

International Research Journal of Biological Sciences _ Vol. 4(10), 36-47, October (2015)

Use of Biological Database to Explore Microorganisms used in Bioremediation of Hexavalent Chromium

Hajoori M.A. and Tank S.K.

Department of Biosciences, Veer Narmad South Gujarat University, Surat, INDIA

Available online at: www.isca.in, www.isca.me Received 11th Septmeber 2015, revised 28th September 2015, accepted 5th October 2015

Abstract

Bioinformatics is one of the newest emerging fields of life sciences. Number of biological database has been created to provide vital information regarding module of interest. The present study was aimed to utilize these biological databases to explore significant microorganisms that had got an ability to reduce hexavalent chromium. Using Text search tool available at Protein Information Resources database, total 906 entries were obtained, out of which 49 entries were filtered depicting different microorganisms having chromate reductase enzyme. Five microorganisms belonging to Pseudomonas, Bacillus, Geobacillus, Arthrobacter and Staphylococcus species show positive screening for reduction of hexavalent chromium. Thus, use of biological database provides an aid to explore the microorganisms having potential in bioremediation of chromium compounds. The bacterial isolates having ability to convert toxic form of chromium into their nontoxic form can be employed for bioremediation of hexavalent chromium.

Keywords: Hexavalent chromium, biological database, bioremediation, protein information resources.

Introduction

A large numbers of toxic chemicals (pollutants) are generated from various industries, releasing it into surrounding environment, where they contaminate soil and water¹⁻². Some of these toxic chemicals lead to cause severe problem to living organisms and required to be removed from environment³. Microorganisms due to their versatile nutritional requirement can be used to degrade such toxic compound⁴⁻⁶. Chromium compounds are one of such toxic chemicals generated from various industries like tannery, textile, steel, paint and galvanization units'. The chromium exists in nature primarily as highly toxic hexavalent chromium and least toxic trivalent chromium⁸⁻⁹. Chromium has its carcinogenic¹⁰⁻¹¹ and mutagenicity¹²⁻¹³ effects. Hence, ranked 18th in priority list of hazardous substances issued by CERCLA, 2007¹⁴. USEPA has categories chromium as class a pollutant¹⁵. Various mechanisms were known for bioremediation of hexavalent compounds. One of such mechanism includes bioremediation by a group of enzyme chromate reductases¹⁶. Numbers of biological databases has been available consisting of number of information pertaining to molecule of interest. Hereby attempt has been made in this study to use information from biological database to incur potential microorganisms that can show effective bioconversion of hexavalent chromium into trivalent non toxic form.

Material and Methods

Exploring microorganisms with chromate reductase enzyme: Microorganisms having enzyme chromate reductase were explored using text search tools available at Protein information resources database¹⁷. The available list of microorganisms was further filtered to remove redundant entries having same genus and species. Selection of microorganisms was carried out on the basis of their availability from natural environment or culture collection centre and their pathogenic nature.

Pair wise sequence alignment: The pair wise sequence alignments were performed using pair wise alignment mode available at protein information resources¹⁸ for selected entries to determine the similarity and dissimilarity between the chromate reductase which may contribute to variation in their activity to reduce hexavalent chromium into their non-toxic product.

Isolation of selected microorganisms: The microorganisms viz., *Pseudomonas* spp., *Bacillus* spp. and *Staphylococcus* spp. identified having chromate reductase enzyme were isolated from soil samples collected from vicinities of dyes and chemical industries near Palsana, Surat, Gujarat, India. The soil sample was mixed with sterile distilled water and aliquots of 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} and 10^{-6} were prepared. Each dilution was plated onto Nutrient agar plate and incubated at 37° C for 24 Hr. *Geobacillus* spp was procured from HImedia whereas *Arthrobacter* was procured from culture collection centre. Pure culture of all the strain was prepared using nutrient agar medium.

