International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Activity of oxidative coupling catalysts with carbon disulphide to generate the first new redox dithiocarbonato moiety [(Pip)nCuX]4(CS2O)2

Author Affiliations

  • 1Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
  • 2Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt and Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
  • 3Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
  • 4Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

Res.J.chem.sci., Volume 8, Issue (7), Pages 1-8, July,18 (2018)

Abstract

A new series of tetranuclear [(Pip)nCuX]4(CS2O)2, where Pip = Piperidine, n = 1 or 2 X = Cl or Br, are obtained according to the reaction of the lewis acid [(Pip)nCuX]4O2 towards the lewis base CS2 at room temperature. The synthesised compounds are characterized using molecular weight determination, elemental analysis and spectral techniques (FTIR, UV/Vis. and EPR). The FTIR spectral data showed that CS2O2- group acts as a dibasic bidentate or tridentate bridging ligand for n=2 or 1, respectively. The bridging CS2O2- containing tetranuclear complexes display a CS2O2- - Cu2+ Charge transfer band at 430-410nm for all [(Pip)nCuX]4(CS2O)2 complexes with molar absorptivity varying from 4000 to 14000M- cm-1. Bidentate bridging anion (CS2O)2- in [(Pip)2CuX]4(CS2O)2 shows another charge transfer with Cu(II), at 605nm and 575nm with molecular absorptivities 810 and 970M-1cm-1 for X=Cl and Br respectively. The electrochemical behavior of the new tetranuclear complexes are studied where the dithiocarbonato anion in [(Pip)nCuX]4(CS2O)2 is found to be electrochemically active showing quasi-reversible peaks at a more positive potentials, when compared with Cu(II) centres. The complexes are shown to be catalytically inactive toward the oxidation of 2,6-dimethyl phenol unlike their oxo and carbonato analogues.

