, 1-11.@Yes$Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R and Waxman DJ et al. (1996).@P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature.@Pharmacogenetics, 6, 1-41.@Yes$Ranson R, Claudianos C, Ortelli F, Abgrall C, Hemingway J and Sharakhova MV et al. (2002).@Evolution of supergene families associated with insecticide resistance.@Science, 298, 179-181.@Yes$Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, and Takahashi S et al. (2003).@An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene.@Nature, 423, 91-96.@Yes$Lepesheva GI and Waterman MR. (2004).@CYP51 The Omnipotent P450.@Mol Cell Endocrinol., 215, 165-170.@Yes$Becher Rayko and Stefan G. R. Wirsel (2012).@Fungal Cytochrome P450 Sterol 14α-demethylase (CY.P51) and Azole Resistance in Plant and Human Pathogens.@Applied Microbiology and Biotechnology., 95(4), 825-840.@Yes$Daly AK (2004).@Pharmacogenetics of the cytochromes P450.@Curr Top Med Chem, 4, 1733-1744.@Yes$Anderson JL, Carlquist JF, Horne BD and Muhlestein JB (2003).@Cardiovascular pharmacogenomics: Current status, future prospects.@J CardiovascPharmacol, 8, 71-83.@Yes$Van Schaik RH (2005).@Cancer treatment and pharmacogenetics of cytochrome P450 enzymes.@Invest New Drugs, 23, 513-522.@Yes$Vandel P, Talon JM, Haffen E and Sechter D (2007).@Pharmacogenetics and drug therapy in psychiatry: The role of the CYP2D6 polymorphism.@Curr Pharm Des, 13, 241-250.@Yes$Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W and Braunwald E et al. (2009).@Cytochrome p-450 polymorphisms and response to clopidogrel.@N Engl J Med, 360, 354-362.@Yes$Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, Steg PG, Ferrieres J, Danchin N and Becquemont L (2009).@Genetic determinants of response to clopidogrel and cardiovascular events.@N Engl J Med, 360, 363-375.@Yes$Aguiar M, Masse R and Gibbs BF (2005).@Regulation of cytochrome P450 by posttranslational modification.@Drug Metab Rev, 37, 379-404.@Yes$Lim YP and Huang JD (2008).@Interplay of pregnane X receptor with other nuclear receptors on gene regulation.@Drug Metab Pharmacokinet, 23, 14-21.@Yes <#LINE#>Fate of Herbicide Granstar (Tribenuron Methyl) in Wheat Field in AI-Nasiriya Governorate<#LINE#>Ihsan Flayyih @Hasan AI-Jawhari,Khudier Jouda @Yasir AI-Seadi <#LINE#>22-37<#LINE#>4.ISCA-IRJBS-2016-066.pdf<#LINE#>Department of Environment and Pollution, Marshes Research Center, Thi-qar University, Iraq@Department of Environment and Pollution, Marshes Research Center, Thi-qar University, Iraq<#LINE#>18/5/2016<#LINE#>17/6/2016<#LINE#>Eleven filamentous fungi isolated from the application field soil with tribenuron methyl herbicide. Aspergillus niger, Aspergillus flavus were more frequency with 88.8%, 77.7% respectively, while Penicillium funiculosum, Aspergillus ostianus and Aspergillus versicolor were moderate frequency with 55.5%, 44.4%, 44.4% respectively, but the remaining 5 fungal species were isolated with a very frequency with 22%, 11%. Also the results obtained that the total numbers of fungi were increased after one day from application with granstar herbicide and continue to increase with all weeks and the higher numbers of fungi calculated in fifth week, and the results also showed that the higher degradation of granstar was determined in this week. The results showed that A.niger was more resistance among other isolated fungi with all concentrations of (TBM) in solid PDA medium and the colony diameter of this fungus was equal with control (8.5cm), also the herbicide (TBM) not appear any effect on this fungus with all concentrations. However the results showed that TBM was inhibited A.versicolor 15%, 5% in 25, 50 ppm respectively, but the colony diameter was increased to 8.5cm when compared with control and TBM was inhibited A.flavus 35% in 75ppm concentration only, but this herbicide inhibited P.funiculosum 6%, 9% in 25, 50ppm respectively. The statistical methods showed a significant difference between isolated fungi, but no significant differences between concentrations were obtained. The results showed that TBM was inhibited the mycelial dry weight of A.niger with all concentrations in liquid mineral salts medium, and the inhibition percent reached to 9%, 13%, in 25, 50, 75ppm respectively, also the results showed that the inhibition percent was 2.0%, 31% in 25, 75ppm with A.flavus. However the results showed that the dry weight of A.flavus was increased in 50ppm concentration, and the mycelial dry weight of this fungus reached to 0.761gm when compared with control (0.700gm) and in same time the results showed that the inhibition percent was reached to 14% in 25ppm with P. funiculosum. Also the results showed that the mycelial dry weight of P.funiculosum was increase to 0.519 gm, 0.704gm in 50, 75ppm, when compared with control (0.511 gm). Only among with all fungi under study the mycelial dry weight of A.versicolor was increased in all concentrations of TBM, and also the statistical methods showed no significant differences between concentrations and in the same time this fungus show the higher ability to degraded granstar to other different compounds.<#LINE#>Beyer M.E., Brown H.M. and Duffy M.J (1987).@Sulfonylurea herbicide soil relations.@Brit. Crop. protect. Confere- weed., Brighton UK, 531- 540, BCPC Publication.@Yes$Ye Q., Sun J. and Wu J. (2003).@Cause of phytotoxicity of metasulfuron – methyl bound residues in soil.@Environm. Poll., 126(3), 417-423 .@Yes$Si Y., Wang S., Zhou J. Hua R. and Zhou D. (2005).@Leaching and degradation of ethametsulfuron – methyl in soil.@Chem., (60), 601-609 .@Yes$Rosenbom A.E, Kjaer J. and Olsen P. (2010).@Long – term leaching of rimsulfuron degradation products through sandy agricultural soils.@Chem., 79, 830-838.@Yes$Anderson S.M., Herts P.B., Holst T., Bossi R. and Jacobsem. C.S. (2001).@Minerlisation studies of 14C- labeled metsulfuron-methyl, tribenuron - methyl, chlorsulfuron and thifensulfuron- methyl in one Danish soil and groundwater sediment profile.@Chem., 45, 775-782 .@Yes$Walker A., Cotterill E.G. and Welch S.J. (1989).@Adsorption and degradation of chlorsulfuron and metasulfuron - methyl in soil from different depths.@Weed. Res., (29), 281-288.