International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Characterization and evaluation of the adsorption capacity of dichromate ions by a clay soil of Impfondo

Author Affiliations

  • 1Ecole Normale Superieure Universite Marien Ngouabi B.P. 69 Brazzaville, Congo
  • 2Laboratoire de Chimie Minerale et Appliquee, Faculte des Sciences et Techniques, Universite Marien Ngouabi B.P. 69 Brazzaville, Congo
  • 3Ecole Normale Superieure Universite Marien Ngouabi B.P. 69 Brazzaville, Congo and Laboratoire de Chimie Minerale et Appliquee, Faculte des Sciences et Techniques, Universite Marien Ngouabi B.P. 69 Brazzaville, Congo
  • 4Laboratoire de Chimie Minerale et Appliquee, Faculte des Sciences et Techniques, Universite Marien Ngouabi B.P. 69 Brazzaville, Congo
  • 5Laboratoire de Chimie Minerale et Appliquee, Faculte des Sciences et Techniques, Universite Marien Ngouabi B.P. 69 Brazzaville, Congo

Res.J.chem.sci., Volume 8, Issue (4), Pages 1-14, April,18 (2018)

Abstract

This work had as a general objective the evaluation of adsorption capacity of dichromate ions by clay collected in the Impfondo locality. The mineralogy of this soil was determined by X-Ray diffraction, Infrared spectroscopy and differential thermal analysis and thermogravimetry analysis. The geotechnical (Atterberg limits and grain-size distribution) and the chemical properties (chemical composition, CEC, Tamm Fe and Mehra-Jackson Fe) were also studied. The surface properties (specific surface area and zero charge point) were evaluated. The adsorption isotherms and adsorption kinetics were carried out. Impf clay consists mainly of kaolinite, but also illite, quartz, goethite, anatase, rutile and hematite. The particle size distribution corresponds to clay texture and offers the adsorption possibility. The surface properties (CEC, adsorption isotherm, adsorption kinetics, point of zero charge) have permitted to evaluate the adsorption capacity of Impf clay. This study showed that the adsorption isotherm of dichromate can be interpreted by the Langmuir and Freundlich models. Both models are to the extent of acceptability. The Freundlich model was used to calculate the Freundlich constant and the heterogeneity factor. This study made it possible to conclude that the adsorption yield of dichromate on Impfondo kaolinite is low; it increases with the mass of the introduced kaolinite. And at a mass of 0.5 g of kaolinite in 25 ml of dichromate solution, the adsorption sites become saturated and the equilibrium is reached. Following adsorption kinetics, the adsorption of dichromate is described by the second-order model. It was possible to determine the rate constant and the adsorption capacity of equilibrium dichromate ions. The adsorption of dichromate is favored when the pH of the environment is much lower than that of the zero charge point of the kaolinite.

