International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Bioethanol production from mild alkali pretreated sawdust and groundnut shells

Author Affiliations

  • 1Department of Microbiology, Dolphin (PG) College of Science and Agriculture, Chunni Kalan-140307, Punjab, India
  • 2Department of Microbiology, Dolphin (PG) College of Science and Agriculture, Chunni Kalan-140307, Punjab, India
  • 3Department of Microbiology, Dolphin (PG) College of Science and Agriculture, Chunni Kalan-140307, Punjab, India

Int. Res. J. Biological Sci., Volume 7, Issue (12), Pages 8-14, December,10 (2018)

Abstract

Lignocellulosic materials like sawdust (SD) and groundnut shells (GS) are abundant renewable resources exploited for second generation bioethanol production. The present study investigated the production of bioethanol from mild alkaline pre-treated SD and GS. The SD and GS were pre-treated with 1% (w/v) NaOH followed by autoclaving at 121ºC for 45 min. The pre-treated biomass revealed 20% and 32% loss of lignin content, accompanied with a release of 2.97g/100 g and 2.47 g/100 g sugars in the pre-treated hydrolysate of SD and GS. The pre-treated biomass also revealed changes in physical characteristics such as 18.5% and 21.8% weight loss and change in colour intensity. The saccharification of pre-treated SD and GS by commercial cellulase (ex Aspergillus niger) resulted in maximum reducing sugar content of 15.64g/100g and 8.48g/100 g at 48h and 24h of incubation, respectively. The fermentation of hydrolysate (saccharified and pretreated) of SD and GS with Saccharomyces cerevisiae resulted in 5.48g/100g and 2.84g/100g bioethanol at 120h of incubation, respectively.

