International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Comparison study on production of 2, 3-butanediol using batch flask fermentation from two different microorganisms

Author Affiliations

  • 1Department of Biotechnology, Vivekanandha College of Engineering for Women, Thiruchengode, Namakkal-637 205, Tamilnadu, India
  • 2Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620 024, Tamilnadu, India
  • 3Department of Biotechnology, Vivekanandha College of Engineering for Women, Thiruchengode, Namakkal-637 205, Tamilnadu, India
  • 4Department of Biotechnology, Vivekanandha College of Engineering for Women, Thiruchengode, Namakkal-637 205, Tamilnadu, India
  • 5Department of Biotechnology, Vivekanandha College of Engineering for Women, Thiruchengode, Namakkal-637 205, Tamilnadu, India

Int. Res. J. Biological Sci., Volume 8, Issue (6), Pages 7-11, June,10 (2019)

Abstract

Currently, several researchers were focused on the production of 2,3-butanediol for its use in various applications. Our research has mainly aimed in the production of 2,3-butanediol from two different strains such as Bacillus subtilis and Bacillus cereus. Since these are GRAS microorganisms, we have chosen these for our production. Mostly anaerobic species are only used for the production of 2,3-buatnediol. But we have used aerobic species for this project. Here the Bacillus cereus is the new species used for this production. From this we conclude that Bacillus cereus is also producing 2,3-butanediol. To our research, we summarize that the microbial production of 2,3-butanediol by Bacillus species which shows an efficientsynthesis of 2,3-butanediol on a laboratory scale.

References

  1. Yang T., Rao Z., Zhang X., Lin Q., Xia H., Xu Z. and Yang S. (2011)., Production of 2, 3‐butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens., Journal of basic microbiology, 51(6), 650-658. DOI 10.1002/jobm. 201100033
  2. Lan Ge., Xiaomin Wu., Jianwen Chen. and Jialin Wu. (2011)., A New Method for Industrial Production of 2,3-Butanediol., J. of Biomaterials and Nanobiotechnology, 2(3), 335-336. DOI 10.4236/jbnb.23041
  3. Perego P., Converti A., Del Borghi A. and Canepa P. (2000)., 2, 3-Butanediol production by Enterobacter aerogenes: selection of the optimal conditions and application to food industry residues., Bioprocess Engineering, 23(6), 613-620.
  4. Wang Y., Li L., Ma C., Gao C., Tao F. and Ping Xu P. (2013)., 2, 3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas., Appl. Environ. Microbial, 77(15), 5467-5475.
  5. Li L., Chen C., Li K., Wang Y., Gao C., Ma C. and Xu P. (2014)., Efficient simultaneous saccharification and fermentation of inulin to 2, 3-butanediol by thermophilic Bacillus licheniformis ATCC 14580., Appl. Environ. Microbiol., 80(20), 6458-6464. DOI: 10.1128/AEM.01802-14
  6. Mayer D., Schlensog V. and Böck A. (1995)., Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena., Journal of bacteriology, 177(18), 5261-5269.
  7. Giovannini P.P., Mantovani M., Medici A. and Pedrini P. (2008)., Production of 2, 3-butanediol by Bacillus stearothermophilus: fermentation and metabolic pathway., Chem Eng, 14, 281-286.
  8. Wang X., Lv M., Zhang L., Li K., Gao C., Ma C. and Xu P. (2013)., Efficient bioconversion of 2, 3-butanediol into acetoin using Gluconobacter oxydans DSM 2003., Biotechnology for biofuels, 6(1), 155.
  9. Ji X.J., Huang H., Li S., Du J. and Lian M. (2008)., Enhanced 2, 3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca., Biotechnology letters, 30(4), 731-734.
  10. Yang T., Rao Z., Zhang X., Xu M., Xu Z. and Yang S.T. (2015)., Enchanced 2,3-Butanediol Production from Biodiesel-Dervied Glycerol by Engineering of Cofactor Regeneration and Manipulating Carbon Flux in Bacillus amyloliquefaciens., Microbial Cell Factories, 14, 122. DOI 10.1186/s12934-015-0317-2
  11. Nicholson W.L. (2008)., The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2, 3-butanediol dehydrogenase., Appl. Environ. Microbiol., 74(22), 6832-6838. DOI: 10.1128/AEM.00881-08.
  12. Petrov K. and Petrova P. (2009)., High production of 2, 3-butanediol from glycerol by Klebsiella pneumoniae G31., Applied Microbiology and Biotechnology, 84(4), 659-665.
  13. Perego P., Converti A., Del Borghi A. and Canepa P. (2000)., 2, 3-Butanediol production by Enterobacter aerogenes: selection of the optimal conditions and application to food industry residues., Bioprocess Engineering, 23(6), 613-620.
  14. Xiao Z., Wang X., Huang Y., Huo F., Zhu X., Xi L. and Lu J.R. (2012)., Thermophilic fermentation of acetoin and 2, 3-butanediol by a novel Geobacillus strain., Biotechnology for biofuels, 5(1), 88.
  15. Barnes S., Kirk M. and Coward L. (1994)., Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry., Journal of Agricultural and Food Chemistry, 42(11), 2466-2474.
  16. Linko Yu-Yen, Wang Zhulin and Jukka Seppala (1994)., Lipase-Catalyzed Synthesis of Poly(1,4-Butanediol Succinate) In Organic Solvent., Biocatalysis, 8, 269-282.
  17. Fu B., Feger C., MacKnight W.J. and Schneider N.S. (1985)., Synthesis and properties of monodisperse hydroxy-terminated oligomers of 1, 4-butanediol and 2, 4-toluene diisocyanate., Polymer, 26(6), 889-894.