6th International Young Scientist Congress (IYSC-2021) and workshop on Intellectual Property Rights on 8th and 9th May 2021.  10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of the Consequences of the Front External Reflection on the Electric Parameters of a Thin Film Cu (In,Ga) Se2 Solar Cell

Author Affiliations

  • 1Laboratory of Semiconductors and Solar Energy, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
  • 2Laboratory of Semiconductors and Solar Energy, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
  • 3Laboratory of Semiconductors and Solar Energy, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
  • 4Laboratory of Semiconductors and Solar Energy, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar, Senegal
  • 5Laboratory of Semiconductors and Solar Energy, Faculty of Science and Technology, Cheikh Anta Diop University of Dakar, Dakar, Senegal

Res. J. Engineering Sci., Volume 5, Issue (10), Pages 1-6, October,26 (2016)

Abstract

We study in this paper the effect of the front external reflection of incidental photons on the electric parameters such as the open circuit voltage Voc, the short circuit current density Jsc, the maximum power Pm of the cell and external quantum efficiency EQE. The optimization of these parameters makes it possible to improve the performances of the solar cell of type n-ZnO/n-CdS/p-Cu (In, Ga) Se2. We use a broad range of reflection going from 0%, use of ideal anti-reflecting layer, to a reflection of 80% which corresponds to a very weak absorption. We note that with the use of an \"ideal\" anti-reflecting layer, we obtained a short circuit current density of 0.0325mA.cm-2, an open circuit voltage of 0,8337V, a maximum power of cell of 0.0233mW and a maximum value of the external quantum efficiency of 99.29%. However these physical parameters are deeply affected by the external front reflection. All the physical parameters studied decrease considerably. We find for a front reflection of 80%, a short circuit current density of 0.0065mA.cm-2, an open circuit voltage of 0,7923V, a maximum power of cell of 0.0045mW and a maximum value of the external quantum efficiency of 19.86%.

References

  1. Ehemba A.K., Dieng M., Diallo D. and Sambou G. (2015)., Influence of the donor doping density in CdS and Zn(O,S) buffer layers on the external quantum efficiency of Cu(In,Ga)Se2 thin film solar cell., International Journal of Engineering Trends and Technology, 28(6), 280-286.
  2. Soce M.M., Dieng M., Ehemba A.K., Diallo D. and Wade I. (2015)., Influence of the doping of the absorber and the charged defects on the electrical performance of CIGS solar cells., International Journal of Scientific and Research Publications, 5(10), 1-6.
  3. Diallo D., Dieng M. and Ehemba A.K. (2015)., Modelling Defects Acceptors And Determination Of Electric Model From The Nyquist Plot And Bode In Thin Film CIGS., International Journal of Scientific & Technology Research, 4(12), 226-229.
  4. Diagne O., Ehemba A.K., Diallo D., Wade I., SOCE M.M. and DIENG M. (2016)., Effect of [Ga]/[In+Ga] Atomic Ration on Electric Parameters of Cu(In,Ga)Se2 Thin Film Solar Cells., International Journal of Scientific Engineering and Technology, 5(5), 252-255.
  5. Ehemba A.K., Soce M.M., Wade. I., Diallo D. and DIENG M. (2016)., Influence of the use temperature on the Capacitance-Voltage measures and the external quantum efficiency of a Cu (In, Ga)Se2 thin film solar cell., Advances in Applied Science Research, 7(3), 187-192.
  6. Niane D., Ehemba A.K., Diallo D., Wade I. and Dieng M. (2016)., the influence of temperature on the electric parameters of a solar cell based on Cu(In,Ga)Se2., International Journal of Scientific Engineering and Technology, 5(5), 247-251.
  7. Lee Y.J., Douglas S.R., David W.P., Bonnie B.M. and Julia W.P.H. (2008)., ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells., Nano Lett., 8(5), 1501-1505.
  8. Holman Z.C., De Wolf S. and Ballif C. (2013)., Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell., Science & Applications, 106(2), doi:10.1038/ lsa.2013.62.
  9. Ehemba A.K. (2015)., Determination de la longueur de diffusion des porteurs minoritaires par mesure de photocourant capacitance et determination des parameters électriques d’une cellule solaire à base de couche mince de CuInSe2 électrodéposée sur substrat flexible de Kapton., Laboratoire des Semiconducteurs et d’Energie Solaire, Université Cheikh Anta Diop, Dakar – Senegal.
  10. Clugston D.A. and Basore P.A. (1997)., PC1D version 5: 32-bit solar cell modeling on personal computers., Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE.
  11. Belarbi M., Benyoucef A. and Benyoucef B. (2014)., Simulation of the solar cells with PC1D, application to cells based on Silicon., Advanced Energy: An International Journal (AEIJ), 1(3).
  12. Salmi T., Bouzguenda M., Gastli A. and Masmoudi A. (2012)., MATLAB/Simulink Based Modeling of Photovoltaic Cell., International Journal of Renewable Energy Research, 2(2), 213-218.
  13. Mohammed. S. Sheik (2011)., Modeling and Simulation of Photovoltaic module using MATLAB/Simulink., International Journal of Chemical and Environmental Engineering, 2(5), 350-355.