References

  1. Waqas M., Aburiazaiza A.S., Minadad R., Rehan M., Barakat M.A. and Nizami A.S. (2018)., Development of biochar as fuel and catalyst in energy recovery technologies., J. Clean. Prod., 188, 477-488.
  2. Rajaeifar M.A., Akram A., Ghobadian B., Rafiee S., Heijungs R. and Tabatabaei M. (2016)., Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment., Energy., 106, 87-102.
  3. Jahirul M.I., Rasul M.G., Chowdhury A.A. and Ashwath N. (2012)., Biofuels production through biomass pyrolysis—A technological review., Energies., 5, 4952-5001.
  4. Bilal Abdi (2017)., India proposes new bio-ethanol policy to spur Rs 5,000 crore investments., Energy world. https://energy.economictimes.indiatimes.com/news/oil-and-gas/india-proposes-new-bio-ethanol-policy-to-spur-rs-5000-crore-investments/61755856. 23 November 2017.
  5. Velazquez-Lucio J., Colla L.M., Rodríguez-Jasso R.M., Sáenz-Galindo A., Cervantes-Cisneros D.E., Aguilar C.N., Fernandes B.D. and Ruiz H.A. (2018)., Microalgal biomass pre-treatment for bioethanol production: A review., Biofuel Res. J., 17, 780-791.
  6. Vallejos M.E., Kruyeniski J. and Area M.C. (2017)., Second-generation bioethanol from industrial wood waste of South American species., Biofuel Res., 15, 654-667.
  7. Chang Y.H., Chang K.S., Chen C.Y., Hsu C.L., Chang T.C. and Jang H.D. (2018)., Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration., Fermentation., 4(2), 45.
  8. Balat M. (2011)., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review., Energy Convers. Manag., 52(2), 858-875.
  9. Valdivia M., Galan J.L., Laffarga J. and Ramos J.L. (2016)., Biofuels 2020: Biorefineries based on lignocellulosic materials., Microb. Biotechnol., 9(5), 585-594.
  10. Ramos J.L., García-Lorente F., Valdivia M. and Duque E. (2017)., Green biofuels and bioproducts: Bases for sustainability analysis., Microb. Biotechnol., 10(5), 1111-1113.
  11. Kumar P., Barrett D.M., Delwiche M.J. and Stroeve P. (2009)., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production., Industrial & engineering chemistry research, 48(8), 3713-3729.
  12. Mohanty B. and Abdullahi I.I. (2016)., Bioethanol production from lignocellulosic waste-a review., Biosciences Biotechnology Research Asia, 13(2), 1153-1161.
  13. Rathna G., Saranya R. and Kalaiselvam M. (2014)., Bioethanol from sawdust using cellulase hydrolysis of Aspergillus ochraceus and fermentation by Saccharomyces cerevisiae., Int. J. Curr. Microbiol. App. Sci., 3(12), 733-742.
  14. Nyachaka C.J., Yawas D.S. and Pam G.Y. (2013)., Production and performance evaluation of bioethanol fuel from groundnuts shell waste., American J. Eng. Res., 2(12), 303-312.
  15. Akinosho H., Dumitrache A., Natzke J., Muchero W., Jawdy S.S., Tuskan G.A., Brown S.D. and Ragauskas A.J. (2017)., Effects of biomass accessibility and klason lignin contents during consolidated bioprocessing in Populus trichocarpa., ACS Sustain. Chem. Eng., 5(6), 5075-5081.
  16. Miller G.L. (1959)., Use of Dinitrosalicylic acid reagent for determination of reducing sugar., Anal. Chem., 31(3), 426-428.
  17. Mandels M., Andreotti R. and Roche C. (1976)., Measurement of saccharifying cellulase., Biotechnol. Bioeng. Symp., 6, 21-33.
  18. Caputi A. Jr. and Wright D. (1969)., Collaborative study of the determination of ethanol in wines by chemical oxidation., J. Assoc. Off. Anal. Chem., 52, 85-88.
  19. Torkashvand A.M, Alidoust M. and Khomami A.M. (2015)., The reuse of peanut organic wastes as a growth medium for ornamental plants., Int. J. Recycling Org. Wastes Agri., 4(2), 85-94.
  20. Ramgopal Y.N., Chowdary M.R. and Chaitanya V. (2016)., A Study on Production of Pulp from Ground Nut Shells., Int. J. Sci. Eng. Res., 7(6), 423-428.
  21. Tan W.C., Kuppusamy U.R., Phan C.W., Tan Y.S., Raman J., Anuar A.M. and Sabaratnam V. (2015)., Ganoderma neo-japonicum imazeki revisited: Domestication study and antioxidant properties of its basidiocarps and mycelia., Sci. Rep., 5, 10.1038/ srep12515.
  22. Jaishankar M., Mathew B.B., Shah M.S., Krishna Murthy T.P. and Sangeetha Gowda K.R. (2014)., Biosorption of Few Heavy Metal Ions Using Agricultural Wastes., Journal of Environment Pollution and Human Health., 2(1), 1-6.