References

  1. Wei N., Murthy N.N., Chen Q., Zubieta J. and Karlin K.D. (1994)., Copper(I)/Dioxygen Reactivity of Mononuclear Complexes with Pyridyl and Quinolyl Tripodal Tetradentate Ligands: Reversible Formation of Cu:O2 = 1:1 and 2:1 Adducts., Inorganic Chemistry, 33, 1953-1965. DOI: 10.1021/ic00087a036
  2. Lewis E.A. and Tolman W.B. (2004)., Reactivity of Dioxygen−Copper Systems., Chemical reviews, 104(2), 1047-1076. DOI: 10.1021/cr020633r
  3. Wendt F., Näther C. and Tuczek F. (2016)., Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations., JBIC Journal of Biological Inorganic Chemistry, 777-792. DOI:org/10.1007/s00775-016-1370-y
  4. Schindler S. (2000)., Reactivity of Copper(I) Complexes Towards Dioxygen., European Journal of Inorganic Chemistry, 11, 2311-2326. https://doi.org/10.1002/1099-0682(200011)2000:11<2311::AID-EJIC2311>3.0.CO;2-7
  5. Weitzer M., Schindler S., Brehm G., Schneider S., Hörmann E., Jung B., Kaderli S. and Zuberbühler A.D. (2003)., Reversible binding of dioxygen by the copper(I) complex with tris(2-dimethylaminoethyl)amine (Me6tren) ligand., Inorganic chemistry, 42(6), 1800-1806. DOI:10.1021/ic025941m
  6. Börzel H., Comba P., Hagen K.S., Kerscher M., Pritzkow H., Schatz M., Schindler S. and Walter O. (2002)., Copper-bispidine coordination chemistry: syntheses, structures, solution properties, and oxygenation reactivity., Inorganic chemistry, 41, 5440-5452. DOI: 10.1021/ic011114u
  7. Fujisawa K., Tanaka M., Moro-oka Y. and Kitajima N. (1994)., A Monomeric Side-On Superoxocopper(II) Complex: Cu(O2)(HB(3-tBu-5-iPrpz)3)., Journal of the American Chemical Society, 116(26), 12079-12080. DOI: 10.1021/ja00105a069
  8. Würtele C., Gaoutchenova E., Harms K., Holthausen M.C., Sundermeyer J. and Schindler S. (2006)., Crystallographic Characterization of a Synthetic 1:1 End‐On Copper Dioxygen Adduct Complex., Angewandte Chemie International Edition, 45(23), 3867-3869. https://doi.org/10.1002/anie.200600351
  9. Henson M.J., Vance M.A., Zhang C.X., Liang H.-C., Karlin K.D. and Solomon E.I. (2003)., Resonance Raman Investigation of Equatorial Ligand Donor Effects on the Cu2O22+ Core in End-On and Side-On μ-Peroxo-Dicopper(II) and Bis-μ-oxo-Dicopper(III) Complexes., Journal of the American Chemical Society, 125(17), 5186-5192. DOI: 10.1021/ja0276366
  10. Jacobson R.R., Tyeklar Z., Farooq A., Karlin K.D., Liu S. and Zubieta J. (1988)., A copper-oxygen (Cu2-O2) complex. Crystal structure and characterization of a reversible dioxygen binding system., Journal of the American Chemical Society, 110(11), 3690-3692. DOI: 10.1021/ja00219a071
  11. Tyeklar Z., Jacobson R.R., Wei N., Murthy N.N., Zubieta J. and Karlin K.D. (1993)., Reversible reaction of dioxygen (and carbon monoxide) with a copper (I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo) dicopper (II) product., Journal of the American Chemical Society, 115(7), 2677-2689. DOI: 10.1021/ja00060a017
  12. Chiang L., Keown W., Citek C., Wasinger E.C. and Stack T.D.P. (2016)., Simplest Monodentate Imidazole Stabilization of the oxy‐Tyrosinase Cu2O2 Core: Phenolate Hydroxylation through a CuIII Intermediate., Angewandte Chemie International Edition, 55(35), 10453-10457. DOI: 10.1002/anie.201605159
  13. Klinman J.P. (1996)., Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates., Chemical reviews, 96(7), 2541-2562. DOI: 10.1021/ cr950047g
  14. Mirica L.M., Vance M., Rudd D.J., Hedman B., Hodgson K.O., Solomon E.I. and Stack T.D.P. (2005)., Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism., Science, 308, 1890-1892. DOI:10.1126/ science.1112081
  15. El-Sayed M.A., AbdEl-Salam A.H., El-Zayat T.A., El-Dissouky A. and Ismail K.Z. (2004)., Homogeneous oxidative coupling catalysts: stoichiometry and characterization of the first stable oxotetranuclear solids [(Pip)nCuX]4O2 (n=1 or 2, Pip=piperidine, X=Cl, Br, I)., Inorganica chimica acta, 357, 4057-4064. https://doi.org/ 10.1016/j.ica.2003.06.021
  16. Schramm V. (1978)., Crystal and molecular structure of tetrameric copper (I) iodide-piperidine, a complex with a tetrahedral tetrakis [copper (I) iodide] core., Inorganic Chemistry, 17(3), 714-718. DOI: 10.1021/ic50181a043