@Yes$Wang H., Xu J., Yates S.R., Zhang J., Gan J., Ma J., Wu J. and Xuan R. (2010).@Minerlization of metasulfuron – methyl in Chinese paddy soils.@Chem., 78, 335-341 .@Yes$Bottaro M., Frascarolo P., Gosetti F., Nazzucco E., Gianotti V., Polati S., Piacenitini L., Pavese G. and Gennaro M.C. (2008).@Hydrolytic and photoinduced degradation of tribenuron – methyl studied by HPLC- DAD – MS / MS.@J. Amer. Mass. Spect., 19, 1221-1229 .@Yes$Mostafa F.I. and Helling C.S. (2001).@Isoproturon degradation as affected by the growth of two algal species at different concentrations and pH values.@J. Environ . Sci. HeaI(Part .B )., 36, 709-727.@Yes$Perrin – Ganier C., Schiavon F., More J.L. and Schiavon M. (2001).@Effect of herbicide isoproturon in soil.@Chem., (44) , 887-892 .@Yes$Alyansina A.D. and Oso. B. A. (2006).@Effect of two commonly used herbicides on soil microflora at different concentrations.@Afr. J. BiotecnoI., 5(2), 129-132.@Yes$Das J. and Dangar T.K. (2008).@Microbial population dynamics, aspecially stress tolerant Bacillus thuringiensis in partially anaerobic rice field soils during post – harvest period of the Himalayan, island, brackish water and coastel habitates of India.@World.J.MicrobioI.BiotechnoI., 24(8), 1403-1410.@Yes$Bending G.D., Lincoln S.D., Sorenson S.R., Morgan, J.A. Aamand J. and Walker A. (2003).@In – field spatial variability in the degradation of the phenyl- urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. And soil pH.@APPI. Environ. MicrobioI., 69, 827-834 .@Yes$AI-Jawhari I.F. (1998).@A study of fate herbicide propanil in rice field at AI-Qadisiya governorate and its effect on some water and soil microorganisms.@ph.D. thesis, AI-Mustansiriya University – Iraq.@Yes$Eliade G., Ghinea L. and Stefanic G. (1983).@Biological basis of soil fertility.@Ceres, Bucharest, 42-52.@Yes$Ulea E., Lipsa F., Chiriac I.P. and Coroi I.G. (2010).@Effects of Chlosulfuron on soil microbial population.@Lucr. St.Seria. Agronomie. 45, 90-96.@No$Karen L.S. (1999).@Dissipation of [14C] Amidosulfuron( HOE075032) in prairie soil.@Journal of Agriculture and Food Chemistry, 46(3), 1205-1209.@Yes$Pandey D.K., Tripath N.N., Tripath R.D. and Dixit S.N. (1982).@Fungitoxic and phtotoxic properties of the essential oil and of Hyptis suaveolens (L.).@Piot. Z plant. Pflant., 89, 344-349.@Yes$Nur M.M., Rosli B.M., Kamaruzaman S., Mahbub M. and Yaha W. (2013).@Effect of selected herbicides in vitro and in soil on growth and development of soil fungi from oil palm plantation.@Int.J. Agri .Bio., 15, 820-826.@Yes$Hance R.J. (1980).@Interactions between herbicides and the soil.@London, Academic press.@Yes$Das A., Prasad R., Bhatangar K., Levekar G.S. and Varma A. (2006).@Synergism between medicinal plants and microbes.@Int.Micro. HeaI. Environ. 13-16. Chauhan, A.K. and Varma A. (Eds), Anshan, UK.@Yes$Weaver M.A., Krutz L.J., Zablotowicz R.M. and Reddy K.N. (2007).@Effects of glyphosate on soil microbial communities and its minerlization in a Mississipi soil.@J. Pest. Manag. Scie., 63, 388-393.@Yes$Marioara N.F., Aurica B.B, Despina M.B, Roxana P.S. Smaranda R.G., Doina V. and Sinitean A. (2011).@Sulphonylureic herbicidal risk in the detection of soil fungi communities.@Afr.J.MicrobioI.Res., 5, 30, 5507- 5511.@Yes$Adeniram A.H. and Abios S.H. (2009).@Amylolytic potentiality of fungi isolated from some Nigerian agricultural wastes.@Afr.J.BiotechnoI., 8(4), 667-672.@Yes$AI-Jawhari I.F. (2015).@A bility of some fungi isolated from a sediments of Saq- AIShuyukh marshes on biodegradation of crude oil.@Int. J. Curr. MicrobioI. APPI. Sci., 4(1), 19-32.@Yes$Wilkinson V. and Lucas R.L. (1969).@Effects of herbicides on the growth of soil fungi.@New . PhytoI., 68, 709-719.@Yes$Smith S.N. and Lyon A.J. (1976).@The uptake of paraquat by soil fungi.@New. PhytoI., 76, 479-484. Ulea, E., F. Lipsa, I. P. Chiriac and I. G. Coroi, 2010, Effects of Chlorsulfuron on soil microbial population. Lucr. St. Seria . Agro., (45), 90-96.@Yes$Remero M.C., Urrutia M.I, Reinoso L. and Kieman A.M. ( 2009).@Wild soil fungi able to degrade the herbicide isoproturon.@Rev. Mexi., De MicoI., 53, 238-243.@Yes$Malik J., Barry G. and Kishhore G.M. (1989).@The herbicide glyphosate.@Bio., 2, 17-25.@Yes$Boschin G., D@Biodegradation of chlorsulfuron and metsulfuron methyl by Aspergillus niger in laboratory conditions.@J. Environ. Sci .HeaI., Part B: Pesticides, Food Contaminants and Agricultural Wastes, 38, 737-746.@Yes$He Y., Shen D., Fang C. and Zhu Y. (2006).@Rapid biodegradation of metsulfuron – methyl by soil fungus in pure cultures and soil.@World. J. MicrobioI. BiotechnoI, 22, 1095-1104.@Yes$Nair P.N. (1958).@Effect of malic hydrozide, thiourea and 2, 4 – Dinitrophenol on resistance to flax wilt.@PhytopathoI., 48, 288-289.@Yes <#LINE#>NF1 Mutations and Clinical Manifestations in Neurofibromatosis Type 1 Patients in Tamil Nadu, South India<#LINE#>Eltahir Abdelrazig@Mohamed Ali <#LINE#>38-44<#LINE#>5.ISCA-IRJBS-2016-096.pdf<#LINE#>Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641046, India<#LINE#>22/4/2016<#LINE#>11/6/2016<#LINE#>Neurofibromatosis type 1 (NF1) is a genetic disorder affecting approximately 1 in 3000 individuals. It is caused by heterozygous inactivation of the NF1 a tumor suppressor gene or deletions of the entire NF1 gene. This study exemplifies the clinical heterogeneity of 13 Indian patients with NF1 and highlights the variations in sites and types of mutations in NF1 gene in this population. The DNA was extracted from the blood samples and the entire coding region of NF1 gene was amplified and sequenced by the Sanger method. In the present study, the frequencies of neurofibromas and plexiform neurofibromas were 92.3% and 30.7% respectively. 84.6% had a short stature and 38.5% had a macrocephaly. Café-au-lait spots were in all the cases while scoliosis was in only 2 patients. 53.8% had a frequent headache and 23% had facial dysmorphism. All NF1 mutations identified in 11 patients in our study population have been reported in previous studies and no novel mutation has been detected. NF1 mutations were detected in exons 4, 13, 21, 29, and 46. The frequencies of point mutations were 36.4% nonsense, 36.4% missense and 27.2% frameshift. Variable expression of the same NF1 mutation made identification of genotype-phenotype correlations a daunting task.