References

  1. Ferhat Mourad (2012)., Co-adsorption des metaux lourds sur la bentonite modifiee en presence de floculants mineral et biologique., Memoire de magister, Universite Mouloud Mammeri Tizi Ouzou, Algerie.
  2. Achour S. and Youcef L. (2003)., Elimination du cadmium par adsorption sur bentonites sodique et calcique., Larhyss Journal, ISSN 1112-3680, n°02, 68-81.
  3. Sorgho B., Pare S., Guel B., Zerbo L., Traore K. and Persson I. (2011)., Etude d'une argile locale du Burkina Faso a des fins de decontamination en Cu2+, Pb2+, Cr3+., Journal de la societe ouest-africaine de chimie, 16e annee, n°031, 49-59.
  4. Alvarez-Ayuso E., Garcia-Sanchez A. and Querol X. (2007)., Adsorption of Cr (VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide., Journal of Hazardous Materials, 142(1-2), 191-198.
  5. Ayari F., Srasra E. and Trabelsi-Ayadi M. (2004)., Application des modeles de Langmuir et Freundlich aux isothermes d'adsorption des metaux lourds par l'argile purifiee., J. Phys. IV France, 122, 229-234.
  6. Zachara J.M., Cowan C.E., Schmidt R.L. and Ainsworth C. C. (1988)., Chromate adsorption by kaolinite., Clays Clay Miner, 36(4), 317-326.
  7. Koppelman M.H. and Dillard J.G. (1980)., Adsorption of Cr (NH3) 63+ and Cr (en) 33+ on clay minerals and the characterization of chromium by X-Ray photoelectron spectroscopy., Clays and Clay Minerals, 28(3), 211-216.
  8. Errais E. (2011)., Surface reactivity of natural clays: Study of the adsorption of anionic dyes (Doctoral dissertation, Strasbourg).,
  9. Toualakani B. (2016)., Evaluation et risque pour la sante du aux metaux Fe, Cr et PB dans les eaux souterraines du quartier Mayanga (Arrondissement N° 8 Madibou) Memoire de Master., Ecole Normale Superieure Universite Marien Ngouabi (Congo Brazzaville).
  10. Nimy Matsouele B.N. (2016)., Presence potentielle dans l'eau du robinet des metaux As, Cd, Cr et Pb : Evaluation des risques toxicologiques pour la sante humaine., Cas du quartier DIATA, Memoire de Master, Ecole Normale Superieure, Universite Marien Ngouabi (Congo Brazzaville).
  11. Zecher D.C. (1969)., Problems in replacing chromate as a corrosion inhibitor for open recirculating cooling waters., In Industrial process design for water pollution control, 89-92 New-York American Institute of Chemical Engineers.
  12. Peter A.K. (1974)., Sources and classification of water pollutants In Industrial pollution ed. by N. I. Sax., 197-217. New York, Van Nostrand Reinhold.
  13. AFEE (1979)., Les micropolluants mineraux dans les eaux superficielles continentales, rapport no.6: chrome-cuivre-nickel., Paris, Association Francaise pour etude des eaux.
  14. Meisch H.U. and Schmitt-Beckmann I. (1979)., Influence of tri-and hexavalent chromium on two Chlorella strains., Zeitschrift fur Pflanzenphysiologie, 94(3), 231-239.
  15. ATSDR (1993)., Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services., Atlanta, GA. (revised 2012)
  16. Cohen M.D., Kargacin B., Klein C.B. and Costa M. (1993)., Mechanisms of chromium carcinogenicity and toxicity., Critical reviews in toxicology, 23(3), 255-281.
  17. IARC (1990)., Chromium and chromium compounds, International Agency for Research on Cancer (IARC)., Monogr. Eval. Carcinog. Risks Hum., 49, 49-214.
  18. Davidson T., Kluz T., Burns F., Rossman T., Zhang Q., Uddin A. and Costa M. (2004)., Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice., Toxicology and applied pharmacology, 196(3), 431-437.
  19. OEHHA (2009)., Evidence on the developmental and reproductive toxicity of chromium (hexavalent compounds) Reproductive and Cancer Hazard Assessment Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency., http://www.oehha.ca.gov/prop65/hazard_ident/pdf_zip/chrome0908.pdf
  20. OEHHA (2010)., Proposition 65 Oral Maximum Allowable Dose Level (MADL) for Developmental and Reproductive Toxicity for Chromium (Hexavalent Compounds) Reproductive and Cancer Hazard Assessment Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency., http://www.oehha.ca.gov/prop65/law/pdf_zip/081210DraftMADLChromVI.pdf