Screening of microorganisms for chromium reduction: The isolate were precultured overnight on nutrient agar medium. culture flask was prepared with basal medium (Glucose 0.5 g,

calcium chloride 0.02 g, monopotassium phosphate 1.0 g, ferric chloride 0.05 g, dipotassium phosphate 1.0 g, magnesium sulphate 0.2 g, ammonium nitrate 1.0 g and distilled water 1000 ml) supplemented with K₂Cr₂O₇ having chromium (VI) concentration of 100 ppm. 3.5 ml of isolated culture was inoculated into 350 ml of basal medium with K₂Cr₂O₇. The inoculated flasks were incubated at room temperature on rotary shaker having speed of 150 RPM. Samples were drawn at an interval of 0 hr, 12 hr, 24 hr, 36 hr and 48 hr to determine growth of isolate measured in terms of optical density at 540 nm SHIMADZU UV-Spectrophotometer using а against uninoculated basal medium containing chromium as blank.

Determination of Hexavalent Chromium: The supernatant of each flask after centrifugation were analyzed for Chromium (VI) using 1, 5-Diphenyl Carbazide method as described by USEPA¹⁹. Chromium Standard with chromium concentration ranges from 100 ppm to 1000 ppm was prepared. 95 ml of the extract were centrifuge and 2.0 ml diphenylcarbazide solution was added. pH of 2 ± 0.5 was set with 10% H₂SO₄ solution and dilute to final volume of 100 ml. Colour developed was estimated spectrophotometrically at 540 nm using Basal medium as Blank.

Protein 3D Structure Prediction: Chromate reductase protein sequence of selected microorganisms was used for protein

structure modeling using Swiss-Model²⁰⁻²³ server available online at server of Swiss Institute of Bioinformatics. The structures were building using automated mode that identifies best templates based on $Blast^{24}$ and $HHblits^{25}$.

Multiple Structure Alignment: All the modeled protein structures were then superimposed using Mistral $tool^{26}$ for multiple structure alignment of protein to evaluate the similarity and dissimilarity with respect to protein structure. This help to identify the conserved and non-conserved region that may contribute for variation in chromate reductase activity. The Mistral tool performed multiple structure alignment of protein on the basis of energy minimization and translations of the given molecule.

Results and Discussion

Exploring microorganisms having Chromate Reductase: Using text search tools available at Protein Information Resources database, total 906 entries were obtained which was subjected to further screening for list of microorganisms possessing this enzyme. Further, filtration of obtained list give total 49 different microorganisms table-1 having chromate reductase. 5 different microorganisms table-2 were selected from the list of 49 microorganisms.

Figure-1 Pairwise Sequence Alignment [*Pseudomonas spp. Vs. Bacillus spp.*]

List of microorganisms having chromate reductase									
Protein AC/ID	Protein Name	Length	Organism Name	UniRef50					
P0AGE6/CHRR_ECOLI	Chromate reductase	188	Escherichia coli (strain K12)	UniRef50_P0AGE7					
P0AGE8/CHRR_SHIFL	Chromate reductase	188	Shigella flexneri	UniRef50_P0AGE7					
Q88FF8/CHRR_PSEPK	Chromate reductase	186	Pseudomonas putida (strain KT2440)	UniRef50_Q93T20					
A0A031QPU8/A0A031QPU8_SERMA	Chromate reductase, Class I, flavoprotein	188	Serratia marcescens BIDMC 81	UniRef50_V6A4U4					
A0A060VC33/A0A060VC33_KLESP	Chromate reductase, Class I, flavoprotein	188	Klebsiella sp	UniRef50_P0AGE7					
A1K9U9/A1K9U9_AZOSB	Probable chromate reductase	186	Azoarcus sp. (strain BH72)	UniRef50_V6A4U4					
A3I992/A3I992_9BACI	Chromate reductase	180	Bacillus sp. B14905	UniRef50_D3ECI3					
A6EA35/A6EA35_9SPHI	Putative chromate reductase	185	Pedobacter sp. BAL39	UniRef50_F5YA92					
B0JDW3/B0JDW3_THESC	Chromate reductase	349	Thermus scotoductus	UniRef50_A8HNC2					
B3VBK2/B3VBK2_ARTAU	Chromate reductase (Fragment)	75	Arthrobacter aurescens	UniRef50_P0AGE7					
B3VBK3/B3VBK3_BACAT	Chromate reductase (Fragment)	75	Bacillus atrophaeus	UniRef50_P0AGE7					
B4F0I4/B4F0I4_PROMH	Putative chromate reductase (NADPH- dependent FMN reductase)	182	Proteus mirabilis (strain H14320)	UniRef50_A1VMH5					
G8MY11/G8MY11_GEOTH	Chromate reductase	181	Geobacillus thermoleovorans CCB_US3_UF5	UniRef50_G8MY11					
I5BT83/I5BT83_9RHIZ	Chromate reductase	186	Nitratireductor aquibiodomus RA22	UniRef50_I5BT83					
I7MR59/I7MR59_STRCB	Putative chromate reductase	146	Streptococcus canis FSL Z3-227	UniRef50_I7MR59					
J0MD04/J0MD04_9ENTR	Chromate reductase monomer	188	Enterobacter sp. Ag1	UniRef50_V6A4U4					
J1GP88/J1GP88_9LACT	Chromate reductase	179	Weissella koreensis KCTC 3621	UniRef50_D3ECI3					
J7LWV5/J7LWV5_9MICC	Putative chromate reductase	203	Arthrobacter sp. Rue61a	UniRef50_A0A059MSD7					
J9YFA6/J9YFA6_LEUGJ	Chromate reductase	181	Leuconostoc gelidum (strain JB7)	UniRef50_M4KEA3					
K2MJB1/K2MJB1_9RHIZ	Chromate reductase	186	Nitratireductor pacificus pht-3B	UniRef50_S5YVM0					
K2QFK6/K2QFK6_9RHIZ	Chromate reductase	175	Agrobacterium albertimagni AOL15	UniRef50_K2QFK6					
K5ZL66/K5ZL66_9PROT	Chromate reductase	180	Acidocella sp. MX- AZ02	UniRef50_K5ZL66					
L7ZF37/L7ZF37_SERMA	Chromate reductase, Class I, flavoprotein	188	Serratia marcescens WW4	UniRef50_V6A4U4					
M1GF39/M1GF39_MYCPM	Putative chromate reductase	166	Mycoplasma pneumoniae M129-B7	UniRef50_P47584					