  17. Davies G., El-Sayed M.A. and Henary M. (1987)., Stoichiometry and kinetics of the low-temperature oxidation of L2Cu2Cl2 (L = N,N,N′,N′-tetraethylethylenediamine) by dioxygen in methylene chloride and properties of the peroxocopper products., Inorganic Chemistry, 26(20), 3266-3273. DOI: 10.1002/chin.198804106
  18. El-Sayed M.A., Abdel Salam A.H., Abo-El-Dahab H.A., Refaat H.M. and El-Dissouky A. (2009)., Homogeneous oxidative coupling catalysts: stoichiometry and product characterization of the oxidation of copper(I) complexes [(Pyr) nCuX]4 ( n = 1 or 2, Pyr = pyrrolidine, X = Cl, Br or I) by dioxygen in aprotic media., Journal of Coordination Chemistry, 62, 1015-1024. https://doi.org/10.1080/ 00958970802353652
  19. El-Sayed M.A., Abdel Salam A.H., Abo-El-Dahab H.A. and Refaat H.M. (2012)., Homogeneous Oxidative Coupling Catalysts: Reactivity of [(Pyr)nCuX]4O2 with Carbon Dioxide to Generate New Active Initiators [(Pyr)nCuX]4(CO3)2 (n = 1 or 2, X = Cl, Br or I, Pyr = Pyrrolidine)., Journal of Chemistry and Chemical Engineering, 6, 74-83. DOI:10.17265/1934-7375/2012.01.011
  20. Davies G. and El-Sayed M.A. (1983)., Stoichiometry and kinetics of the oxidation of halo(pyridine)copper(I) complexes by dioxygen in aprotic solvents. Effects of copper (I) reactant molecularity on the rate law and evidence for ligand-dependent product structures., Inorganic Chemistry, 22(9), 1257-1266. DOI: 10.1021/ ic00151a001
  21. El-Sayed M.A., Elwakeil H.A., Abdel Salam A.H. and Elbadawy H.A. (2016)., Kinetics of Oxidation of 2,6-Dimethylphenol (DMP) Using Novel μ-Carbonato [(Pip)4nCu4X4(CO3)2] Complexes., Open Journal of Inorganic Chemistry, 6(3), 183-194. DOI: 10.4236/ ojic.2016.63014
  22. El-Sayed M.A., Kassem T.S., Abo-El-Dahab H.A. and El-Kholy A.E. (2005)., Homogeneous oxidative coupling catalysts. Mechanism of catalysts formation by oxidation of [(Pip)nCuX]4 (n = 1 or 2, Pip = piperidine, X = Cl, Br or I) by dioxygen in aprotic media., Inorganica chimica acta, 358, 22-28. https://doi.org/10.1016/j.ica.2004.08.025
  23. Soori F. and Nezamzadeh-Ejhieh A. (2018)., Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution., J. Mol. Liq., 255, 250-256. https://doi.org/ 10.1016/j.molliq.2018.01.169
  24. Liu S., Lei Y.J., Xin Z.J., Lu Y.B. and Wang H.Y. (2018)., Water splitting based on homogeneous copper molecular catalysts., J. Photochem. Photobio. A: Chem, 355, 141-151. https://doi.org/10.1016/j.jphotochem.2017.09.060
  25. Hong S., Lee Y.M., Ray K. and Nam W. (2017)., Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes., Coord. Chem. Rev., 334, 25-42. https://doi.org/10.1016/ j.ccr.2016.07.006
  26. Sawyer D.T.B., Heineman J.M., Sawyer W.R.D., Heineman W.R., Beebe J.M., Shakhashiri B.Z., Furr A.K., Ford L.A., Winston E. and Roesky H.W.H. (1984)., Chemistry experiments for instrumental methods., John Wiley & Sons.
  27. Gupta B., Kalgotra N., Andotra S. and Pandey S.K. (2012)., O-Tolyl/benzyl dithiocarbonates of phosphorus (III) and (V): syntheses and characterization., Monatshefte für Chemie - Chemical Monthly, 143(7), 1087-1095. doi.org/10.1007/s00706-011-0704-2
  28. Gupta B., Kumar D., Kalgotra N., Andotra S., Kour G., Gupta V.K., Kant R. and Pandey S.K. (2015)., Dialkyltin (IV) bis (O-tolyl/benzyldithiocarbonate) complexes: spectroscopic, thermogravemetric, antifungal and crystal analysis of n-Bu2Sn (S2COCH2C6H5) 2., Acta Chimica Slovenica, 62, 204-212. DOI: http://dx.doi.org/ 10.17344/acsi.2014.1027
  29. Davies G., El-Toukhy A., Onan K.D. and Veidis M. (1985)., Synthesis, structure and properties of the isomeric dinuclear complexes [(DENC)2CuX2]2 (DENC = N,N-diethylnicotinamide; X = Cl or Br) and the kinetics of their reactions with DENC in methylene chloride., Inorganica chimica acta, 98(2), 85-94. https://doi.org/10.1016/S0020-1693(00)84916-6
  30. El-Sayed M.A, Davies G. and Kassem T.S. (1990)., Products and kinetics of the oxidation of neutral dimeric iodo (N, N, N'N'-tetraalkyl diamine) copper (I) complexes [LCuI] 2 by dioxygen in nitrobenzene, Inorganic chemistry, 29(23), 4730-4735. DOI: 10.1021/ic00348a029
  31. Hathaway B.J. (1984)., A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion., Complex Chemistry, Springer, 55-118.