<#LINE#>McCormick F. (1995).@Ras signaling and NF1.@Current opinion in genetics & development, 5(1), 51-55.@Yes$Ferner R. E., Huson S. M., Thomas N., Moss C., Willshaw H., Evans D. G. and Kirby A. (2007).@Guidelines for the diagnosis and management of individuals with neurofibromatosis 1.@Journal of medical genetics, 44(2), 81-88.@Yes$Weiss B., Bollag G. and Shannon K. (1999).@Hyperactive Ras as a therapeutic target in neurofibromatosis type 1.@American journal of medical genetics, 89(1), 14-22.@Yes$Listernick R., Ferner R. E., Liu G. T. and Gutmann D. H. (2007).@Optic pathway gliomas in neurofibromatosis‐1: Controversies and recommendations.@Annals of neurology, 61(3), 189-198.@Yes$Kluwe L., Siebert R., Gesk S., Friedrich R. E., Tinschert S., Kehrer‐Sawatzki H. and Mautner V. F. (2004).@Screening 500 unselected neurofibromatosis 1 patients for deletions of the NF1 gene.@Human mutation, 23(2), 111-116.@Yes$Upadhyaya M., Huson S. M., Davies M., Thomas N., Chuzhanova N., Giovannini S. and Consoli C. (2007).@An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c. 2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation.@The American Journal of Human Genetics, 80(1), 140-151.@Yes$Miller S. A., Dykes D. D. and Polesky H. F. R. N. (1988).@A simple salting out procedure for extracting DNA from human nucleated cells.@Nucleic acids research, 16(3), 1215.@Yes$De Bella K., Szudek J. and Friedman J. M. (2000).@Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children.@Pediatrics, 105(3), 608-614.@Yes$Friedman J. M. (Ed.). (1999).@Neurofibromatosis: phenotype, natural history, and pathogenesis.@Johns Hopkins University Press.@Yes$Evans D. G. R., Baser M. E., McGaughran J., Sharif S., Howard E. and Moran A. (2002).@Malignant peripheral nerve sheath tumours in neurofibromatosis 1.@Journal of medical genetics, 39(5), 311-314.@Yes$Hyman S. L., Shores E. A. and North K. N. (2006).@Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit–hyperactivity disorder.@Developmental Medicine & Child Neurology, 48(12), 973-977.@Yes$Ars E., Kruyer H., Morell M., Pros E., Serra E., Ravella A. and Lazaro C. (2003).@Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients.@Journal of medical genetics, 40(6), e82-e82.@Yes$Ko J. M., Sohn Y. B., Jeong S. Y., Kim H. J. and Messiaen L. M. (2013).@Mutation spectrum of NF1 and clinical characteristics in 78 Korean patients with neurofibromatosis type 1.@Pediatric neurology, 48(6), 447-453.@Yes$Zeng K., Zhang Q. G., Liang L. P. and Liang Y. H. (2014).@Three Novel Missense Mutations of NF1 in Neurofibromatosis Type 1 Patient.@Journal of Clinical & Experimental Dermatology Research, 2014.@Yes$Rodríguez A. D., Moreno G. M., Santo-Domingo Y. M., Martín A. H., Roca J. E. S., Rojas M. R. F. and Argente J. (2015).@Características fenotípicas y genéticas en la neurofibromatosis tipo 1 en edad pediátrica.@Anales de Pediatría, 83(3), 173-182, Elsevier Doyma.@Yes$Huson S. U. S. A. N., Jones D. Y. L. A. N. and Beck L. (1987).@Ophthalmic manifestations of neurofibromatosis.@British Journal of Ophthalmology, 71(3), 235-238.@Yes$Schindeler A. and Little D. G. (2008).@Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1).@Bone, 42(4), 616-622.@Yes$Stevenson D. A., Zhou H., Ashrafi S., Messiaen L. M., Carey J. C., D’Astous J. L. and Viskochil D. H. (2006).@Double inactivation of NF1 in tibial pseudarthrosis.@The American Journal of Human Genetics, 79(1), 143-148.@Yes$Lin A. E., Birch P. H., Korf B. R., Tenconi R., Niimura M., Poyhonen M. and Bonioli E. (2000).@Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1.@American journal of medical genetics, 95(2), 108-117.@Yes$Heuschkel R., Kim S., Korf B., Schneider G. and Bousvaros A. (2001).@Abdominal migraine in children with neurofibromatosis type 1: a case series and review of gastrointestinal involvement in NF1.@Journal of pediatric gastroenterology and nutrition, 33(2), 149-154.@Yes <#LINE#>Diversity and Distribution of Turtles in Central valley of Manipur, India<#LINE#> Qaiser@Habibullah,Sharma@D. K. <#LINE#>45-52<#LINE#>6.ISCA-IRJBS-2016-099.pdf<#LINE#>Department of Zoology, Gauhati University, Guwahati-781014, Assam, India@Department of Zoology, University of Science and Technology, Meghalaya, Baridua -793101, Meghalaya, India<#LINE#>27/6/2016<#LINE#>22/7/2016<#LINE#>Turtles or Testudines are one of the most threatened groups of animals. The turtles in Manipur had received little attention in terms of scientific surveys and conservation initiatives at this time. Poor idea of species occurrence, local distribution, and threat assessment amidst the apparent threat to existence has created information gaps. During the present study 5 species (Cuora amboinensis, Cyclemys dentata, Melanochelys trijuga, Amyda cartilaginea and Nilssonia hurum) from 2 families (Geoemydidae and Trionychidae) were physically recorded from the central valley of Manipur. New localities along with their coordinates were presented. We also present a checklist containing 7 species based on cumulative records. The turtles are facing threat from habitat destruction and anthropogenic pressure. More survey to other areas coupled with conservation and management effort in behalf of this fauna is urgently needed.<#LINE#>Alacs E.A. (2007).@Genetic Issues in Freshwater Turtle and Tortoise Conservation.@Defining Turtle Chelonian Research Monographs,4, 107-123.@Yes$Bhupathy S. (2009).@Status, distribution and ecology of Indain Flagship turtle, Lissemys Punctata.@K. Vasudevan (Ed.), Freshw, Turtles Tortoises India, Envis Bull. Wildl. Prot. Areas., Wildlife Institute of India, Dehradun, India, 91-95.@No$Baruah C. and Sharma D.K. (2009).@Checklist of turtle fauna so far recorded from northeast India.@Environmental Education. 1(1), 10-13.@Yes$Mittermeier R.A., Turner W.R., Larsen F.W., Brooks T.M. and Gascon C. (2011).@Global Biodiversity Conservation: The Critical Role of Hotspots.@E.F. Zachos, C.J. Habel (Eds.), Biodivers. Hotspots, Springer Berlin Heidelberg, Berlin, Heidelberg, pp, 3-22.@Yes$Champion H. and Seth S.K. (1968).@A Revised Survey of the Forest Types of India.@The Manager of Publications, Government of India, New Delhi, 404.