 Table-1

 List of microorganisms having chromate reductase

Protein AC/ID	Protein Name	Length	Organism Name	UniRef50	
Q08VE8/Q08VE8_STIAD	Putative chromate reductase	291	Stigmatella aurantiaca (strain DW4/3-1)	UniRef50_F8CBU6	
Q38W12/Q38W12_LACSS	Putative chromate reductase	185	Lactobacillus sakei subsp. sakei (strain 23K)	UniRef50_Q93T20	
Q67S97/Q67S97_SYMTH	Putative chromate reductase	Putative chromate reductaseSymbiobacter thermophilum (T / IAM 1480		UniRef50_Q67S97	
Q7VY03/Q7VY03_BORPE	Putative chromate reductase 184		Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 13251)	UniRef50_A1VMH5	
Q8CUR9/Q8CUR9_OCEIH	Chromate reductase	e 181 <i>Oceanobacillus</i> <i>iheyensis (strain DSM</i> <i>14371 / JCM 11309 /</i> <i>KCTC 3954 /</i> <i>HTE831)</i>		UniRef50_D3ECI3	
R4Y2X0/R4Y2X0_ALCXX	Putative chromate reductase	184	Achromobacter xylosoxidans NH44784-1996	UniRef50_A1VMH5	
S5U1V3/S5U1V3_PROMI	Chromate reductase (NADPH-dependent FMN reductase)	182	Proteus mirabilis BB2000	UniRef50_A1VMH5	
S6CM53/S6CM53_9PROT	Chromate reductase (Fragment)	103	proteobacterium S3K	UniRef50_P0AGE7	
S7U7F5/S7U7F5_9BACI	Chromate reductase	272	Geobacillus sp. WSUCF1	UniRef50_P39605	
T1Y622/T1Y622_STAAU	Chromate reductase	268	Staphylococcus aureus subsp. aureus CN1	UniRef50_Q8CMQ4	
U2Y9E7/U2Y9E7_GEOKU	Chromate reductase	180	Geobacillus kaustophilus GBlys	UniRef50_G8MY11	
V6MI66/V6MI66_PROHU	Chromate reductase	182	Proteus hauseri ZMd44	UniRef50_A1VMH5	
V7EMG5/V7EMG5_9RHOB	Chromate reductase	178	Rhodobacter sp. CACIA14H1	UniRef50_V7EMG5	
W0XIT2/W0XIT2_KLEPN	Chromate reductase, Class I, flavoprotein	188	Klebsiella pneumoniae subsp. pneumoniae T69	UniRef50_P0AGE7	
W1SPF4/W1SPF4_9BACI	Chromate reductase	184	Bacillus vireti LMG 21834	UniRef50_G8MY11	
W4N9W7/W4N9W7_9BIFI	Chromate reductase/NADPH- dependent FMN reductase/Oxygen- insensitive NA	262	Bifidobacterium moukalabense DSM 27321	UniRef50_R5NFV9	
W4Q5N1/W4Q5N1_9BACI	Putative chromate reductase	181	Bacillus wakoensis JCM 9140	UniRef50_R9X5A0	
W5X189/W5X189_BDEBC	Chromate reductase, Class I, flavoprotein	183	Bdellovibrio bacteriovorus W	UniRef50_Q93T20	
W5Y707/W5Y707_KOMXY	Chromate reductase	186	Gluconacetobacter	UniRef50_V6A4U4	