  23. Martin C., Alriksson B., Sjöde A., Nilvebrant N.O. and Jönsson L.J. (2007)., Dilute sulfuric acid pretreatment of agricultural and agroindustrial residues for ethanol production., Appl. Biochem. Biotechnol., 136-140, 339-352.
  24. Raveendran K., Ganesh A. and Khilar K.C. (1995)., Influence of mineral matter on biomass pyrolysis characteristics., Fuel, 74(12), 1812-1822.
  25. Dai Y., Si M., Chen Y., Zhang N., Zhou M., Liao Q., Shi D. and Liu Y. (2015)., Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw., Biores. Technol., 198, 725-731.
  26. Kim S.J., Lee Y.Y. and Kim T.H. (2016)., A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass., Biores. Technol., 199, 42-48.
  27. Kim B., Gulati I., Park J. and Shin J.S. (2012)., Pretreatment of cellulosic waste sawdust into reducing sugars using mercerization and etherification., Bioresources., 7(4), 5152-5166.
  28. Sahare P., Singh R., Laxman R.S. and Rao M. (2012)., Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob., Appl. Biochem. Biotechnol., 168(7), 1806-1819.
  29. Brugnago R.J., Satyanarayana K.G., Wypych F. and Ramos L.P. (2011)., The effect of steam explosion on the production of sugarcane bagasse/polyester composites., Comp. A: Appl. Sci. Manuf., 42, 364-370.
  30. Emmel A., Mathias A.L., Wypych F. and Ramos L.P. (2003)., Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion., Bioresour. Technol., 86, 105-115.
  31. Iroba K.L., Tabil L.G., Sokhansanj S. and Dumonceaux T. (2014)., Pretreatment and fractionation of barley straw using steam explosion at low severity factor., Biomass Bioenerg., 66, 286-300.
  32. Menardo S., Bauer A., Theuretzbacher F., Piringer G., Nilsen P., Balsari P., Pavliska O. and Amon T. (2013)., Biogas production from steam-exploded Miscanthus and utilization of biogas energy and CO2 in greenhouses., BioEnerg. Res., 6(2), 620-630.
  33. Margeot A., Hahn-Hagerdal B., Edlund M., Slade R. and Monot F. (2009)., New improvements for lignocellulosic ethanol., Curr. Opin. Biotechnol., 20(3), 372-380.
  34. Trevorah R.M. and Othman M.Z. (2015)., Alkali pre-treatment and enzymatic hydrolysis of Australian timber mill sawdust for biofuel production., J. Renew. Energy., 1-9.
  35. Gajula C., Chandely A.K., Konakall R., Rudravaram R., Pogakuyy R. and Mangamoori L.N. (2011)., Fermentation of Groundnut Shell Enzymatic Hydrolysate for Fuel Ethanol Production by Free and Sorghum Stalks Immobilized Cells of Pichia stipitis NCIM 3498., Int. J. Chem. React. Eng., 9. 10.1515/1542-6580.2514.
  36. Nester E.W., Roberts C.E. and Nester M.T. (1995)., Microbiology - A human perspective., W.C. Brown Pub., Dubuque, Iowa, USA, 116-118.
  37. Shide E.G., Wuyep P.A. and Nok A.J. (2004)., Studies on the degradation of wood sawdust by Lentinus squarrosulus (Mont.) singer., Afric. J. Biotechnol., 3(8), 395-398.
  38. Farias-Sanchez J.C., Velazquez-Valadez U., Pineda-Pimentel M.G., Lopez-Miranda J., Castro-Montoya A.J., Carrillo-Parra A., Vargas-Santillan A. and Rutiaga-Quinones J.G. (2017)., Simultaneous saccharification and fermentation of pine sawdust (Pinus pseudostrobus L.) pre-treated with nitric acid and NaOH for bioethanol production., Bioresources., 12(1), 1052-1063.
  39. Ayeni A.O., Omoleye J.A., Hymore F.K. and Pandey R.A. (2016)., Effective alkaline peroxide oxidation pre-treatment of shea tree sawdust for the production of biofuels: Kinetics of delignification and enzymatic conversion to sugar and subsequent production of ethanol by fermentation using Saccharomyces cerevisiae., Braz. J. Chem. Eng., 33(1), 33-45.
  40. Puttaswamy C.T., Sagar B.R., Simha U., Manjappa S. and Kumar V.C.S. (2016)., Production of bioethanol from lignocellulosic biomass., Indian J. Adv. Chemical Sci., 1, 239-244.
  41. Bharthare P., Singh P. and Tiwari A. (2016)., Production of bioethanol with the aid of Mucor indicus by using peanut shell as substrate., Int. J. Adv. Res., 4(12).
  42. Byadgi S.A. and Kalburgi P.B. (2016)., Production of Bioethanol from waste newspaper., Procedia Environ. Sci., 35, 555-562.
  43. Singh A. and Singh A. (2015)., A comparative overview of bioethanol production from organic residues of agrowaste materials., Eur. J. Biotechnol., 3(3), 11-14.