International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Seasonal occurrence, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in the superficial sediments from Vridi canal (CÔte d'Ivoire)

Author Affiliations

  • 1Department of Mathematics-Physics-Chemistry-Computer Science, Physics Chemistry Laboratory, Jean Lorougnon Guédé University of Daloa, 12 BP V 25 Daloa 12, CÔte d'Ivoire
  • 2Physical Chemistry Laboratory, UFR SSMT, Félix Houphouët-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, CÔte d′Ivoire
  • 3Department of Mathematics-Physics-Chemistry-Computer Science, Physics Chemistry Laboratory, Jean Lorougnon Guédé University of Daloa, 12 BP V 25 Daloa 12, CÔte d'Ivoire
  • 4Physical Chemistry Laboratory, UFR SSMT, Félix Houphouët-Boigny University of Cocody Abidjan, B.P. V34 Abidjan, CÔte d′Ivoire

Res.J.chem.sci., Volume 10, Issue (1), Pages 23-33, February,18 (2020)

Abstract

The seasonal dynamics of Benzo[a]Anthracene, Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene, Benzo[a]Pyrene, Benzo(g,h,i) Perylene, Fluoranthene and Indeno(1,2,3-cd) Pyrene was monitored in the superficial sediments from Vridi canal over a year (from April 2014 to March 2015). In conducting this study, monthly sampling was doing at three different stations in this estuary, a collection of 36 samples over the study period. The extracts of these hydrocarbons, obtained from these samples according to MA.400-HAP 1.1 standard, were assayed by high performance liquid chromatography (HPLC) with UV/fluorescence detectors coupled to a GC-MS mass spectrometer. The results show the absence of Benzo (g,h,i) Perylene and Indeno (1,2,3-cd) Pyrene in these entities over the entire study period. The other six polycyclic aromatic hydrocarbons, with a strong seasonal dynamics, were detected in these substrates only in a few seasons and, this with relatively high concentrations (ranging between 0.020 ± 0.001 and 123.40 ± 6.17mg/kg per dry weight). As a result, significant seasonal mean values of &