Protein AC/ID	Protein Name	Length	Organism Name	UniRef50	
W6EP16/W6EP16_BIFBR	Chromate reductase/NADPH- dependent FMN reductase/Oxygen- insensitive NA	255 Bifidobacterium breve 12L		UniRef50_R5NFV9	
W8FZ94/W8FZ94_9GAMM	Chromate reductase	176	Thalassolituus oleivorans R6-15	UniRef50_W8FZ94	
W8X1A1/W8X1A1_BIFAN	Chromate reductase	376	Bifidobacterium animalis subsp. lactis CECT 8145	UniRef50_E4R026	
X5IHB9/X5IHB9_BORBO	Chromate reductase	184	Bordetella bronchiseptica (Alcaligenes bronchisepticus)	UniRef50_A9HXL5	
X7EE43/X7EE43_9RHOB	Chromate reductase	189	Roseivivax halodurans JCM 10272	UniRef50_X7EE43	
UPI00029C4B42_587	chromate reductase	185	Providencia rettgeri	UniRef50_A1VMH5	
UPI0003900F2B_562	chromate reductase, Class I, flavoprotein	176	Escherichia coli	UniRef50_P0AGE7	

Pair wise Sequence Alignment [Pseudomonas spp. Vs. Arthrobacter spp.]

Figure-3
Pair wise Sequence Alignment [*Pseudomonas spp. Vs. Geobacillus spp.*]

s-w c Smith-	opt: 128 -Waterman	Z-score: score: 12	150.3 bit 8; 39.1% i	s: 35.8 H dentity	2(): 1.5e- (51.7% sim	·06 ilar) :	in 87 aa ov	erlap	(15-82:12-98
		10	20	30		40			
Beq1	SPQFFCH	RRPSEPKCHF	-MATEREDCO	TASESPS	ECDMN	ASPCTI	DAST		
						1.1	14		
Beq2	TRTY	FYSTAACCHF	KMATEREDCO	TASEKSST	APHYLKCKCC	CSACRE	CSSCBSPAC		
		10	20	30	40		50		
	50	60	70		80	90	100		
Beq1	RAINKTG	NPPPESV	MSQVYSVAVV	VGSLI	RESYNRKVA	RALSEL	APSSLALKI		
	1.1.1		· · · · ·						
Beq2	RECSCNG	NSAKKRPESV	MQYEDFKLIV	KYRGVGNVS	SEHVYNLVKK	HHSVRK	FKNKPLSED		
	60	70	80	90	100	1	10		
	1	10 1	20 1	.30	140	150	160		
Beq1	VEIGDLP	LYNEDIEAEA	PPETWKRFRI	EIRRSDAVI	FVTPEYNRS	VPGCLK	NAIDVGSRP		
Beg2	VVKKLVE	AGQSASTSSE	LQAYSIIGII	DEKIKENLE	REVSGQPYVV	ENGYLF	VFVIDYYRH		
•	120	130	140	150	160	1	70		

Figure-4 Pair wise Sequence Alignment [*Pseudomonas spp. Vs. Staphylococcus spp.*]