@Yes$Das I. (1995).@Turtle and tortoises of India.@World Wide Fund for Nature- India and Oxford University Press, Bombay, 176.@Yes$Buhlmann K.A., Akre T.S.B., Iverson J.B., Karapatakis D., Mittermeier R.A. and Georges A. et al. (2009).@A Global Analysis of Tortoise and Freshwater Turtle Distributions with Identification of Priority Conservation Areas.@Chelonian Conservation and Biology, 8(2), 116-149.@Yes$Heyer W.R., Donnelly M.A., McDiarmid R.W., Hayek L.C. and Foster M.S. (1994).@Measuring and monitoring biological diversity: standard methods for amphibians.@Smithsonian Institution Press, Washington.@Yes$Ahmed M.F., Das A. and Dutta S.K. (2009).@Amphibians and Reptiles of Northeast India- A Photographic Guide.@Aaranyak, Guwahat, 168.@Yes$Qaiser H. and Sharma D.K. (2012).@Diversity and distribution of turtle fauna in Imphal East and Imphal West districts of Manipur, India.@Global Publishing house, Vishakhapatnam, India, 200-213, ISBN978-93-81563-15-1.@No$Schoppe S. and Das I. (2011).@Cuora amboinensis (Riche in Daudin 1801) - Southeast Asian Box Turtle.@Chelonian Research Monographs., 5(1991), 053, 1- 053, 13.@Yes$Linthoi N. and Sharma D.K. (2013).@Diversity of turtle fauna of Manipur with special reference to the ecology of Cuora amboinensis Daudin in Loktak lake Manipur.@Doctorate Thesis, Gauhati University, India, 1-185.@Yes$Singh A.L. and Moirangleima K. (2009).@Shrinking Water Area in the Wetlands of the Central Valley of Manipur.@The Open Renewable Energy Journal., 2(1), 1-5.@Yes$Gaulke M. (1995).@On the distribution of Emydid turtles and the Anuran genus Microhyla in the Philippines.@Asiatic Herpetological Research., 6, 49-52.@Yes$Shahriza S., Ibrahim J., Nurul Dalila A.R. and Muin M.A. (2011).@An Annotated Checklist of the Herpetofauna of Beris Valley, Kkedah, Malaysia.@Tropical Life Sciences Research, 22(1), 13-24.@Yes$Fidenci P. and Castillo R. (2009).@Some data on the distribution, conservation status and protection of freshwater turtles in the Palawan Island Group, Philippines.@Testudo, 7(2), 76-87.@Yes$Aryal P.C., Dhamala M.K., Bhurtel B.P., Suwal M.K. and Rijal B. (2010).@Species Accounts and Distribution of Turtles with Notes on Exploitation and Trade in Tarai , Nepal.@First Natl. Youth Conf. Environ., Katmandu, 29-38.@Yes$Das I., Basu D. and Singh S. (2010).@Nilssonia hurum (Gray 1830) - Indian Peacock Softshell Turtle.@Chelonian Research Monographs. 5 (1980), 048.1- 048.6.@No$Auliya M., Van Dijk P.P., Moll E.O. and Meylan P.A. (2016).@Amyda cartilaginea (Boddaert, 1770), Asiatic Softshell Turtle.@Chelonian Research Monographs, 5(9), 092, 1-17.@No$Das I. and Bhupathy S. (2009).@Melanochelys trijuga (Schweigger 1812) - Indian black turtle.@Chelonian Research Monographs. 5, 038.1-038.9.@Yes$Karunarathna D.M.S.S. and Amarasinghe A.A.T. (2011).@rescue actions of the “black turtle” melanochelys trijuga thermalis (reptilia: bataguridae) from sri lanka.@Herpetotropicos., 7(1-2), 17-19.@Yes$Premkishore G. and Chandran M.R. (1996).@Nesting studies of two freshwater turtles (Lissemys punctata punctata and Melanochelys trijuga trijuga) of Tamil Nadu, India, in the context of their conservation.@Annales Des Sciences Naturelles-Zoologie Et Biologie Animale., 17, 99-104.@Yes$Linthoi N. and Sharma D.K. (2009).@Turtles and Tortoises of Manipur.@K. Vasudevan (Ed.), Freshw. Turtles Tortoises India, Envis Bull. Wildl. Prot. Areas., Wildlife Institute of India, Dehradun, India, 49-52.@Yes$Congdon J.D., Whitfield G.J. and Greene J.L. (1986).@Biomass of Freshwater Turtles.@American Midland Naturalist, 115(1), 165-173.@No$Bour R. (2008).@Global diversity of turtles (Chelonii; Reptilia) in freshwater.@Hydrobiologia., 595 (1), 593-598.@Yes$Burke R.L., Ford L.S., Lehr E., Mockford S., Pritchard P.C.H. and Rosado J.P.O. et al. (2007).@Non-standard sources in a standardized world: responsible practice and ethics of acquiring turtle specimens for scientific use.@Chelonian Research Monographs., 4, 142-146.@Yes$Rhodin A.G., Walde A., Horne B., van Dijk P.P., Blanck T. and Hudson R. (2011).@Turtles in Trouble: The World’s 25+ Most Endangered Tortoises and Freshwater Turtles—2011.@Lunenberg, MA, USA., 1-58@Yes$IUCN (2016).@The IUCN Red List of Threatened Species.@Version 2015-4. (www.iucnredlist.org). 02/06/2016(Accessed: 02 Feb 2016).@Yes <#LINE#>Influence of Cellular Phone and Tower on Mitosis in Allium Cepa Model<#LINE#> Gautam@Devnarayan,Marmat@Savita , Rathore@Hemant,Qureshi@Tajnudrat , Akhand@Archana,Shrivastava@Sharad <#LINE#>53-57<#LINE#>7.ISCA-IRJBS-2016-108.pdf<#LINE#>Cell Biology, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India@Cell Biology, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India@Cell Biology, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India@Cell Biology, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India@Limnology Laboratory, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India@Limnology Laboratory, School of studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, 456010, India<#LINE#>8/7/2016<#LINE#>20/7/2016<#LINE#>An attempt is made to know cytological effects of a cell phone (mobile phone) and a cell phone tower on mitotically dividing root tip cells in Allium cepa protocol. Unexposed Allium cepa bulbs grown in the laboratory acted as control (Gr I). Second group of bulbs were exposed overnight to a cell phone (CP) in a room on the first floor of building (Gr II). In third group bulbs were placed on the open terrace, outside the room and exposed to cell phone tower (CPT) located on the roof of same room (Gr III). Medium for growing Allium cepa for roots was laboratory tap water. At the end of experimentations (96 hours) dissolved oxygen (DO) was measured in the medium of all groups. Every subsequent day temperature of the medium was recorded for Gr I and II. Morphology of root tips was observed, mean root length (MRL) was calculated. N-HCl acetocarmine squash preparations were made to observe mitosis, chromosomal aberration, micronuclei formation and disturbed mitosis. Mitotic index was also calculated. Results revealed no change in the temperature of the medium due to cell phone exposure. Dissolved oxygen increased following both exposures; more in tower exposure Gr III. No morphological changes could be detected in Gr I and II but in Gr III i.e tower exposure caused ‘blunt ended’ tips which is an unusual observation. No aberrations, no micronuclei and no abnormal mitoses were seen in any group however, mean root length and mitotic index declined in Gr II and III; more in Gr III. Unusual mitosis could be seen in Gr III as most of the cells were seen arrested in ‘prophase’ only; no other stages seen. At some places prophase nuclei were seen fused. It is concluded that CP and CPT lowers mitosis but CPT affects more severely. Genotoxicity not detected.