International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Effect of thiourea on tissue damage in the larvae of Sarcophaga Sp.

Author Affiliations

  • 1Department of Zoology, Iswar Saran P G College, University of Allahabad, Allahabad -211004, India
  • 2Department of Zoology, CMP P.G. College, University of Allahabad, Allahabad-211002, India
  • 3Department of Zoology, SPM Degree College, University of Allahabad, Allahabad-211002, India

Int. Res. J. Biological Sci., Volume 7, Issue (7), Pages 35-38, July,10 (2018)

Abstract

The objective of the study was to identify the tissue damage due to chemical (Thiourea) stress in the larvae of Sarcophaga ruficornis by trypan blue staining. Trypan Blue dye exclusion method is used for the assessment of cell viability. In all treatments the tissue shows differential staining pattern as compared to control. In Sarcophaga ruficornis larvae the gut tissues viz. gastric caeca, midgut, hindgut and malpighian tubules are more susceptible regions to stress as compared to non gut tissues i.e. brain ganglia and salivary gland.

References

  1. Hoffman A.A. and Parsons P.A. (1991)., Evolutionary Genetics and Environmental Stress., Oxford University Press.paper.ix+284 pp.illus.ISBN: 0-19-854081-7.
  2. Sharma S., Rohilla M.S., Reddy P.V. and Tiwari P.K. (2008)., In vitro induction of 60-kDa and 70-kDa heat shock proteins by endosulphan and monocrotophos in sheep blowfly Lucilia cuprina., Arch Environ Contam Toxicol., 55(1), 57-69.
  3. Chowdhuri D.K., Nazir A. and Saxena D.K. (2001)., Effect of three chlorinated pesticides on hsromega stress gene in transgenic Drosophila melanogaster., J. Biochem Mol Toxicol., 15(4), 173-86.
  4. Nazir A., Mukhopadhyay I., Saxena D.K., Siddiqui M.S. and Chowdhuri D.K. (2003)., Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9., J Biochem Mol Toxicol., 17(2), 98-107.
  5. Gupta S.C., Siddique H.R., Saxena D.K. and Chowdhuri D.K. (2005)., Comparative toxic potential of market formulation of two organophosphate pesticides in transgenic Drosophila melanogaster (hsp70-lacZ)., Cell Biol Toxicol., 21(3-4), 149-62.
  6. Gupta S.C., Siddique H.R., Mathur N., Mishra R.K., Mitra K., Saxena D.K. and Chowdhuri D.K. (2007)., Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70kDa heat shock protein as a marker of cellular damage., Toxicology, 238(1), 1-14.
  7. Mukhopadhyay I., Siddique H.R., Bajpai V.K., Saxena D.K. and Chowdhuri D.K. (2006)., Synthetic pyrethroid cypermethrin induced cellular damage in reproductive tissues of Drosophila melanogaster: Hsp70 as a marker of cellular damage., Arch Environ Contam Toxicol., 51(4), 673-80.
  8. Kumar V., Ara G., Afzal M. and Siddique Y.H. (2011)., Effect of methyl methanesulfonate on hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg., Interdiscip Toxicol., 4(3), 159-65.
  9. Mishra N. and Tewari R.R. (2011)., Cytotoxic and genotoxic effects of mercury in house fly Musca domestica (Diptera: Muscidae)., Cell. Mol.Biol., 57(1), 122-128.
  10. Mishra N. and Tewari R.R. (2014)., Evaluation of cold shock-induced cytotoxicity and genotoxicity in the housefly Musca domestica., EurAsian Journal of BioSciences Eurasia J Biosci. 8, 29-37.
  11. Tripathi J., Agrawal U.R.,Tripathi M. and Tewari R.R. (2014)., Effect of Sodium azide on larval tissues of a dipteran fly, Sarcophaga ruficornis (Sarcophagidae)., Journal of Entomology and Zoology Studies, 2(2), 87-90.
  12. Krebs R.A. and Feder M.E. (1997)., Tissue specific variation in Hsp 70 expression and thermal damage in Drosophila melanogaster larvae., Journal of Experimental Biology, 200, 2007-2015.
  13. Tripathi J., Agrawal U.R., Tripathi M. and Tewari R.R. (2013)., Tissue tolerance to heat and cold shock in larvae of Sarcophaga ruficornis (Sarcophagidae: Diptera)., Journal of Entomology and Zoology Studies, 1(6), 7-10.
  14. Feder M.E. and Krebs R.A. (1998)., Natural and Genetic Engineering of the Heat-Shock Protein Hsp70 in Drosophila melanogaster: Consequences for thermotolerance., Amer Zool., 38, 503-517.
  15. Burton V., Mitchell H.K., Young P. and Petersen N.S. (1988)., Heat shock protection against cold stress of Drosophila melanogaster., Mol Cell Biol., 8, 3550-3552.
  16. Joplin K.H., Yocum G.D. and Denlinger D.L. (1990)., Cold shock elicits expression of heat shock proteins in the flesh fly Sarcophaga crassipalpis., J Insect Physiol., 36, 825-834.
  17. Yiangou M., Tsapogas P., Nilkolaidis N. and Scouras Z.G. (1997)., Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae)., Cytobios., 92, 91-98 .
  18. Goto S.G. and Kimura M.T. (1998)., Heat and cold-shock responses and temperature adaptations in subtropical and temperate species of Drosophila., J. Insect Physiol., 44, 1233-1239.
  19. Sejerkilde M., Sorensen J.G. and Loeschcke V. (2003)., Effects of heat and cold hardening on thermal resistance in Drosophila melanogaster., J Insect Physiol., 49, 719-726.
  20. Nielsen M.M., Overgaard J., Sorensen J.G., Holmstrup M., Justesen J. and Loeschcke V. (2005)., Role of heat shock factor during heat and cold hardening and for the resistance to severe heat and cold stress., J. Insect Physiol., 51, 1320-1329.