International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Mechanochemistry: A green chemistry for green technology

Author Affiliations

  • 1Department of Chemistry, Nasarawa State University, Keffi, Nigeria
  • 2Department of Chemistry, Nasarawa State University, Keffi, Nigeria
  • 3Department of Chemistry, Kaduna State College of Education,GidanWaya, Nigeria

Res.J.chem.sci., Volume 14, Issue (1), Pages 63-71, February,18 (2024)

Abstract

Mechanochemistry involves the physicochemical transformation of materials or substances induced by external mechanical energy or forces. In recent years, the application of mechanochemistry as a green synthetic method for the preparation or production of new functional materials has gained significant interest by many researchers. This paper reviewed the relationship between mechanochemistry and the principles of green chemistry, mechanochemistry as green technology, mechanochemical reactions, peculiarities of mechanochemical processes, applications, and the challenges of mechanochemistry. However, based on the review, with improved or advanced technologies, it is strongly believed that mechanochemistry is probably going to be one of the most efficient way to improve greenness in chemical industries and beyond.

References

  1. Anastas, P. T. & Zimmerman, J. B. (2003)., Peer reviewed: design through the 12 principles of green engineering.,
  2. Mulvihill, M. J., Beach, E. S., Zimmerman, J. B., & Anastas, P. T. (2011)., Green chemistry and green engineering: a framework for sustainable technology development., Annual review of environment and resources, 36, 271-293.
  3. Khare, R., Kulshrestha, A., Pandey, J., & Singh, N. (2017)., Importance of Green chemistry in oxidation and reduction., International Journal of Engineering and Technical Research, 7(7), 264972.
  4. Zuin, V. G., Eilks, I., Elschami, M., & Kümmerer, K. (2021)., Education in green chemistry and in sustainable chemistry: perspectives towards sustainability., Green Chemistry, 23(4), 1594-1608.
  5. O’Neill, R. T., & Boulatov, R. (2021)., The many flavours of mechanochemistry and its plausible conceptual underpinnings., Nature Reviews Chemistry, 5(3), 148-167.
  6. Cindro, N., Tireli, M., Karadeniz, B., Mrla, T., & Užarević, K. (2019). Investigations of thermally controlled mechanochemical milling reactions. ACS sustainable chemistry & engineering, 7(19), 16301-16309., undefined, undefined
  7. Lapshin, O. V., Boldyreva, E. V., & Boldyrev, V. V. (2021)., Role of mixing and milling in mechanochemical synthesis., Russian Journal of Inorganic Chemistry, 66, 433-453.
  8. Chen, R., Gokus, M. K., & Pagola, S. (2020)., Tetrathiafulvalene: A Gate to the Mechanochemical Mechanisms of Electron Transfer Reactions., Crystals, 10(6), 482.
  9. Ngilirabanga, J.B, Aucamp, M., Rosa, R.P. & Samsodien. H. (2020)., Mechanochemical Synthesis and Physicochemical Characterization of Isoniazid and Pyrazinamide Co-crystals With Glutaric Acid., Front. Chem.,1-11, 8, 595908. doi: 10.3389/fchem.2020.595908
  10. Shan, N., Toda, F. & Jones, W. (2002)., Mechanochemistry and Co-Crystal Formation: Effect of solvent on reaction Kinetics., Chem. Commun., 8, 2372–2373
  11. Tan, D., Mottillo, C., Katsenis, A. D., Štrukil, V. & Frisčič, T. (2014)., Development of C-N coupling using mechanochemistry: catalytic coupling of arylsulfonamides and carbodiimides., Angew. Chem., Int. Ed., 53, 9321−9324.
  12. Ou, Z., Li, J., & Wang, Z. (2015)., Application of mechanochemistry to metal recovery from second-hand resources: a technical overview., Environmental Science: Processes & Impacts, 17(9), 1522-1530.