  21. ATSDR (2000)., Toxicological profile for chromium, Agency for Toxic Substances and Disease Registry, U.S.., Department of Health and Human Services, Atlanta, GA.
  22. Marks Jr J.G., Belsito D.V., DeLeo V.A., Fowler Jr J.F., Fransway A.F., Maibach H.I. and Storrs F.J. (2000)., North American Contact Dermatitis Group patch-test results, 1996-1998., Archives of Dermatology, 136(2), 272-274.
  23. United Nations (2017)., Programme d'action national de lutte contre la desertification., www.unccd.int/ActionProgrammes/congo-fre2006.pdf lu le 17/09/2017
  24. [NF P94-051] NF P 94-051(1993)., Determination des limites d'Atterberg., AFNOR.
  25. NF P94 056 (1992)., Analyse granulometrique des sols : methode par tamisage., NF P94-057 (1992) Analyse granulometrique des sols : methode par sedimentation, AFNOR
  26. Carignan J., Hild P., Mevelle G., Morel J. and Yeghicheyan D. (2001)., Routine analyses of Trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: A study of geochemical reference materials, BR, DR-N, UB-N, AN-G and GH., Geostandards Newsletter, 25(2-3), 187-198.
  27. Mehra O.P. and Jackson M.L. (1960)., Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate., Clays Clay Miner., 7, 317-327.
  28. Duchaufour P. and Souchier B. (1966)., Note sur une methode d, Science du Sol Bull. A.F.E.S, 3, 161-175.
  29. Hang P.T. and Brindley G.W. (1970)., Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII)., Clays and clay minerals, 18(4), 203-212.
  30. NF X 31-130 (1999)., Soil quality - Chemical methods - Determination of cationic exchange capacity (CEC) and extractible cations AFNOR.,
  31. Bougdah N. (2007)., Etude de l'adsorption de micropolluants organiques sur la bentonite., Memoire Magister, Universite de Skikda, 17-18.
  32. Assifaoui A. (2002)., Etude de la stabilite des barbotines a base d'argile locale. Application aux formulations ceramiques industrielles., These de doctorat, Universite ASSAN II AIN-CHOCK CASABLANCA, Maroc
  33. Casagrande A. (1948)., Classification and identification of soils., Transactions of the American Society of Civil Engineers, 113(1), 901-930.
  34. Sanchez A.G., Ayuso E.A. and Blas O. (1999)., Sorption of heavy metals from industrial waste water by low-cost mineral silicates., Clay minerals, 34(3), 469.
  35. Brindley G.W. and Brown G. (1980)., Crystal structures of clay minerals and their identification., Mineralogical Society, 497.
  36. Caillere S., Henin S. and Rautureau M. (1982)., Mineralogie des argiles., Masson Ed., 1, 184.
  37. Aparicio P. and Galan E. (1999)., Mineralogical interference on kaolinite crystallinity index measurements., Clays and Clay minerals, 47(1), 12-27.
  38. Sita P.M. (2013)., Caracterisation mineralogiques de queldues sols argileux congolais Memoire pour l'obtention du Certificat d'aptitude au Professorat de l'Enseignement Secondaire, Ecole Normale Superieure Universite Marien Ngouabi (Congo Brazzaville).,
  39. Moutou J.M., Mbedi R., Elimbi A., Njopwouo D., Yvon J., Barres O. and Ntekela H.R. (2012)., Mineralogy and Thermal Behaviour of the Kaolinitic Clay of Loutete (Congo-Brazzaville)., Research Journal of Environmental and Earth Sciences, 4(3), 316-324.
  40. Jeanroy E. (1983)., Diagnostic des formes du fer dans les pedogeneses temperees., These de Docteur d'Universite, Universite Nancy, I, 157.
  41. Bouaziz R. and Rollet R.P. (1972)., L'analyse Thermique: L'examen Des Processus Chimiques., Paris, Gauthiers-Villars, 2, 227.
  42. Jouenne C.A. (2001)., Traite de ceramiques et materiaux mineraux., Edition Septima, Paris, 657.
  43. Derie R., Ghodsi M. and Calvo-Roche C. (1976)., DTA Study of the dehydration of synthetic goethite -FeOOH., Journal of Thermal Analysis, 9, 435-440.
  44. Yvon J., Baudracco J., Cases J.M. and Weiss J. (1990)., Elements of quantitative mineralogy in micro-analysis of clays., Clay Materials, Structures, Properties and Applications, 473-489.
