International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Phylogenetic relationships in the family Felidae in reference to the hybridisation of the Scottish Wildcat, Felis sylvestris grampia with the Domestic cat, Felis catus

Author Affiliations

  • 1Department of Biological Sciences, University of Chester, UK

Int. Res. J. Biological Sci., Volume 8, Issue (8), Pages 8-13, August,10 (2019)

Abstract

Understanding the evolutionary history and relationships among group or individual animal species is important in making conservation decisions for populations. This study essentially sought to assess the relationship between species in the Felis family using mtDNA from hair and with reference to the hybridization of the Scottish wildcat, Felis sylvestris grampia with the domestic cat, Felis catus. Two reference species, Felis chaus and Felis margarita and one outgroup, Panthera onca were used. The results of the analysis shows a relationship exists between the cat species and that the study of phylogeny could be useful in understanding the distribution and recognition of species.

References

  1. Daniels M.J. and Corbett L. (2003)., Redefining introgressed protected mammals: when is a wildcat a wildcat and a dingo a wild dog?., Wildlife Research, 30(3), 213-218. https://doi:10.1071/wr02045
  2. Hertwig S.T., Schweizer M., Stepanow S., Jungnickel A., Boehle U.R. and Fischer M.S. (2009)., Regionally high rates of hybridization and introgression in German wildcat populations (Felis silvestris, Carnivora, Felidae)., Journal of Zoological Systematics and Evolutionary Research, 47(3), 283-297. https://doi:10.1111/j.1439-0469.2009.0053 6.x
  3. Oliveira R., Godinho R., Randi E. and Alves P.C. (2008)., Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?., Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1505), 2953-2961. https://doi:10.1098/rstb.2008.0052
  4. Kilshaw K., Johnson P.J., Kitchener A.C. and Macdonald D.W. (2015)., Detecting the elusive Scottish wildcat Felis silvestris silvestris using camera trapping., Oryx, 49(2), 207-215. https://doi:10.1017/s0030605313001154
  5. Kilshaw K. (2011)., Scottish Wildcats: Scottish Natural Heritage., SNH Publishing. ISBN: 978 1 85397 683 4
  6. Woods M., McDonald R.A. and Harris S. (2003)., Predation of wildlife by domestic cats Felis catus in Great Britain., Mammal Review, 33(2), 174-188. https://doi:10.1046/j.1365-2907.2003.00017.x
  7. Scottish wildcat action (2015)., Top three threats to wildcat survival., Retrieved from http://www. scottishwildcataction.org/about-wildcats/top-3-threats-to-wildcat-survival/. Accessed on Friday, 30th December 2017
  8. Scottish wildlife trust (2017)., Scottish Wildcat action., Retrieved from https://scottishwildlifetrust.org.uk/our-work/our-projects/scottish-wildcat-action/ Accessed on Friday, 30th December 2017
  9. Fredriksen A. (2016)., Of wildcats and wild cats: Troubling species-based conservation in the Anthropocene., Environment and Planning D-Society & Space, 34(4), 689-705. https://doi:10.1177/0263775815623 539
  10. McOrist S. and Kitchener A.C. (1994)., Current threats to the European wildcat, Felis-silvestris, in Scotland., Ambio, 23(4-5), 243-245.
  11. Yamaguchi N., Kitchener A.C., Driscoll C.A., Ward J.M. and Macdonald D.W. (2004)., Craniological differentiation amongst wild-living cats in Britain and southern Africa: natural variation or the effects of hybridisation?., Animal Conservation, 7, 339-351. https://doi:10.1017/s136794300 4001520
  12. McOrist S. (1992)., Diseases of the European wildcat (Felis silvestris Schreber, 1777) in Great Britain., Revue scientifique et technique (International Office of Epizootics), 11(4), 1143-1149.
  13. Ratcliffe N., Bell M., Pelembe T., Boyle D., Benjamin R., White R. and Sanders S. (2010)., The eradication of feral cats from Ascension Island and its subsequent recolonization by seabirds., Oryx, 44(1), 20-29. https://doi:10.1017/s003060530999069x
  14. Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. (2013)., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0., Molecular Biology and Evolution, 30(12), 2725-2729. https://doi:10.1093/molbev/mst197
  15. Hamdan B., Pereira A.G., Loss-Oliveira L., Rodder D. and Schrago C.G. (2017)., Evolutionary analysis of Chironius snakes unveils cryptic diversity and provides clues to diversification in the Neotropics., Molecular Phylogenetics and Evolution, 116, 108-119. https://doi:10.1016/j.ympev. 2017.08.004
  16. Nei M. and Kumar S. (2000)., Molecular evolution and phylogenetics., Oxford university press. New York. ISBN 0-19-513584-9
  17. Naidu A., Fitak R.R., Munguia-vega A. and Culver M. (2011)., Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals., Molecular Ecology Resources, 12(2), 191–196. https://doi:10.1111 /j.1755-0998.2011.03078.x
  18. Li, G., Davis, B. W., Eizirik, E., & Murphy, W. J. (2016). Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Research, 26(1), 1-11. https://doi:10.1101/gr.186668.114, undefined, undefined
  19. Wesselink M., Desmyter S. and Kuiper I. (2017)., Local populations and inaccuracies: Determining the relevant mitochondrial haplotype distributions for North West European cats., Forensic Science International-Genetics, 30, 71-80. https://doi:10.1016/j.fsigen.2017.05.011
  20. Conservation Genetics Module Handbook (2017). Unpublished. Retrieved from https://moodle.chester.ac.uk/ course/view.php?id=494 Accessed on 15 December 2017, undefined, undefined
  21. Mitrophanov A.Y. and Borodovsky M. (2006)., Statistical significance in biological sequence analysis., Briefings in Bioinformatics, 7(1), 2-24. doi:10.1093/bib/bbk001
  22. Mega Module Handbook (2017)., Species Identification using NCBI. Unpublished., Retrieved from https://moodle.chester.ac.uk/course/view.php?id=494 Accessed on 15 December 2017
  23. Culley T.M. (2013)., Why vouchers matter in botanical research., Applications in Plant Sciences, 1(11), apps.1300076. https://doi:10.3732/apps.1300076
  24. Peña C. and Malm T. (2012)., VoSeq: A Voucher and DNA Sequence Web Application., PLOS ONE, 7(6), e39071. https://doi:10.1371/journal.pone.0039071
  25. Zhao G.H., Li J., Song H.Q., Li X.Y., Chen F., Lin R.Q. and Zhu X.Q. (2012)., A specific PCR assay for the identification and differentiation of Schistosoma japonicum geographical isolates in mainland China based on analysis of mitochondrial genome sequences., Infection Genetics and Evolution, 12(5), 1027-1036. https://doi:10.1016/j. meegid.2012.02.020
  26. Scottish wildcats (2014)., Scottish wildcat conservation... current status and threats, conservation efforts; debunking myths., Retrieved at http://www.scottishwildcats.co.uk/ conservation.html Accessed on 30 December 2017