  13. Chen, M., Li, Z., Huang, P. Li, X., Qu, J., Yuan, W. & Zhang, Q. (2018)., Mechanochemical transformation of apatite to phosphoric slow-release fertilizer and soluble phosphate., Process Safety and Environmental Protection, 114, 91–96.
  14. McCalmont, A.S., Ruiz, A., Lagunas, M.C., Al-Jamal, W.T. & Crawford, D.E. (2020)., Cytotoxicity of mechanochemically prepared Cu(II) complexes., ACS Sustain. Chem. Eng., 8, 15243–15249.
  15. Kaabel, S. Friščić, T. & Auclair, K. (2019)., Mechanoenzymatic transformations in the absence of bulk water: A more natural way of using unzymes., ChemBioChem., 21, 742–758.
  16. Podgorbunskikh, E.M., Bychkov, A.L., Bulina, N.V. & Lomovskii, O.I. (2018)., Disordering of the crystal structure of cellulose under mechanical activation., J. Struct. Chem., 59, 201–208.
  17. Bolm, C. & Hernández, J. G. (2019)., Mechanochemistry of gaseous reactants., Angewandte Chemie International Edition, 58(11), 3285-3299.
  18. Ferguson, M., Giri, N., Huang, X., Apperley, D. & James, S.L. (2014)., One-pot two-step mechanochemical synthesis: Ligand and complex preparation without isolating intermediates., Green Chem., 16, 1374–1382.
  19. Silviina, P. (2023)., Outstanding advantage, current drawbacks, and significant recent developments in mechanochemistry: A perspective view., Crystals, 13(1), 124, doi:10.3390/cryst13010124.
  20. Subin, J.W. Phakhodee, N. & Chairungsi, M. P. (2018)., Mechanochemical synthesis of primary amides from carboxylic acids using TCT/NH4SCN., Tetrahedron Letters, 59(39), 3571-3573.
  21. Do, J. L., & Friščić, T. (2017)., Mechanochemistry: a force of synthesis., ACS central science, 3(1), 13-19.
  22. Tireli, M., Kulcsár, M. J., Cindro, N., Gracin, D., Biliškov, N., Borovina, M., ... & Užarević, K. (2015)., Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding., Chemical communications, 51(38), 8058-8061.
  23. Uzarevic ̌, K., Halasz, I. & Fris ́čič, T. (2015)., Real-time and ́ in situ monitoring of mechanochemical reactions: A new playground for all chemists., J. Phys. Chem. Lett.,6, 4129−4140.
  24. Oh, C., Choi, E.H., Choi, E.J., Premkumar, T. & Song, C. (2020)., Facile Solid-State Mechanochemical synthesis of eco-friendly thermoplastic polyurethanes and copolymers using a biomass-derived furan diol., ACS Sustain. Chem. Eng., 8, 4400–4406.
  25. Rightmire, N. R., Hanusa, T. P., & Rheingold, A. L. (2014)., Mechanochemical synthesis of [1, 3-(SiMe3) 2C3H3] 3 (Al, Sc), a base-free tris (allyl) aluminum complex and its scandium analogue., Organometallics, 33(21), 5952-5955.
  26. Haley, R. A., Zellner, A. R., Krause, J. A., Guan, H., & Mack, J. (2016)., Nickel catalysis in a high speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetraene compounds., ACS Sustainable Chemistry & Engineering, 4(5), 2464-2469.
  27. Zhao, Y., Rocha, S. V. & Swager, T. M. (2016)., Mechanochemical Synthesis of Extended Iptycenes., J. Am. Chem. Soc., 138, 13834–13837
  28. Urakaev, F. K. & Boldyrev, V.V. (2000)., Mechanism and kinetics of mechanochemical processes in comminuting devices - 1., Theory. Powder Technol., 107, 93−107.
  29. Rak, M. J., Saade, N. K., Frisčič, T. & Moores, A. (2014)., Mechanosynthesis ́ of ultra-small monodisperse amine-stabilized gold nanoparticles with controllable size., Green Chem., 16, 86−89.
  30. Trask, A. V., van de Streek, J., Motherwell, W. D. S. & Jones, W. (2005)., Achieving polymorphic and stoichiometric diversity in cocrystal formation: Importance of solid-state grinding, powder X-ray structure determination, and seeding., Cryst. Growth Des., 5, 2233−2241.
  31. Karki, S. Frisčič, T. & Jones, W. (2009)., Control and interconversion of ́ cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal., Cryst Eng Comm, 11, 470−481.