  45. Njopwouo D. (1984)., Mineralogie et physico-chimie des argiles de Bomkoul et de Balengou (Cameroun)., Utilisation dans la polymerisation du styrene et dans le renforcement du caoutchouc naturel. These de Doctorat d'Etat, Universite de Yaounde, Cameroun, pp: 300.
  46. Chamayou H. and Legros J.P. (1989)., Les bases chimiques et mineralogiques de la science du sol., Agence de cooperation culturelle et technique, Presses Universitaires de France, 584
  47. Farmer V.T. and Russell J.D. (1964)., The infra-red spectra of layer silicates., Spectrochimica Acta, 20(7), 1149-1173.
  48. Rouxhet P.G., Samudacheata N., Jacobs H. and Anton O. (1977)., Attribution of the OH stretching bands of kaolinite., Clay Miner., 12, 171-178.
  49. Van der Marel H.W. and Krohmer P. (1969)., OH stretching vibrations in kaolinite, and related minerals., Contributions to Mineralogy and Petrology, 22(1), 73-82.
  50. Elsass F. and Olivier D. (1978)., Infrared and electron spin resonance studies of clays representative of the sedimentary evolution of the basin of Autun., Clay Minerals, 13, 299.
  51. Saikia N.J., Bharali D.J., Sengupta P., Bordoloi D., Goswamee R.L., Saikia P.C. and Borthakur P.C. (2003)., Characterization, beneficiation and utilization of a kaolinite clay from Assam, India., Applied Clay Science, 24, 93-103.
  52. Prost R., Dameme A., Huard E., Driard J. and Leydecker J. P. (1989)., Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K., Clays and Clay Minerals, 37(5), 464-468.
  53. Brindley G.W., Chih-Chun Kao, Harrison J.L., Lipsiscas M. and Raythatha R. (1986)., Relation between structural disorder and other characteristics of kaolinites and dickites., Clays and Clay Minerals, 34, 239-249.
  54. Vaculikova L., Plevova E., Vallova S. and Koutnik I. (2011)., Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis Acta Geodyn., Geomater, 8, 59-67.
  55. Lappi S.E., Smith B. and Franzen S. (2004)., Infrared spectra of H216O, H218O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(11), 2611-2619.
  56. Van Olphen H. and Frippiat J.J. (1979)., Data Handbook for Clay Minerals and Other Non Metallic Minerals., Pergamon Press, London.
  57. Bertaux J., Frohlich F. and Ildefonse P. (1998)., Multicomponent analysis of FTIR spectra: quantification of amorphous and crystallized mineral phases in synthetic and natural sediments., Journal of Sedimentary Research, 68(3), 440-447.
  58. Wilson M.J. (1996)., Clay Mineralogy: Spectroscopy and Chemical Determinative methods Ed., Chapman and Hall, London, 367.
  59. Frost R.L and Johansson U. (1998)., Combination bands in the Infrared spectroscopy of kaolins-A DRIFT spectroscopy study., Clays and lay minerals, 46(4), 466-477.
  60. Hendershot W.H. and Lavkulich L.M. (1983)., Effect of Sesquioxide Coatings on Surface Charge of Standard Mineral and Soil Samples 1., Soil Science Society of America Journal, 47(6), 1252-1260.
  61. Rahajaharitompo R.L. (2004)., Etude de la fertilite et de la fertilisation phosphatees des sols ferralitiques de Madagascar., These de doctorat d'etat es sciences naturelles, Universite d'Antananarivo, Madagascar.
  62. Giles C.H., Smith D. and Huitson A. (1974)., A general treatment and classification of the solute adsorption isotherm., Journal of Colloid and Interface Science, 47(3), 755-765.
  63. Yahiaoui N. (2012)., Etude de l'adsorption des composes phenoliques des margines d'olive sur carbonate de calcium, hydroxyapatite et charbon actif., Memoire de magister, Universite mouloud Mammeri Tizi Ouzou, Algerie.
  64. Assifaoui A. (2002)., Etude de la stabilite des barbotines a base d'argiles locales., Application aux formulations ceramiques industrielles, These d doctorat, Faculte des sciences Casablanca Universite Hassan II AIN CHOCK
  65. Flogeac K. (2004)., Etude de la capacite de retention de produits phytosanitaires par deux solides modeles des sols. Influence de la presence de cation metallique., These de doctorat, Universite de Reims Champagne-Ardenne, France.