International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Phytoplankton biomass and primary production dynamic in Porto-Novo lagoon (Republic of Benin)

Author Affiliations

  • 1International Chair in Mathematical Physics and Applications (ICMPA), Faculty of Sciences and Technologies (FAST), University Abomey-Calavi, 072 P.O.Box 50, Cotonou, Benin and Unité de Recherche sur les Zones Humides, Département de Zoologie, Faculté des Sciences et Techniques, Université d′Abomey-Calavi, 01BP526 Cotonou, Bénin
  • 2Unité de Recherche sur les Zones Humides, Département de Zoologie, Faculté des Sciences et Techniques, Université d′Abomey-Calavi, 01BP526 Cotonou, Bénin

Int. Res. J. Environment Sci., Volume 8, Issue (4), Pages 1-13, October,22 (2019)

Abstract

Porto-Novo lagoon is eutrophical water on which more than 500,000 persons depend. The study of primary production tied to some relevant environmental physico-chemical parameters was carried out in order to build an exploitable data base on the potentialities of this lagoon. Measurements were carried out in relation to seasons in six sites divided in twelve areas with different hydrologic scheme, from June 2015 to February 2016. The AFNOR NFT 90 – 117 norm was used for chlorophyll-a measurement though primary production valuation was carried out through prior established general equations. The water temperature varied between 27.58 and 32.28°C. Salinity and pH ranged respectively between 6.33 – 7.03 and 0.00 – 2.93mg/L though the maximum and minimum conductivity values were respectively 9170 and 67.6µsem-1. Dissolved oxygen value fluctuated between 1.09 – 2.98 mg/L which are lower than standard normal suggested by FEPA. TDS varied between 107.80 and 3703.00mg/L with turbidity ranging between 2.50 and 54.67mg/L though maximum and minimum transparence were 2.52 and 0.68m respectively. Total Phosphorus (TP) and Total Nitrogen (TN) showed fluctuating values 1.85 – 5.25mg/L and 1.13 – 2.59mg/L respectively. Primary production varied between 840.10 and 3324.24mg C/m2.J. It was globally higher in the central area than in bank area. Primary production was significantly correlated with transparence (r= 0.81 and p=0). The current study shows that phytoplankton production in Porto-Novo lagoon is influenced by many factors such as geographical position that delimit lotic and lenthic area; climate; presence of macrophytes and human activities on the side basin.

