6th International Young Scientist Congress (IYSC-2021) and workshop on Intellectual Property Rights on 8th and 9th May 2021.  10th International Science Congress (ISC-2020) will be Postponed to 8th and 9th December 2021 Due to COVID-19.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of Seismic Precursors by Wavelet Analysis

Author Affiliations

  • 1 Space Science Laboratory, Department of Physics Barkatullah University Bhopal 462026, INDIA

Res. J. Engineering Sci., Volume 1, Issue (4), Pages 48-52, October,26 (2012)


In this study we analyzed the NmF2 data by wavelet analysis at the time of strong seismic event. We used Ionosonde data for analysis. Data of maximum electron density of F2 layer (NmF2) was collected from NOAA space environment center. With the help of Mat-Lab software wavelet analysis performed. Results of the study showed some unusual perturbations in NmF2 parameter few days before earthquake. This fact can be used as precursory phenomena. It may be due to the emission of energy from the earth rock which propagate upward and perturb the F-region of ionosphere. This study may be useful for earthquake prediction.


  1. Johnston M., Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys., 18, 441–476, doi:10.1023/A: 1006500408086 (1997)
  2. Hayakawa M., Hattori K. and Ohta K., Observation of ULF geomagnetic variations and detection of ULF emissions associated with earthquakes, Review, Electr. Eng. Jpn., 162(4), 1–8, doi:10.1002/eej.20637 (2008)
  3. Molchanov O.A. and Hayakawa M., Generation of ULF electromagnetic emissions by micro-fracturing, Geophys. Res. Lett., 22(22), 3091–3094, doi: 10.1029/95GL00781 (1995)
  4. Huang Q. and Ikeya M., Seismic electromagnetic signals (SEMS) explained by a simulation experiment using electromagnetic waves, Phys. Earth Planet. In., 109, 107–114 (1998)
  5. Huang Q., One possible generation mechanism of co-seismic electric signals, Proc. Jpn. Acad. Ser. B, 78(B7),173–178 (2002)
  6. Huang Q.H., Controlled analogue experiments on propagation of seismic electromagnetic signals, Chinese Sci. Bull., 50, 1956–1961 (2005)
  7. Huang Q.H. and Lin Y.F., Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model, Proc. Jpn. Acad., 86, 257–264, doi:10.2183/pjab.86.257 (2010)
  8. Hattori K., Takahashi I., Yoshino C., Isezaki N., Iwasaki H., Harada M., Kawabata K., Kopytenko E., Kopytenko Y., Maltsev P., Korepanov V., Molchanov O., Hayakawa M., Noda Y., Nagao T. and Uyeda S., ULF geomagnetic field measurements in Japan and some recent results associated with Iwateken Nairiku Hokubu earthquakes in 1998, Phys. Chem. Earth, 29, 481–494, doi:10.1016/j.pce.2003.09.019 (2004a)
  9. Uyeda S., Hayakawa M., Nagao T., Molchanov O., Hattori K., Orihara Y., Gotoh K., Akinaga Y. and Tanaka H.,Electric and magnetic phenomena observed before the volcano seismic activity in 2000 in the Izu Island Region, Japan, PNAS 99: 7352-7355 (2002)
  10. Hattori K., Serita A., Gotoh K., Yoshino C., Harada M., Isezaki N. and Hayakawa M., ULF geomagnetic anomaly as sociated with 2000 Izu Islands earthquake swarm, Japan, Phys. Chem. Earth, 29, 425-436, doi: 10.1016/j.pce.2003.11.014 (2004b)
  11. Gotoh K., Hayakawa M., Smirnova N. and Hattori K., Fractal analysis of seismogenic ULF emissions, Phys. Chem. Earth, 29, 419–424, doi:10.1016/j.pce.2003.11.013 (2004)
  12. Telesca L. and Hattori K., Non-uniform scaling behavior in Ultra Low Frequency (ULF) earthquake-related geomagnetic signals, Physica A, 384, 522–528 (2007)
  13. Telesca L., Lapenna V., Macchiato M. and Hattori K., Investigating non-uniform scaling behavior in Ultra Low Frequency (ULF) earthquake-related geomagnetic signals, Earth Planet. Sci. Lett., 268, 219–224, doi:10.1016/j.epsl.2008.01.033 (2008)
  14. Ismaguilov V.S., Kopytenko Yu. A., Hattori K. and Hayakawa M., Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong Ionosphere before Great Earthquakes,Geomagn. and Aeronomy, 33, 658-662 (2001)
  15. Ismaguilov V.S., Kopytenko Yu. A., Hattori K., Voronov P.M., Molchanov O.A. and Hayakawa M., ULF magnetic emissions connected with under sea bottom earthquakes, Nat. Hazards Earth Syst. Sci., , 23–31, doi:10.5194/nhess-1-23 (2001)
  16. Kotsarenko A., Molchanov O., Hayakawa M., Koshevaya S., Grimalsky V., P΄erez Enr΄quez R. and L΄opez Cruz- Abeyro J.A., Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan, Nat. Hazards Earth Syst. Sci., 5, 63–69, doi:10.5194/nhess-5-63-2005 (2005)
  17. Ismaguilov V.S., Kopytenko Yu. A., Hattori K. and Hayakawa M., Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong Ionosphere Before Great Earthquakes,Geomagn. and Aeronomy,33, 658-662 (2001)
  18. Kopytenko Y., Ismaguilov V., Hattori K. and Hayakawa M., Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances, Phys. Chem. Earth, 31, 292–298, doi:10.1016/j.pce.2006.02.004 (2006)
  19. Katul G.G., Albertson J.D., Chu C.R., Parlange M.B., Wavelets in Geophysics, in: Ch. Intermittency in Atmospheric Surface Layer Turbulence: the Orthonormal Wavelet Representation Wavelet Analysis and Its Applications, 4, 81–105 (1994)
  20. Vidakovic B., Statistical Modeling by Wavelets, Probability and Statistics, Wiley, New York (2000)
  21. Liu J.Y., Tsai H.F. and Jung T.K., Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci. 7, 107-117 (1996)
  22. Torrence C. and Compo G.P., A practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 79(1), 61–78 (1998)