References

  1. SCS (2009)., Texte et Annexes telle qu′amendée en 2009. Secrétariat de la Convention de Stockholm., Programme des Nations Unies pour l′Environnement (PNUE), Genève, Suisse, 6-8 Mai., 60.
  2. UNECE (1998)., Convention on access to information, public participation in decision making and access to justice in environmental matter., Aarhus, Denmark, 25 June. 35.
  3. Gachanja A.N. (2019)., Polycyclic Aromatic Hydrocarbons| Environmental Applications., Reference Module, In Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Analytical Science (Third Edition), Elsevier publication, 341-349, ISBN: 978-00-81019-83-2
  4. Gachanja A.N. and Maritim P.K. (2019)., Polycyclic Aromatic Hydrocarbons| Determination., In Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Analytical Science (Third Edition), Elsevier publication, 328-340, ISBN: 978-00-81019-83-2
  5. Grova N., Faÿs F., Hardy E.M. and Appenzeller B.M.R. (2017)., New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: identification of relevant metabolites and influence of elimination kinetics., Environmental Pollution, 228, 484-495.
  6. SPARFEL LYDIE (2018)., EFFETS IMMUNOTOXIQUES DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES., ÉTUDE DES EFFETS GÉNOTOXIQUES ET IMMUNOTOXIQUES DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES DANS LES LYMPHOCYTES HUMAINS : IDENTIFICATION DE BIOMARQUEURS GÉNIQUES D′EXPOSITION À CES CONTAMINANTS, LES CAHIERS DE LA RECHERCHE N°12, ÉDITEUR ANSES, FRANCE, 29-31, ISBN: 979-10-286-0248-2
  7. Ramzi A., Habeeb R.K., Gireeshkumar T.R., Balachandran K.K., Chacko J. and Chandramohanakumar N. (2017)., Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India., Marin. Pollut. Bull., 114(2), 1081-1087.
  8. Mirza R., Faghiri I. and Abed E. (2012)., Contamination of polycyclic aromatic hydrocarbons in surface sediments of Khure-Musa Estuarine, Persian Gulf., World J. Fish Marin. Sci., 4(2), 136-141.
  9. Mirza R., Mohammady M., Dadoloahi A., Safahieh A.R., Savari A. and Hajeb P. (2011)., Hydrocarbons in seawater, sediment and oyster (Saccostrea cucullata) from the northern part of the Persian Gulf (Bushehr Province)., Water, Air Soil Pollut., 223, 189-198.
  10. Al-Agroudy N., Soliman Y.A., Hamed M.A. and Zaghloul G.Y. (2017)., Distribution of PAHs in water, sediments samples of Suez Canal during 2011., J. Aquat. Pollut. Toxicol., 1(1), 1-10.
  11. Gorleku M.A., Carboo D., Palm L.M.N., Quasie W.J. and Armah A.K. (2014)., Polycyclic aromatic hydrocarbons (PAHs) pollution in marine waters and sediments at the Tema Harbour, Ghana., Acad. J. Environ. Sci., 2(7), 108-115.
  12. Yao M.K., Brou Y.S., Trokourey A. and Soro M.B. (2017)., Metal Pollution and Ecological Risk Assessment in Sediment of Artificial Estuary: Case of Vridi Channel, CÔte d′Ivoire., J. Appl. Sci. Environ. Manag., 21(4), 785-792.
  13. Konan Y.M. and Albert T. (2018)., Fractionation distribution and ecological risk assessment of some trace metals in artificial estuary: Vridi channel (CÔte d, Advances In Natural And Applied Sciences, 12(6), 1-6.
  14. Yao M.K. and Trokourey A. (2018)., Influence de l′hydroclimat sur la dynamique saisonnière de certains éléments traces métalliques dans un estuaire marin : Cas d′étude., J. Soc. Ouest-Afr. Chim., 45, 31-41.
  15. N, Seasonal dynamics of phosphorus fractions in artificial marine estuary: Vridi channel (CÔte d, Inter. J. Adv. Biol. Res., 8(4), 458-469.
  16. Affian K. (2003)., Approche environnementale d′un écosystème lagunaire microtidal (la lagune Ébrié en CÔte d′Ivoire), par des études géochimiques et hydrologiques, bathymétriques et hydrologiques : contribution du S.I.G. et de la télédétection., Thèse de doctorat, UFR Biosciences, Université Félix Houphouët-Boigny de Cocody Abidjan, (Abidjan-CÔte d
  17. Gnagne Y.A., Yapo B.O., Meité L., Kouamé V.K., Gadji A.A., Mambo V. and Houenou P. (2015)., Caractérisation physico-chimique et bactériologique des eaux usées brutes du réseau d′égout de la ville d′Abidjan., Inter. J. Biol. Chem. Sci., 9(2), 1082-1093.
  18. AFNOR X 31-100 Standard (1992)., Qualité des sols-échantillonnage, méthode de prélèvement d′échantillons de sols., Méthode d
  19. AFNOR NF EN ISO 16720 Standard (2007)., Qualité du sol-prétraitement des échantillons par lyophilisation pour analyse subséquente., Méthode d
  20. MA. 400 HAP 1.1 standard (2016)., Détermination des hydrocarbures aromatiques polycycliques: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse. 5ème révision., Édition Centre d
  21. Adeniji Abiodun Olagoke, Okoh Omobola Oluranti and Okoh Anthony Ifeanyi (2017)., Chapitre 19: Analytical Methods for Polycyclic Aromatic Hydrocarbons and their Global Trend of Distribution in Water and Sediment: A Review, Recent Insights in Petroleum Science and Engineering., Eds intechopen, 343-372. ISBN: 978-953-51-3810-5