<#LINE#>Jain A. and Bagai D. (2014).@Effects of exposure to electromagnetic radiations on living beings and environment.@International Journal of Electrical, Electronics and Data Communication., 2(7), 1-5.@No$Fathi E. and Farahzadi R. (2014).@Interaction of mobile telephone radiation with biological systems in veterinary and medicine.@Journal of Biomedical Engineering & Technology., 2(1), 1-4.@Yes$Gautam D. N. (2015).@Biological effects of electromagnetic waves from cell phones and cell phone towers: A Mini Review.@Submitted as a part of M. Phil. Course work to Vikram University, Ujjain, India@No$Ruediger H. W. (2009).@Genotoxic effects of radiofrequency electromagnetic fields.@Pathophysiology., 16, 89.@Yes$Fiskesjo G. (1995).@Allium Test.@Methods in Molecular Biology,43(14), In Vitro Toxicity Testing Protocols (Edited by O’ Hare S, Atterwill C.K.). Humana Press Inc. Totowa, NJ., 119-127.@Yes$APHA. (1998).@Standard methods for examinations of water and waste water.@20th edn., Washington DC.@Yes$Winkler L.W. (1888).@Die Bestimmung des in Wasser gelösten Sauerstoffen.@Berichte der Deutschen Chemischen Gesellschaft, 21, 2843-2855.@Yes$Tkalec M., Malaric K., Pavalika M., Pevalek-Kozina B. and Vidakovic-Cifrek Z. (2009).@Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L.@Mutation Research/Genetic Toxicity and Environmental Mutagenesis., 672(2), 76.@Yes$Sharma V. P., Singh H. P., Kohli R. K. and Batish D. R. (2009).@Mobile phone radiation inhibits Vigna radiata (Mung bean) root growth by inducing oxidative stress.@Sci Total Environ., 407(21), 5543-07.@Yes$Akbal A., Kiran Y., Sachin A., Turgut-Balik D. and Balik H. H. (2012).@Effects of electromagnetic waves emitted by mobile phones on germination, root growth and root tip cell mitotic division of Lens Culinaris Medik.@Pol. J. Environ. Stud., 21(1), 23-29.@Yes$Fiskesjo G. (1993).@The Allium Test- A potential standard for the assessment of environmental toxicology.@Environmental Toxicology and Risk Assessment, 2. ASTM STP 1216, Gorsuch JW, Dawyer FJ, Ingersoll CG, La Pount T W Eds, American Society for testing and Materials, Philadelphia, PA, 331-344.@Yes$Pesnya D. S. and Romanovsky A. V. (2013).@Comparision of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phones GSM 900 radiation in the Allium cepa test.@Mutation Research/Genetic Toxicity and Environmental Mutagenesis., 750(1-2), 27-33.@Yes$Rathore H. S., Rathore M., Panchal S., Makwana M., Sharma A. and Shrivastava S. (2010).@Can genotoxic effect be model dependent in Allium test?- An Evidence.@Environment Asia., 3(2), 29-33.@Yes$Rathore H. S., Khare A., Sharma A., Shrivastava S. and Bhatnagar D. (2006).@A study on the cytological effects of myrobalan (Fruit of Terminalia chebula) in Allium tests.@Ethanobotanical Leaflets., 10, 92-97.@Yes$Marmat S. and Rathore H. S. (2013).@Cytological effects of Triphala in Allium cepa models.@International Journal of Pharmacy & Technology., 5(2), 5602-5609.@No$Kashiwada Y., Nonaka G., Nishioka I., Chang J. J. and Lee K. H. (1992).@Antitumor agents, 129, Tannins and related compounds as selective cytotoxic agents.@J. Nat Prod., 55, 1033.@Yes$Lee S.H., Ryn S. Y., Choi S. U., Lee C. O., No Z., Kim S. K. and Ahn J. W. (1995).@Hydrolysable tannins and related compounds having cytotoxic activity from fruit of Terminalia chebula.@Arch. of Pharmacol Res., 18, 118.@Yes$Kaur S., Micheal H., Arora S., Harbonen P. L. and Kumar S. (2005).@The in- vitro cytotoxic and apoptotic activity of Triphala: an Indian drug.@J Ethnopharmacol., 97, 15-20.@Yes$Jose J. K., Kuttan G. and Kuttan R. (2001).@Antitumor activity of Emblica officinalis.@J Ethnopharmacol., 75, 65-69.@Yes$Solanke P., Singh M., Rathore H. S., Sharma A., Makwana M. and Shrivastava S. (2007).@An evaluation of the genotoxic effects of seed decoction of Cassia tora Linn (Leguminosae) in Allium cepa model.@Ethanobotanical Leaflets., 11, 217-223.@Yes$Yamabhai M., Chumseng S., Yoohat K. and Srila W. (2014).@Diverse biological effects of electromagnetic treated water.@Homeopathy., 103(3), 186-192.@Yes$Kitazawa K., Ikezoe Y., Uetake H. and Hirota N. (2001).@Magnetic Field effects on water, air and powders.@Physica B., 294-295, 709-714.@Yes @Review Paper <#LINE#>Pollination by Hymenopterans and Economic Values of Pollination Service<#LINE#> Wodaj@Habtamu <#LINE#>58-68<#LINE#>8.ISCA-IRJBS-2016-098.pdf<#LINE#>Addis Ababa University, College of Education and Behavioral Studies, Department of Science and Mathematics Education Addis Ababa, Ethiopia<#LINE#>21/6/2016<#LINE#>16/7/2016<#LINE#>This review of pollination by hymenopterans and economic values of pollination service is aimed at providing summarized information about the role of hymenopterans in pollination and the attempt made to estimate the economic values of pollination service in the world. Moreover, it also provides knowhow about the current states of the pollinating agents especially the biotic once in the world. With this aim this paper tries to review research on role of hymenopterans such as honeybee, bumblebees, stingless bees, wasps and ants in pollination and the attempts made to estimate the economic values of pollination service in the world. Furthermore, researches on the current status of the pollinators will be reviewed.<#LINE#>John M. K. (2007).@Bee Pollinators and Economic Importance of Pollination in Crop Production: Case of Kakamega, Western Kenya.@University of Bonn, Germany.@Yes$Powell D. (2012).@Bumblebee Pollination in Central North Carolina: Conservation through Land Management and Education.@Duke University, Master thesis, unpublished.@Yes$Faegri K. and vander Pijl L. (1979).