International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Isotherm and batch system kinetics of cadmium ion sorption using mango seed shell

Author Affiliations

  • 1Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria
  • 2Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria
  • 3Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria
  • 4Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University, P.M.B 2076, Yola, Adamawa State, Nigeria

Res.J.chem.sci., Volume 14, Issue (1), Pages 31-44, February,18 (2024)

Abstract

Cadmium (Cd) toxicity even in low amounts can be felt if consumed by humans and animals. Mango seed shell biosorption property to get rid of this metal ion from contaminated water is therefore proposed by this study after several thoughtful bench-scale batch examination, beginning with Fourier Transform Infrared (FTIR) spectroscopic analysis. In that regard, the removal of Cd2+ at higher biosorption percentage occurs at low process conditions, which are: 10 min contact time, 0.5g biosorbent dose, 5mg/L initial Cd2+ concentration and pH = 4, corresponding to 82.47%, 99.49%, 62.43% and 62.45%, respectively. Uniquely, in this study, two solution approaches for finding isotherm model parameters from Langmuir, Freundlich and Dubinin-Radushkevich (D-R) formulae were also examined. Herein, the nonlinear regression technique (NRT) with satisfactory statistical estimates was the best method of finding the model parameters compared to the graphical technique (GT). Based on reduced chi-square, coefficient of determination (R2) and the residual sum of squares (RSS) given by the user-defined NRT carried out in Origin Pro 2018, the best isotherm are in the order of Langmuir, D-R and Freundlich. Both techniques however, reveals that the adsorption of Cd unto mango seed shell endocarp is a physical adsorption process, due to an E = 0.3743 & 0.4677 kJ/mol obtained from the D-R isotherm. Also, an R2 = 0.9978 from linear fitting, presents the Pseudo Second order adsorption kinetic model followed by the Lagergren alternative proposed in the literature, as the best model under the specified conditions. The bottom line now is to compare the biosorbent performance of mango seed shell with others reported previously and to determine the percent removal of other toxic heavy metals, also studying their isotherms and kinetics.