  32. Jung-Soo,Byun, Jae-Hyeok, Shim, Young&Whan, C. (2004)., Effect of stoichiometry on mechanochemical reaction between Ti and Si3N4 powders., Scripta Materialia, 50 279–283.
  33. Cincič , D. Frisčič, T. & Jones, W.A. (2008). Stepwise mechanism for the ́ mechanochemical synthesis of halogen-bonded cocrystal architectures. J. Am. Chem. Soc., 130, 7524−7525, undefined, undefined
  34. Štrukil, V., Margetic, D., Igrc, M. D., Eckert-Maksic, M. &Frisčič, T. (2012). ́, Desymmetrisation of aromatic diamines and synthesis of nonsymmetrical thiourea derivatives by click-mechanochemistry., Chem. Commun. 48, 9705−9707.
  35. Takacs, L. (2013)., The Historical Development of Mechanochemistry., Chem. Soc. Rev, 42, 7649–7659.
  36. Crawford, D.E., Miskimmin, C.K.G., Albadarin, A.B., Walker, G. & James, S.L. (2017)., Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free., Green Chem., 19, 1507–1518.
  37. Užarević, K., Štrukil, V., Mottillo, C. Julien, P.A., Puškarić, A., Friščić, T. & Halasz, I. (2016)., Exploring the effect of temperature on a mechanochemical reaction by in situ synchrotron powder x-ray diffraction., Cryst. Growth Des., 16, 2342–2347.
  38. Schmidt, R. Martin Scholze, H. & Stolle, A. (2016)., Temperature progression in a mixer ball mill., Int. J. Ind. Chem., 7, 181–186.
  39. Ying, P., Yu, J.B. & Su, W.K. (2021)., Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals., Adv. Synth. Catal., 363, 1246–1271.
  40. Alrbaihat Mohammad & Ehab Al Shamaileh (2022)., Mechanochemistry’s Role in Nonsteroidal Anti-inflammatory Drugs Development: A Review., BOHR International Journal of General and Internal Medicine, 1(1), 17–24, https://doi.org/10.54646/bijgim.005.
  41. Tundo, P. & Griguol, E. (2018)., Green chemistry for sustainable development., Chemistry International, 40, 18-24. https://doi.org/10.1515/ci-2018-0105.
  42. Hernández, J.G. & Bolm, C. (2017)., Altering Product Selectivity by Mechanochemistry., J. Org. Chem., 82, 4007–4019.
  43. Friščić, T. (2010)., New Opportunities for Materials Synthesis Using Mechanochemistry., J. Mater. Chem., 20, 7599–7605.
  44. Schultheiss, N. & Newman, A. (2009)., Pharmaceutical cocrystals and their physicochemical properties., Cryst. Growth Des., 9, 2950–2967.
  45. Solares-Briones, M., Coyote-Dotor, G., Páez-Franco, J.C., Zermeño-Ortega, M.R.., de la, C.M., Contreras, O., Canseco-González, D., Avila-Sorrosa, A., Morales-Morales, D. & Germán-Acacio, J.M. (2021)., Mechanochemistry: A Green approach in the preparation of pharmaceutical cocrystals., Pharmaceutics, 13, 790. https://doi.org/10.3390/ pharmaceutics13060790.
  46. Carneiro, R. L., de Melo, C. C., de Alvarenga Jr, B. R., Owoyemi, B. C. D., Ellena, J., & da Silva, C. C. (2022)., Mechanochemical synthesis and characterization of a novel AAs–Flucytosine drug–drug cocrystal: A versatile model system for green approaches., Journal of Molecular Structure, 1251, 132052.
  47. Jaśkowska, J., Drabczyk, A. K., Michorczyk, P., Kułaga, D., Zaręba, P., Jodłowski, P., ... & Pindelska, E. (2022)., Mechanochemical synthesis method for drugs used in the treatment of CNS diseases under PTC conditions., Catalysts, 12(5), 464.
  48. AlShamaileh, E., Alrbaihat, M., Moosa, I., Abu-Afifeh, Q., Al-Fayyad, H., Hamadneh, I., & Al-Rawajfeh, A. (2022)., Mechanochemical preparation of a novel slow-release fertilizer based on K2SO4-kaolinite., Agronomy, 12(12), 3016.
  49. Alrbaihat, M. R., Al-Rawajfeh, A. E., & Al Shamaileh, E. (2021)., A mechanochemical preparation, properties and kinetic study of kaolin–N, P fertilizers for agricultural applications., Journal of the Mechanical Behavior of Materials, 30(1), 265-271.