@The principle of pollination ecology.@3rd edition, Pergamon Press, New York.@Yes$Williams I.H. (1994).@The dependence of crop production within the European Union on pollination by honeybees.@Agr Zoo Rev, 6, 229-257.@Yes$Richards A. J. (2001).@Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield?.@Ann Bot London, 88, 165-172.@Yes$Monarchs Across Georgia (2009).@A Committee of the Environmental Education Alliance of Georgia.@Plant Pollination Strategies. www.Monarchs Across GA.org@No$Batra S. (1997).@Unsung Heroines of Pollination.@Natural History, 106(4), 42-43.@Yes$Sharma H. D., Khound A., Rahman S. and Rajkumari P. (2015).@Significance of Honey Bee as a Pollinator in Improving Horticultural Crop Productivity in N.E. Region, India: A Review.@Asian Journal of Natural & Applied Sciences, 4(1).@Yes$Policy Team (2013).@Bees and other pollinators: their value and health in England.@Review of policy and evidence, The National Archives, Kew, London.@No$Hill D. B. (1998).@Pollination and Honey Production in the Forest and Agroforest.@Paper presented at the North American Conference On Enterprise Development Through Agroforestry: Farming the Agroforest for Specialty Products, Minneapolis, MN, October 4-7.@Yes$Gaston K. J. (1991).@The magnitude of global insect species richness.@Conservation Biology, 5, 283-293.@Yes$Ronquist F. (1999).@Phylogeny of the Hymenoptera (Insecta): The state of the art.@Zoologica Scripta, 28, 3-11.@Yes$Danforth B. (2007).@Bees.@Current Biology, 17(5), R156-R161.@Yes$Wright R. and Mulder P. and Reed H. (1972).@Honey Bees, Bumble Bees, Carpenter Bees, and Sweat Bees.@Oklahoma Cooperative Extension Fact Sheets are also available on our website at: http://osufacts.okstate.edu.@Yes$Kenmore P. and Krell R. (1998).@Global perspectives on pollination in agriculture and agroecosystem management.@International Workshop on the Conservation and Sustainable Use of Pollinators in Agriculture, with Emphasis on Bees. Sao Paulo, Brazil.@Yes$Bernauer O. M., Gaines-Day H. R. and Steffan S. A. (2015).@Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.@Insects, 6, 478-488, doi:10.3390/insects6020478.@Yes$Krombein K. V. (2008).@Hymenoptera.@Access Science.@No$Klein A.-M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A. and Kremen C. (2007).@Importance of pollinators in changing landscapes for world crops.@Proc. R. Soc. London B. Biol. Sci., 274, 30-313.@Yes$Garibaldi et al. (2009).@How much does agriculture depend on pollinators? Lessons from long term trends in crop production.@Annals of Botany, 103(9), 1579-1588.@Yes$Hatami M., Monfared A., Haghani M. and Fahliani R.A. (2013).@Effect of Bombus terrestris L. (Hymenoptera, Apidae) pollinating on flowering and fruiting trends of greenhouse tomato (Lycopersicon esculentum).@www.biologiezentrum.a.@Yes$Harris J. W. (2015).@Protecting Pollination by Honey Bees in Mississippi.@Mississippi State University.@Yes$Free J. B. (1993).@Insect Pollination of Crops.@London, Academic Press.@Yes$Sagili R.R. and Burgett D.M. (2011).@Evaluating Honey Bee Colonies for Pollination. A Guide for Commercial Growers and Beekeepers.@A Pacific Northwest Extension Publication, Oregon State University.@Yes$Huang Z. (2016).@Pollinators: Bumble Bees.@Prepared by, Michigan State University: http://cyberbee.msu.edu/ column/pollinator/beesaspollinators.pdf.@No$Goulson D. (2003).@Conserving wild bees for crop pollination.@Food, Agriculture & Environment, 1(1), 142-144.@Yes$Alpert G. (2014).@Bumble Bees – Pollinators that Sting.@Prepared by, Museum of Comparative Zoology, Harvard University. Updated.@Yes$Schweitzer D.F., Capuano N.A., Young B.E. and Colla S.R. (2012).@Conservation and management of North American bumble bees.@Nature Serve, Arlington, Virginia, and USDA Forest Service, Washington, D.C.@Yes$Hines HM. and Hendrix S.D. (2005).@Bumble bee (Hymenoptera: Apidae) diversity and abundance in tallgrass prairie patches: effects of local and landscape Floral resources.@Environmental Entomology, 34(6), 477-1484.@Yes$Droege S. (2008).@Mid Atlantic native bee phenology: The weekly phenology of bees of the Mid-Atlantic states: MD, VA, WV, DC, PA, DE. A slideshow. USGS, Patuxent, MD.@Available: http://www.slideshare.net/sdroege/ midatlantic-native-bee-phenology.@No$Velthuis H. H. W. and Doorn V. A. (2006).@A century of advances in bumblebee domestication & the economic & environmental aspects of its commercialization for pollination.@Apidologie, 37, 421-451.@Yes$Shepherd (2011).@Attracting Native Pollinators: Protecting North America’s Bees and Butterflies.@The Xerces Society Guide, North Adams, MA, Storey Publishing.@Yes$Willmer P.G., Bataw A.A.M. and Highes J. P. (1994).@The superiority of bumblebees to honeybees as pollinators: insect visits to raspberry flowers.@Ecol. Entomol., 19, 271-284.@Yes$Heard T. A. (1999).@The role of stingless bees in crop pollination.@Annu. Rev. Entomol., 44, 183-206.@Yes$Crane E. (1992).@The past and present status of beekeeping with stingless bees.@Bee World, 73, 29-42.@Yes$Bispo dos Santos S.A., Roselino A. C., Hrncir M. and Bego L. R. (2009).@Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).@Genetics and Molecular Research, 8(2), 751-757.@Yes$Wiebes J.T. (1982).@The phylogeny of the agaonidae (Hymenoptera, Chalcidoidea).@Neth. J. Zool., 32, 395411.@Yes$Weiblen G. D. (2002).@How to be A Fig wasp.@Annu. Rev. Entomol., 47, 299-330.@Yes$Berg C.C. (1989).@Classification and distribution of Ficus.@Experientia, 45, 605-611.@Yes$Van Noort S. (2004).@The ultimate challenge. How fig trees are pollinated.@Iziko South African Museum, Veld & Flora.@Yes$Cook J. M. and West S. A. (2005).@Figs and fig wasps.@Current Biology, 15(24), R978.@Yes$Wiebes J.T. (1979).@Co-evolution of figs and their insect pollinators.@Ann. Rev. Ecol. Syst., 10(1), 12.@Yes$Herre E.A. (1989).@Coevolution of reproductive characteristics in twelve species of new world figs and their pollinator wasps.@Experientia, 45, 637-647.@Yes$Compton S.G. (1993).@One way to be a fig.@Afric. Entomol., 1, 151-158.@Yes$Van Noort S and Compton SG. (1996).@Convergent evolution of agaonine and sycoecine (Agaonidae, Chalcidoidea) head shape in response to the constraints of host fig morphology.