References

  1. Jordan C.F. (1985)., Nutrient cycling in Tropical forest Ecosystem., Principles and their application in management and conservation, London, 24. ISBN : 047190449X
  2. Balogun K.J., Adedeji A.K. and Ladigbolu I.A. (2014)., Primary Production estimation in the euphotic zone of a Tropical Harbour Ecosystem, Nigeria., International Journal of Scientific and Research Publications, 4(8), ISSN 2250-3153
  3. Onyema I.C. and Nwankwo D.I. (2009)., Chlorophyll a dynamics and environmental factors in a tropical estuarine lagoon., Academia Arena, 1(1), 18-30.
  4. Ryther J.H. (1969)., Photosynthesis and fish production in sea., Science, 166, 72-76.
  5. Lorenzen C.J. (1967)., Determination of chlorophyll and phaeo-pigments: Spectrophotometric equations., Limnology and Oceanography, 12(2), 343-346. http://dx.doi.org/10.4319/lo.1967.12.2.0343
  6. Talling J.F. (1957)., The phytoplankton as a compound photosynthetic system., New Phyto, 56, 133-149.
  7. Descy J.P., Leporcq B., Viroux L., François C. and Servais P. (2002)., Phytoplankton production, exudation and bacterial reassimilation in the river Meuse (Belgium)., Journal of Plankton Research, 24(3), 161-166.
  8. Ajibola V.O., Funtua II. and Unuaworho A.E. (2005)., Pollution studies of some water bodies in Lagos, Nigeria Caspian., J.Env. Sci., 3(1), 49-54.
  9. Balogun K.J. and Ladigbolu I. (2010)., A Nutrients and Phytoplankton Production Dynamics of a Tropical Harbor in Relation to Water Quality Indices., journal of America science, 6(9), 261-275.
  10. De Villers J., Squilbin M. and Yourassowsky C. (2005)., Qualité physico-chimique et chimique des eaux de surface: cadre général., Fiche, 2, 158-162.
  11. Kirk R.M. and Lauder G.A. (2000)., Significant coastal lagoon systems in the South Island, New Zealand., Coastal processes and lagoon mouth closure, Science for Conservation, 146-147.
  12. Nigeria. Federal Environmental Protection Agency. (1991)., Guidelines and standards for environmental pollution control in Nigeria., Federal Environmental Protection Agency (FEPA).
  13. Adesalu T.A. and Nwankwo D.I. (2009)., A checklist of Lekki lagoon diatoms., Int. J. Bot, 5(2), 126-134.
  14. Adesalu T. and Kunrunmi O. (2012)., Effects of physico-chemical parameters on phytoplankton of a tidal creek, Lagos, Nigeria., Journal of Environment and Ecology, 3(1), 116-136. http://dx.doi.org/10.5296/jee.v3i1.2674
  15. Visser S.A. and Villeneuve J.P. (1975)., Similarities and differences in the chemical composition of waters from West, Central and East Africa: With 4 tables in the text., Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 19(2), 1416-1425.
  16. Huang Q.A., Wang Z.J., Wang C.X., Ma M. and Jin X. C. (2005)., Origins and mobility of phosphorus forms in the sediments of lakes Taihu and Chaohu, China., Journal of Harzardous materials, 20, 183-186.
  17. Ansari A.A. and Khan F.A. (2008)., Remediation of eutrophic water usingLemna minor in a controlled environment., African journal of Aquatic Science, 33(3), 275-278.
  18. Serano L. andToja J. (1995)., Limnological description of four temporary ponds in the Donana National Park (Sre, Spain)., Arch Hydrobiol, 133(4), 497-516.
  19. Akogbeto H.K., Zanklan A.S., Sossoukpe E. and Fiogbe E.D. (2017)., Fractionation of Sediment Phosphorus in Lagoon Porto-Novo (Benin Republic) Revisited: Changes in Phosphorus Fractions and Release as Affected by Seasons and Sampling Sites., Int.J.Curr.Microbiol.App.Sci., 6(11), 2914-2937.
  20. Wetzel R.G. (2001)., Limnology, Lake and River Ecosystems, third edition., Elsevier, Academic Press. California, USA. 1006.
  21. Morelle J. (2017)., Dynamique Spatiale et temporelle de la production primaire dans l′estuaire de Seine., Thèse de doctorat, Université de Caen Normandie, 328.
  22. Behrenfeld M.J., Prasil O., Babin M. and Bruyant F. (2004)., In Search of a Physiological Basis for Covariations in Light-Limited and Light-Saturated Photosynthesis., Journal of Phycology, 40, 4-25.
  23. Dubinsky Z. and Stambler N. (2009)., Photoacclimation processes in phytoplankton: Mechanisms, consequences, and applications., Aquatic Microbial Ecology, 56, 163-176.
  24. Falkowski P.G. and Raven J. (2007)., Aquatic photosynthesis 2nd edition Princeton University Press., New Jersey, USA. ISBN: 9781400849727
  25. Capblanc Q.J. and Dauta A. (1978)., Phytoplancton et production primaire de la Rivière Lot., AnnlsLimnol, 14(1-2), 85-112.
  26. Smith E.L. (1936)., Photosynthesis in relation to light and carbon dioxid., Proc.Nat.Acad.Sc.Wash., 22, 504-511.
  27. Napoléon C., Raimbault V. and Claquin P. (2013)., Influence of Nutrient Stress on the Relationships between PAM Measurements and Carbon Incorporation in Four Phytoplankton Species., PLoS One, 8(6), 1-9. Https:// doi:10.1371/journal.pone.0066423.
  28. Akogbéto H.K., Zanklan A.S., Adjahouinou C. and Fiogbe E.D. (2018)., Degré d′eutrophisation et diversité phytoplanctonique de la lagune dePortoNovo, République du Bénin., Afrique Science, 14(3), 42-57.