  50. Bhardwaj, D., Sharma, M., Sharma, P. & Tomar, R. (2012)., Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer., J. Hazard Material, 227: 292-300.
  51. Tongamp, W., Zhang, Q. W. & Saito F. (2008)., Mechanochemical route for synthesizing nitrate form of layered double hydroxide., Powder Technol, 185, 43-8
  52. Solihin Q.W. (2010)., Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers., IndEngChem Res., 49, 2213-6.
  53. Amrute, A.P., De Bellis, J., Felderhoff, M. & Schuth, F. (2021)., Mechanochemical synthesis of catalytic materials., Chem. Eur. J., 27, 6819–6847.
  54. Do, J-L., Mottillo, C. Tan, D., Štrukil, V. & Frisčič, T. (2015)., Mechanochemical ruthenium-catalyzed olefin metathesis., J. Am. Chem. Soc.
  55. Amrute, A. P., De Bellis, J., Felderhoff, M., & Schüth, F. (2021)., Mechanochemical synthesis of catalytic materials., Chemistry–A European Journal, 27(23), 6819-6847.
  56. Schneider, F., Szuppa, T., Stolle, A., Ondruschka, B. & Hopf, H. (2009)., Energetic assessment of the Suzuki-Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization., Green Chem., 11, 1894−1899.
  57. Cravotto, G., Garella, D., Tagliapietra, S., Stolle, A., Schüßler, S., Leonhardt, S. E., & Ondruschka, B. (2012)., Suzuki cross-couplings of (hetero) aryl chlorides in the solid-state., New Journal of Chemistry, 36(6), 1304-1307.
  58. Thorwirth, R., Stolle, A., Ondruschka, B., Wild, A., & Schubert, U. S. (2011)., Fast, ligand-and solvent-free copper-catalyzed click reactions in a ball mill., Chemical communications, 47(15), 4370-4372.
  59. Guo, X., Xiang, D., Duan, G., & Mou, P. (2010)., A review of mechanochemistry applications in waste management., Waste management, 30(1), 4-10.
  60. Zhang, X. X., Lu, C. H., & Liang, M. (2007)., Devulcanisation of natural rubber vulcanisate through solid state mechanochemical milling at ambient temperature., Plastics, Rubber and Composites, 36(7-8), 370-376.
  61. Jana, G. K., & Das, C. K. (2005)., Devulcanization of natural rubber vulcanizates by mechanochemical process., Polymer-Plastics Technology and Engineering, 44(8-9), 1399-1412.
  62. Bilgili, E., Dybek, A., Arastoopour, H. & Bernstein, B., (2003)., A new recycling technology: compression molding of pulverized rubber waste in the absence of virgin rubber., Journal of Elastomers and Plastics, 35(3), 235–256.
  63. Wang, J., Lu, J., Zhang, Q.W. & Saito, F. (2003)., Mechanochemicalsulfidization of nonferrous metal oxides by grinding with sulfur and iron., Industrial & Engineering Chemistry Research, 42(23), 5813–5818.
  64. Zhang, Q.W., Wang, J., Saito, F., Okura, T. &Nakamuray, I. (2002)., Sulphidization of metal oxides by means of mechanochemical solid reaction., Chemistry Letters, 11, 1094–1095.
  65. Kano, J., Kobayashi, E., Tongamp, W., Miyagi, S. & Saito, F. (2009)., Nonthermal reduction of indium oxide and indium tin oxide by mechanochemical method., J. Alloys Compd., 484 (1−2), 422−425.
  66. McDonald, R.G. & Muir, D.M. (2007)., Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products., Hydrometallurgy, 86, 191-205.
  67. Saeki, S., Lee, J., Zhang, Q.W. & Saito, F. (2004)., Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product., Int. J. Miner Process, 74, 373−378.
  68. Pavlović, M., Jovalekić, Č., Nikolić& A.S. (2009)., Mechanochemical synthesis of stoichiometric MgFe2O4 spinel., J Mater Sci: Mater Electron, 20, 782–787. https://doi.org/10.1007/s10854-008-9802-2
  69. Gaudino, E.C. Grillo, G. Manzoli, M. & Tabasso, S. (2022)., Maccagnan, S.; Cravotto, G. Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials., Molecules, 27, 449.