@J. Biogeogr., 23, 415-424.@Yes$Ramirez WB. (1978).@Evolution of mechanisms to carry pollen in Agaonidae (Hymenoptera Chalcidoidea).@Tijdschr. Entomol., 121, 279-293.@Yes$Weiblen G. D. (2001).@Phylogenetic Relationships of Fig Wasps Pollinating Functionally Dioecious Ficus Based onMitochondrial DNA Sequences and Morphology.@Syst. Biol., 50(2), 243-267.@Yes$Baker C. F. (1913).@A study of caprification in Ficus nota.@Philipp. J. Sci., 8, 63-83.@Yes$Beck N. G. and Lord E. M. (1988).@Breeding system in Ficus carica, the common fig. II. Pollination events.@Am. J. Bot., 75, 1913-1922.@Yes$Kjellberg F. and Jousselin E. et al. (2001).@Pollination mode in fig wasps: the predictive power of correlated traits.@Proc. R. Soc. Lond. Ser. B, 268, 1113-1121.@Yes$Galil J. (1973).@Pollination in dioecious figs: pollination of Ficus fistulosa by Ceratosolen hewitti.@Gard. Bull. (Singap.), 26, 303-311.@Yes$Kerdelhué C., Hochberg M. E. and Rasplus J-Y. (1997).@Active pollination of Ficus sur by two sympatric fig wasp species in West Africa.@Biotropica, 29, 69-75.@Yes$Cook J.M. and Power S.A. (1996). Effect of within-tree flowering asynchrony on the dynamics of seed and wasp production in an Australian fig species.@J. Biogeog., 23, 487-493.@undefined@Yes$Kerdelhué C., Rossi J.P. and Rasplus J.Y. (2000).@Comparative community ecology studies on Old World figs and fig wasps.@Ecology, 81, 2832-2849.@Yes$Koehler P. G., Vazquez R. J. and Pereira R. M. (2013).@Ants.@One of a series of the Department of Entomology and Nematology, UF/IFAS Extension. http://edis.ifas.ufl.edu.@No$Damon A. and Perez - Soriano M. A. (2005).@Interaction between ants and orchids in the Soconusco region, Chiapas Mexico.@ENTOMOTROPICA, 20(1), 59-65.@Yes$Puterbaugh M. N. (2000).@Why are reports of ant pollination rare? A field and lab exercise using the scientific method.@218-233, in Tested studies for laboratory teaching, Volume 22 (S. J. Karcher, Editor). Proceedings of the 22nd Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 489 pages.@No$Janzen D. H. (1969).@Allelopathy by mymecophites: the ant Azteca as an allelopathic agent of Cecropia.@Ecology, 50, 147-153.@Yes$Puterbaugh M. N. (1998).@The roles of ants as flowers visitors: experimental analysis in three alpine plant species.@Oikos, 83, 36-46.@Yes$Gomez J. M. and Zamora R. (1992).@Pollination by ants: consequences of the quantitative effects on a mutualistic system.@Oecologia, 91, 410-418.@Yes$Gómez J. M. (2000).@Effectiveness of ants as pollinators of Lobularia maritima: effects on main sequential fitness components of the host plant.@Oecologia, 122, 90–97@No$Costanza. R., D’Arge R and de Groot R. et al. (1997).@The value of the worlds ecosystem and natural capital.@Nature, 387(6630), 253-260.@Yes$Richards K.W. (1993).@Non Apis bees as crop pollinators.@Rev Suisse Zool, 100, 807-822.@Yes$Potts S.G., Roberts S.P.M, Dean R., Marris G., Brown M. and Jones R. et al. (2010).@Declines of managed honeybees and beekeepers in Europe.@J. Apic. Res., 49, 15-22.@Yes$Robinson W.S., Nowogrodski R. and Morse R. A. (1989).@The value of honey bees as pollinators of US crops.@Am Bee J., 129(6), 411-423.@Yes$Southwick E. E. and Southwick L. (1992).@Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States.@Journal of Economic Entomology, 85, 621-633.@Yes$Winter K., Adams L., Thorp R., Inouye D., Day L., Ascher J. and Buchmann S. (2006).@Importation of non-native bumble bees into North America: Potential consequences of using Bombus terrestris and other non-native bumble bees for greenhouse crop pollination in Canada, Mexico and the United States.@NAPPC Washington, 33.@Yes$Levin M. D. (1984).@Value of honeybee pollination to United States agriculture.@Am Bee J., 124, 184-186.@Yes$Carreck N. and Williams N. (1998).@The economic value of bees in the UK.@Bee World, 79(3), 115-123.@Yes$Gill R. A. (1991).@The value of honeybee pollination to society.@Acta Hort., 288, 62-68.@Yes$Winston M. L. and Scott C. D. (1984).@The value of bee pollination to Canadian apiculture.@Canadian Beekeeping, 11, 134.@Yes$Pywell R. F., Warman E.A., Hulmes L., Hulmes S., Nuttall P., Sparks T. H., Critchley C. N. R. and Sherwood A. (2006).@Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes.@Biological Conservation, 129, 192–206.@Yes$Goulson D., Lye G.C. and Darvill B. (2008).@Decline and conservation of bumble bees.@Annual Review of Entomology 53, 191-208.@Yes$Potts S. G., Biesmeijer J. C., Kremen C., Neumann P., Schweiger O. and Kunin W. E. (2010).@Global pollinator declines: Trends, impacts and drivers.@Trends Ecol. Evol., 25, 345-353.@Yes$Potts S. G., Biesmeijer J. C., Kremen C., Neumann P., Schweiger O. and Kunin W. E. (2010).@Global pollinator declines: trends, impacts and drivers.@Ecology and Evolution, 25(6), Elsevier Ltd. Available online doi:10.1016/j.tree.2010.01.00724.@Yes$Ellis J. D. and Evans J. D. (2010).@Pettis J., Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States.@J. Apic. Res., 49, 134-136.@Yes$Goulson D., Hanley M. E., Darvill B., Ellis J.S. and Knight M. E. (2005).@Causes of rarity in bumblebees.@Biological Conservation, 122(1), 1-8.@Yes$Brown M. J. F. and R.J. Paxton (2009).@The conservation of bees: a global perspective.@Apidologie, 40(3), 410-416.@Yes$Williams P.H., Colla S.R. and Xie Z. (2009).@Bumblebee vulnerability: common correlates of winners and losers across three continents.@Conservation Biology, 23(4), 931-940.Available:http://www.nhm.ac.uk/researchcuration/ research/projects/bombus/Williams&al09metaanalysis.pdf.@Yes$Cameron S. A., Lozier J. D. and Strange J. P. et al. (2011).@Patterns of widespread decline in North American bumble bees.@Proceedings of the National Academy of Sciences of the United States of America, 108 , 662–667.@Yes$Vanengelsdorp D., Hayes J. Jr., Underwood R. M. and Pettis J. (2008).@A survey of honey bee colony losses in the U.S.@PLoS One, 3(12), e4071. DOI:10.1371/journal.pone.0004071.@Yes$Carvell C. (2002).@Habitat use and conservation of bumblebees (Bombus spp.) under different grassland management regimes.@Biological Conservation, 103, 33-49.@Yes$Rasmont P. and Mersch P. (1988).@Premie`re estimation de la derive faunique chez les bourdons de la Belgique (Hymenoptera, Apidae).