References

  1. Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009)., Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China., Science of the total environment, 407(5), 1551-1561.
  2. Sarı, A., & Tuzen, M. (2008)., Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies., Journal of hazardous materials, 157(2-3), 448-454.
  3. Smith J.E. (2012)., Biotechnology-Studies in Biology., 4th ed. Cambridge University Press; 2012. doi:10.1017/CBO9781139167215
  4. Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. A. (2017)., Cadmium toxicity and treatment: An update., Caspian journal of internal medicine, 8(3), 135.
  5. Tucker, P. (2011)., Agency for toxic substances and disease registry., Case Studies in Environmental Medicine: Asbestos Toxicity.
  6. WHO (2019)., Exposure to Cadmium: A Major Public Health Concern., Team-Chemical Safety and Health Unit; https://www.who.int/publications-detail-redirect/WHO-CED-PHE-EPE-19-4-3
  7. Pinto, A. P., Mota, A. D., De Varennes, A., & Pinto, F. C. (2004)., Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants., Science of the total environment, 326(1-3), 239-247.
  8. Goyer, R. A., & Clarkson, T. W. (1996)., Toxic effects of metals., Casarett and Doull’s toxicology: the basic science of poisons, 5, 691-736.
  9. Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Munoz, J. A. (2009)., Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus., Journal of hazardous materials, 163(2-3), 555-562.
  10. Montazer-Rahmati, M. M., Rabbani, P., Abdolali, A., & Keshtkar, A. R. (2011)., Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae., Journal of hazardous materials, 185(1), 401-407.
  11. Pradhan, A. A., & Levine, A. D. (1992)., Role of extracellular components in microbial biosorption of copper and lead., Water Science and Technology, 26(9-11), 2153-2156.
  12. Sharma, Y. C. (1995)., Economic treatment of cadmium (II)-rich hazardous waste by indigenous material., Journal of colloid and interface science, 173(1), 66-70.
  13. Rao, K. S., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010)., Review on cadmium removal from aqueous solutions., International journal of engineering, science and technology, 2(7).
  14. Yun, Y. S., & Volesky, B. (2003)., Modeling of lithium interference in cadmium biosorption., Environmental science & technology, 37(16), 3601-3608.
  15. Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006)., Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals., Science of the total environment, 366(2-3), 409-426.
  16. Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008)., Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste., Journal of Hazardous Materials, 158(2-3), 499-506.
  17. Raval, N. P., Shah, P. U., & Shah, N. K. (2016)., Adsorptive removal of nickel (II) ions from aqueous environment: A review., Journal of environmental management, 179, 1-20.
  18. Fane, A. G., Awang, A. R., Bolko, M., Macoun, R., Schofield, R., Shen, Y. R., & Zha, F. (1992)., Metal recovery from wastewater using membranes., Water Science and Technology, 25(10), 5-18.
  19. Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014)., Recovery of nickel and water from nickel electroplating wastewater by electrodialysis., Separation and purification technology, 129, 106-112.
  20. Jakobsen, M. R., Fritt-Rasmussen, J., Nielsen, S., & Ottosen, L. M. (2004)., Electrodialytic removal of cadmium from wastewater sludge., Journal of Hazardous Materials, 106(2-3), 127-132.
  21. Qdais, H. A., & Moussa, H. (2004). Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2), 105-110., undefined, undefined
  22. Saffaj, N., Loukili, H., Younssi, S. A., Albizane, A., Bouhria, M., Persin, M., & Larbot, A. (2004)., Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay., Desalination, 168, 301-306.
  23. Danesi, P. R. (1984)., Separation of metal species by supported liquid membranes., Separation Science and Technology, 19(11-12), 857-894.
  24. Kumar, V., Sahu, S. K., & Pandey, B. D. (2010)., Prospects for solvent extraction processes in the Indian context for the recovery of base metals. A review., Hydrometallurgy, 103(1-4), 45-53.
  25. Provazi, K., Campos, B. A., Espinosa, D. C. R., & Tenório, J. A. S. (2011)., Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques., Waste Management, 31(1), 59-64.
  26. Jha, M. K., Kumar, V., Jeong, J., & Lee, J. C. (2012)., Review on solvent extraction of cadmium from various solutions., hydrometallurgy, 111, 1-9.
  27. Tzanetakis, N., Taama, W. M., Scott, K., Jachuck, R. J. J., Slade, R. S., & Varcoe, J. (2003)., Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt., Separation and Purification Technology, 30(2), 113-127.
  28. Otrembska, P., & Gęga, J. (2012)., Separation of nickel (II) and cadmium (II) with ion-exchange process., Separation Science and Technology, 47(9), 1345-1349.
  29. Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J., & Loizidou, M. (2004)., Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods., Separation and Purification Technology, 39(3), 181-188.
  30. Tünay, O., & Kabdaşli, N. I. (1994)., Hydroxide precipitation of complexed metals., Water Research, 28(10), 2117-2124.
  31. Lazaridis, N. K., & Asouhidou, D. (2003)., Kinetics of sorptive removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite., Water research, 37(12), 2875-2882.
  32. Hawari, A. H., & Mulligan, C. N. (2006)., Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass., Bioresource technology, 97(4), 692-700.
  33. Mukherjee, S. K., & Litz, R. E. (2009)., Introduction: botany and importance. In The mango: Botany, production and uses (pp. 1-18)., Wallingford UK: CABI.
  34. Arogba, S. S. (1997)., Physical, chemical and functional properties of Nigerian mango (Mangifera indica) kernel and its processed flour., Journal of the Science of Food and Agriculture, 73(3), 321-328.
  35. Ramteke, R. S., & Eipeson, W. E. (1997)., Effect of additives on the stability of mango aroma concentrate during storage., Journal of Food Science and Technology, 34(3), 195-199.
  36. Sogi, D. S., Siddiq, M., Greiby, I., & Dolan, K. D. (2013)., Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods., Food chemistry, 141(3), 2649-2655.
  37. Murugan, T., Ganapathi, A., & Valliappan, R. (2010)., Removal of dyes from aqueous solution by adsorption on biomass of mango (Mangifera indica) leaves., Journal of Chemistry, 7, 669-676.
  38. Ashraf, M. A., Wajid, A., Mahmood, K., Maah, M. J., & Yusoff, I. (2011)., Removal of heavy metals from aqueous solution by using mango biomass., African Journal of Biotechnology, 10(11), 2163-2177.
  39. Iqbal, M., Saeed, A., & Zafar, S. I. (2009)., FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste., Journal of hazardous materials, 164(1), 161-171.
  40. Kowanga, K. D., Gatebe, E., Mauti, G. O., & Mauti, E. M. (2016)., Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu (II) and Pb (II) using defatted Moringa oleifera seed powder., The journal of phytopharmacology, 5(2), 71-78.
  41. Khayyun, T. S., & Mseer, A. H. (2019)., Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent., Applied Water Science, 9(8), 170.
  42. Musah, M., Azeh, Y., Mathew, J. T., Umar, M. T., Abdulhamid, Z., & Muhammad, A. I. (2022)., Adsorption kinetics and isotherm models: a review., CaJoST, 4(1), 20-26.
  43. Okeola, F. O., & Odebunmi, E. O. (2010)., Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon., Advances in Environmental Biology, 329-336.
  44. Thang, N. H., Khang, D. S., Hai, T. D., Nga, D. T., & Tuan, P. D. (2021)., Methylene blue adsorption mechanism of activated carbon synthesised from cashew nut shells., RSC advances, 11(43), 26563-26570.
  45. Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020)., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review., Cleaner Engineering and Technology, 1, 100032.
  46. Sahoo, T. R., & Prelot, B. (2020)., Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology., In Nanomaterials for the detection and removal of wastewater pollutants, pp. 161-222. Elsevier.