  29. Caraco N.F., Cole J.J. and Strayer D.L. (2006)., Top down control from the bottom: Regulation of eutrophication in a large river by benthic grazing., Limnology and Oceanography, 51, 664-670.
  30. Sommer U. and Sommer F. (2006)., Cladocerans versus copepods: The cause of contrasting top-down controls on freshwater and marine phytoplankton., Oecologia, 147, 183-194.
  31. Colleuil B. and Texier H. (1987)., Le complexe lagunaire du lac Nokoué et de la lagune de Porto-Novo-Bénin., Edition de l′ORSTOM, 13.
  32. Nkwoji J.A., Onyema I.C. and Igbo J.K. (2010)., Wet season spatial occurrence of phytoplankton and zooplankton in Lagos lagoon-Nigeria., Science World Journal, 5(2), 7-14.
  33. Onyema I.C., Otudeko O.G. and Nwankwo D.I. (2003)., The distribution and composition of plankton around a sewage disposal site at Iddo, Nigeria., Journal of Scientific Research Development, 7, 11-26.
  34. Boucher J. and Thiriot A. (1972)., Zooplancton et micronecton estivaux des deux cents premiers metres en Méditerranée Occidentale., Marine Biology, 15(1), 47-56.
  35. Castel J., Caumette P. and Herbert R. (1996)., Eutrophication gradients in coastal lagoons as exemplified by the Bassin d, Hydrobiologia, 329(1-3), 9-28.
  36. Barbosa F.A.R. (1980)., Primary production of phytoplankton and environmental characteristics of a shallow quaternary lake at Eastern Brasil., Archiv fur Hydrobiologie, 90, 139-161.
  37. Groga N. (2012)., Structure, fonctionnement et dynamique du phytoplancton dans le lac de Taabo (Côte d, Thèse de doctorat, Institut National Polytechnique de Toulouse, 224.
  38. Onyema I.C. and Popoola R.T. (2013)., The Physico-Chemical Characteristics, Chlorophyll A Levels And Phytoplankton Dynamics Of The East Mole Area Of The Lagos Harbour, Lagos., Journal of Asian Scientific Research, 3(10), 995-1010.
  39. Darchambeau F., Sarmento H. and Descy J.P. (2013)., Primary production in a tropical large lake: The role of phytoplankton composition., Science of The Total Environment, 473-474, 178-188.
  40. Stenuite S., Pirlot S., Hardy M., Sarmento H., Tarbe A., Leporcq B. and Descy J.P. (2007)., Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent decades., Freshwater Biology, 52, 2226-2239.
  41. Adandedji M.F., Sintondji L.O., Boukari O.T. and Mama D. (2017)., Seasonal variation in phytoplankton community and relationship with environmental factors of Lake Nokoué in Benin., Int. Res. J. Environmt Sci., 6(2), 19-29.
  42. Regina N.M.M., Frank M.C. and Miles R.L. (2012)., Phytoplankton biomass and primary production dynamics in Lake Kariba., Lakes & Reservoirs: Research & Management, 17(4), 275-289.
  43. Steeman-Nielson E. (1952)., The use of radioactive carbon (14C) for measuring organic production in the sea., J. Conseil, Conseil Perm. Intern. Exploration Mer., 18, 117-140. On the determination of the activity in 14C-ampoules for measuring primary production. Limnol. Oceanog. 10 (suppl.): R247 252.
  44. Babin M., Morel A. and Gagnon R. (1994)., An incubator designed for extensive and sensitive measurements phytoplankton photosynthetic parameters., Limnology and Oceanography, 39, 694-702.
  45. Hammes F., Vital M. and Egli T. (2010)., Critical evaluation of the volumetric “bottle effect” on microbial batch growth., Appl. Environ. Microbiol., 76(4), 1278-1281.
  46. Barranguet C. and Kromkamp J. (2000)., Estimating primary production rates from photosynthetic electron transport in estuarine microphytobenthos., Marine Ecology Progress Series, 204, 39-52.
  47. Lawrenz E.G., Silsbe E., Capuzzo P., Ylöstalo R.M., Forster S.G.H., Simis O., Prášil J.C., Kromkamp A.E., Hickman C.M., Moore M.H., Forget R.J., Geider and Suggett D.J. (2013)., Predicting the electron requirement for carbon fixation in seas and oceans., PloS one, 8(3), e58137. http//:doi 101371/journal.pone.0058137
  48. Vörös L. and Padisak J. (1991)., Phytoplankton biomass and chlorophyll ain some shallow lakes incentral Europe., Hydrobiologia, 215, 111-119.
  49. Aleya L. and Devaux J. (1989)., Intérêts et signification écophysiologique de l, Revue des sciences de l
  50. Mann K.H., Britton R.H., Kowalczewski A., Lack T.J., Mathews C.P. and Mc Donald I. (1972)., Productivity and energy flow at all trophic levels in the river Thames, England., Proceed. I.B.P.-U.N.E.S.C.O. Symposium on Productivity Problems of Freshwaters, Kazimierz-Dolny,Poland, May 6-12, 1970, 579-596.
  51. Munawar M., Munawar I.F., Culp L.R. and Dupuis G. (1978)., Relative importance of nanoplankton in Lake Superior phytoplankton biomass and community metabolism., J. Great Lakes Res, 4, 462-480.
  52. Malone T.C., Chervin M.B. and Boardman D.C. (1979)., The effects of 22-µm screens on size-frequency distributions of suspended particles and biomass estimates of phytoplankton size fractions., Limnol. Oceanogr, 24(5), 956-960.
  53. Elser J.J., Elser M.M. and Carpenter S.R. (1986)., Size fractionation of algal chlorophyll, carbon fixation and phosphatase activity: relationship with species-specific size distributions and zooplankton community structure., J. Plankton Res, 8, 365-383.