@Ann. Soc. R. Zool. Belg, 118, 141–147.@Yes$Munyuli M. B. T. (2011).@Pollinator biodiversity in Uganda and in Sub-Sahara Africa: Landscape and habitat management strategies for its conservation.@International Journal of Biodiversity and Conservation, 3(11), 551-609.@Yes$Melin A, Rouget M, Midgley J and Donaldson JS. (2014).@Pollination ecosystem services in South African agricultural systems.@S Afr J Sci.,; 110, (11/12), Art., 2014-0078, 9 pages. http://dx.doi.org/10.1590/sajs.2014 /20140078.@Yes @Short Communication <#LINE#>Effect of Compost and NPK on Tobaccocrop at different research stations of Pakistan Tobacco Company <#LINE#>Ameen@Ayesha ,Ahmad@Jalil ,Raza@Shahid <#LINE#>69-71<#LINE#>9.ISCA-IRJBS-2016-064.pdf<#LINE#>University of South Asia, Lahore, Pakistan and Lahore Compost Pvt. Ltd, Punjab, Pakistan@Lahore Compost Pvt. Ltd, Punjab, Pakistan@University of South Asia, Lahore, Pakistan <#LINE#>15/5/2016<#LINE#>19/7/2016<#LINE#>Tobacco crop has a wide commercial value. Different techniques have been used to improve the crop yield of tobacco. This study was designed by emphasis on the comparison of 100% NPK (Nitrogen, Phosphorous and Potassium) with 30% compost and 70% NPK mixture used to grow tobacco. The compost used as soil conditioner. The results indicated that the best yields were obtained in the experimental trial which had compost and NPK. The nicotine percentage was below 2.5 and total sugar percentage was above 10 in all experimental trial.<#LINE#>Gossett D. R., Millhollon E. P. and Lucas M. (1994).@Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.@Crop Science, 34(3), 706-71.@Yes$Gharib F. A., Moussa L. A. and Massoud O. N. (2008).@Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majoranahortensis) plant.@Int. J. Agric. Biol, 10(4), 381-382.@Yes$Trigiano R. N. and Gray D. J. (1999).@Plant tissue culture concepts and laboratory exercises.@CRC press.@Yes$Flowers T. J., Garcia A., Koyama M. and Yeo A. R. (1997).@Breeding for salt tolerance in crop plants—the role of molecular biology.@Acta Physiologiae Plantarum, 19(4), 427-433.@Yes$Chen J. H. (2006).@The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility.@International Workshop on Sustained Management of the soil-rhizosphere system for efficient crop production and fertilizer use, Land Development Department Bangkok, Thailand, 16, 20.@Yes$Russell M. A. H., Wilson C., Patel U. A., Cole P. V. and Feyerabend C. (1973).@Comparison of effect on tobacco consumption and carbon monoxide absorption of changing to high and low nicotine cigarettes.@Br Med J, 4(5891), 512-516.@Yes$McClure W. F., Norris K. H. and Weeks W. W. (1977).@Rapid Spectrophotometric Analysis of the Chemical Composition of Tobacco: Part 1: Total Reducing Sugars.@Beiträgezur Tabakforschung / Contributions to Tobacco Research, 9(1), 13-18.@Yes$Dawson R. F. (1942).@Nicotine synthesis in excised tobacco roots.@American Journal of Botany, 813-815.@Yes$Pianezza M. L., Sellers E. M. and Tyndale R. F. (1998).@Nicotine metabolism defect reduces smoking.@Nature, 393(6687), 750-750, 1.@Yes$Baldwin I. T. (1988).@Short-term damage-induced increases in tobacco alkaloids protect plants.@Oecologia, 75(3), 367-370.@Yes <#LINE#>Antibacterial effects of Averrhoa Bilimbi L. Fruit Extracts <#LINE#>Chinju Merin @Abraham <#LINE#>72-74<#LINE#>10.ISCA-IRJBS-2016-103.pdf<#LINE#>Department of Botany, Catholicate College, Pathanamthitta, 689 645, Kerala, India<#LINE#>4/7/2016<#LINE#>22/7/2016<#LINE#>A. bilimbi methanol, chloroform and petroleum ether fruit extracts were tetsed against selected panel of bacteria. Different concentrations of the extract (50mg, 100mg, and 150mg) in each solvent were loaded on 0.4mm sterile discs. The tested gram positive bacteria were more sensitive to the extract when compared to the gram negative bacteria tested. It is well evident that A. bilimbi fruit extract showed applaudable inhibitory activity against the tested pathogens. Further research in this direction is recommended.<#LINE#>Kumar A.K., Gousia S.K., Anupama M. and Latha J.N.L. (2013).@A review on phytochemical constituents and biological assays of Averrhoa bilimbi.@International Journal of Pharmacy and Pharmaceutical Science Research, 3(4), 136-139.@Yes$Bhaskar B. and Shantaram. M. (2013).@Morphological and biochemical characteristics of Averrhoa fruits.@International Journal of Pharmaceutical, Chemical and Biological Sciences, 3(3), 924-928.@Yes$Anitha R., Geetha R.V., Lakshmi T. (2011).@Averrhoa bilimbi Linn - Nature’s Drug Store - A Pharmacological Review.@International Journal of Drug Development & Research, 3(3), 101-106.@Yes$Harborne J.B. (1998).@Phytochemical Methods - A guide to Modern Techniques of Plant Analysis.@3rd edn, Springer.@Yes$Bauer A.W., Kirby W.M.M., Sheriss J.C. and Turck M. (1996).@Antibiotic susceptibility testing by standardized single disk method.@Am. J. Clin. Path, 45, 493-496.@Yes$Samuelsson G. (2004).@Drugs of natural origin: A textbook of pharmacognosy.@5th Swedish Pharmaceutical Press, Stockholm.@Yes$Misra L. (2013).@A review on traditional phytomedicinal systems, scientific validations and current popularity as nutraceuticals.@International Journal of Traditional and Natural Medicines, 2(1), 27‐75.@Yes$Siddique K.I., Uddin M.M.N., Islam M.S., Parvin S. and Shahriar. M. (2013).@Phytochemical screenings, thrombolytic activity and antimicrobial properties of the bark extracts of Averrhoa bilimbi.@J. App. Pharm. Sci 3(03), 094-096.@Yes$Huda N., Wahab A., Wahid M.E.B.A., Taib M.B., Zain W.Z.W.M. and Anwar S.A.B. (2009).@Phytochemical screening and antimicrobial efficacy of extracts from Averrhoa bilimbi (Oxalidaceace) fruits against human pathogenic bacteria.@Phcog J. [A Supplement to Phcog Mag.], 1(1), 64-66.@Yes$Yan S.W., Ramasamy R., Alitheen N.B.M. and Rahmat A A. (2013).@Comparative assessment of nutritional composition, total phenolic, total flavonoid, antioxidant capacity, and antioxidant vitamins of two types of Malaysian underutilized fruits (Averrhoa bilimbi and Averrhoa carambola).@Int. J. Food Prop, 16, 1231-1244.@Yes$Alisha V. and Raphael R. K. (2016).@Pharmacognostic profile of Averrhoa bilimbi Linn. Leaves.@South Indian Journal of Biological Sciences, 2(1), 75‐80.@Yes