  22. Busetti F., Heitz A., Cuomo M, Badoer S. and Traverso P. (2006)., Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant., J. Chromatogr. A, 1102(1-2), 104-115.
  23. Statistica (2010) [software] Statsoft Inc. Available from: http://www.statsoft.fr/v10., undefined, undefined
  24. Barrick R., Becker S., Brown L., Beller H. and Pastorok R. (1988)., Sediment-quality values refinement: 1988 update and evaluation of Puget Sound AET (Apparent Effects Threshold)., Prepared for U.S. Environmental Protection Agency, Region 10-Office of Puget Sound, Seattle (USA), 193. Report n° PB-89-200106/XAB
  25. Swartz R.C. (1999)., Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures., Environ. Toxicol. Chem., 18(4), 780-787.
  26. Long E.R., Field L.R. and MacDonald D.D. (1998)., Predicting toxicity in marine sediments with numerical sediment quality guidelines., Environ. Toxicol. Chem., 17 (4), 714-727.
  27. MacDonald D.D., Dipinto L.M., Field J., Ingersoll C.G., Lvong E.R. and Swartz R.C. (2000)., Development and evaluation of consensus‐based sediment effect concentrations for polychlorinated biphenyls., Environmental Toxicology and Chemistry: An International Journal, 19(5), 1403-1413.
  28. Bortey-Sam N., Ikenaka Y., Nakayama S.M.M., Akoto O., Yohannes Y.B., Baidoo E., Mizukawa H. and Ishizuka M. (2014)., Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana., Sci. Total Environ., 496, 471-478.
  29. Pérez-Fernández B., Viñas L., Franco M.Á. and Bargiela J. (2015)., PAHs in the Ría de Arousa (NW Spain): a consideration of PAHs sources and abundance., Marin. Pollut. Bull., 95, 155-165.
  30. Rajan S., Geethu V., Sampath S. and Chakraborty P. (2019)., Occurrences of polycyclic aromatic hydrocarbon from Adayar and Cooum Riverine Sediment in Chennai city, India., International Journal of Environmental Science and Technology, 16(12), 7695-7704. https://doi.org/10.1007/s13762-018-2125-9
  31. Amine H., Halwani J., Gomez E. and Merhabi F. (2018)., Aromatiques polycycliques dans les eaux au Nord Liban: Rivières, zones de transition et sites portuaires., Lebane. Sci. J., 19(3), 343-372.
  32. INERIS (2005)., DONNÉES TECHNICO-ÉCONOMIQUES SUR LES SUBSTANCES CHIMIQUES EN FRANCE : PYRÈNE., RAPPORT DRC-02-25590-02DF51., 36.
  33. HSDB (Hazardous Substances Data Bank) (2000)., Benzo[a]pyrene. Hazardous Substances Data Bank, National Library of Medicine., htpp://www.toxnet.nlm.nih.gov.
  34. Josefsson Sarah (2011)., Fate and transport of POPs in the aquatic environment., PhD thesis, Department of Chemistry, Umea University (USA), 73.
  35. Danhiez François-Pierre (2015)., Relations entre les propriétés optiques de la matière organique dissoute colorée et le carbone organique dissous dans des eaux cÔtières aux caractéristiques contrastées., Thèse de doctorat, École doctorale 104 Sciences de la Matière, du Rayonnement et de l′Environnement, Spécialité Océanologie Biologique, Université du Littoral CÔte d′Opale (Lille, France), 264.
  36. Fayeulle Antoine (2013)., Étude des mécanismes intervenant dans la biodégradation des hydrocarbures aromatiques polycycliques par les champignons saprotrophes telluriques en vue d′applications en bioremédiation fongique de sols pollués., Thèse de doctorat, Ecole doctorale 104 Sciences de la Matière, du Rayonnement et de l′Environnement, Filière Ingénierie des Fonctions Biologiques, Université du Littoral (CÔte d′Opale, France), 205.
  37. Dariush M.T., Saeed M. and Herfatmanesh A. (2009)., Effect of Salinity on Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) of Heavy Crude Oil in Soil., Bull. Environ. Contam. Toxicol., 82, 179-184.
  38. Mesbaiah F.Z. and Badis A. (2013)., Traitement biologique des milieux aquatiques contaminés par les hydrocarbures aromatiques polycycliques., Rev. Sci. Tech. LJEE, 21-22, 48-55.
  39. Inza B. and Yao K.M. (2015)., Paramètres physiques et chimiques et métaux lourds des eaux de la Lagune Ebrié (CÔte d′Ivoire): influence de la marée et des effluents liquides urbaines., J. Mater. Environ. Sci., 6(5), 1321-1329.
  40. Salla M., Kouhete P.D., Koffi O.S. and Traoré D. (2011)., Cyanobactéries des rivières Boubo et Mé dans le Sud cÔtier de la CÔte d′Ivoire., Inter. J. Biol. Chem. Sci., 5(4), 1365-1373.
  41. Tremblay L., Kohl S.D., Rice J.A. and Gagné J-P. (2004)., Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles., Marin. Chem., 96(1), 21-34.
  42. Ouattara I., Kamagaté B., Dao A., Noufé D. and Savané I. (2016)., Processus de minéralisation des eaux souterraines et transfert de flux en milieu desocle fissuré: cas du bassin versant transfrontalier de la Comoé (CÔte d, Inter. J. Innov. Appl. Studies, 17(1), 57-69.