Isolation and screening and characterization of selected microorganisms: 34 different isolates were obtained from collected sample and 5 screened for survival in Basal medium containing $K_2Cr_2O_7$. All the five strain were evaluated for tolerance in term of growth figure-5. The cell mass of *Pseudomonas* spp. show highest growth in the medium supplemented with chromium after 36 and 48 hours²⁷. The Bacillus spp. and Arthrobacter spp. show increase in growth after 36 hours of incubation²⁸. Staphylococccus spp. show least growth pattern suggest less tolerance toward chromium²⁹. The *Geobacillus* show increase in growth after 36 hr of incubation. Thus, these microorganisms possess ability to tolerate hexavalent chromium at the concentration of 100 ppm⁷. However difference in sequence may contribute for variation in their ability to reduce hexavalent chromium. The results

obtained suggest all selected microorganisms had ability for reducing hexavalent chromium. The results were in accordance with different authors^{7, 27-29}.

The selected isolates were further evaluated for their activity for reduction of hexavalent chromium. Standard for chromium was prepared using concentration from 100 to 1000ppm.

Determination of Isolate ability to reduce hexavalent chromium: All the five isolate were evaluate for reduction in hexavalent chromium. *Pseudomonas species* show 42.3%, *Bacillus species* show 34.5%, *Arthrobacter species* show 29.8%, *Staphylococcus spp* show 28% and *Geobacillus* about 31.6% reduction of hexavalent chromium after 48 hrs of incubation with chromium concentration of 100 ppm⁷ figure-6.

Figure-5 Biomass determination of selected isolates

Figure-6 Activity of Isolate for Hexavalent chromium reduction

Protein 3D Structure Prediction: All the Structure prediction of chromate reductase were conducted using Swiss model template library search using Blast²⁴ and HHBlits²⁵ to determine evolutionary relatedness of the structures matching the target sequence of chromate reductase available in database. The templates found by Swiss model was overall 764 templates for *Pseudomonas spp*, 492 templates for *Bacillus spp.*,146 templates for *Staphylococcus spp.*, 667 for *Arthrobacter spp.* and 127 templates for *Geobacillus spp.*.

Out of these entire template 03 models from each category was build on the basis of identity score. The best model from each category was selected on the basis of global and preresidual model quality expressed in terms of QMean4 value. *For Pseudomonas spp.*, QMean4 value of -4.67 with sequence identity of 49.72% and coverage of 95% were obtained figure-7. For *Bacillus spp.*, QMean4 value of -5.44 with sequence identity of 38.42% and coverage of 98% were obtained figure-8. For *Staphylococcus spp.*, QMean4 value of -1.50 with sequence identity of 41.13% and coverage of 93% were obtained figure-9. For *Athrobacter*, QMean4 value of -4.14 with sequence identity of 44.32% and coverage of 87% were obtained figure-10. For *Geobacillus spp*, QMean4 value of -1.50 with sequence identity of 59.51% and coverage of 91% were obtained figure-11.

Figure-7

Chromate reductase 3D structure prediction of Pseudomonas spp.

Chromate reductase 3D structure prediction of *Bacillus spp*.

Figure-9 Chromate reductase 3D structure prediction of *Arthrobacter spp*.

Figure-10

Chromate reductase 3D structure prediction of Geobacillus spp.

Figure-11

Chromate reductase 3D structure prediction of Staphylococcus spp.

Chromate reductase modeled of *Pseudomonas, Arthrobacter* and *Bacillus* was building using same template 3u7r.1.A as reference. Thus, all model predicted of *Pseudomonas, Arthrobacter* and *Bacillus* show similarity with NADPH-dependent FMN reductase whereas chromate reductase modeled of *Staphylococcus* and *Geobacillus* was build using 3n2s.1.A and 3n2s.1.B as reference. Thus, the model predicted show similarity with NADPH-dependent nitro/flavin reductase.

Multiple Structure Alignment: Mistral Software used for multiple structure alignment of all the modeled structure reveal that *Pseudomonas, Arthrobacter* and *Bacillus* species show majority of superimposition with minimum RMSD and least energy level. The best alignment was obtained showing good spatial arrangement and stability after superimposition²⁶.

Modeled chromate reductase of *Geobacillus spp.* and *Staphylococcus spp.* has higher RMSD and energy as compared to other above three chromate reductase table-3.

Conclusion

All the isolate show activity for chromium reduction contributed due to presence of chromate reductase enzyme. The efficiency to catalyze reaction varies due to variation in amino acid composition of chromate reductase. Using various tools and software of bioinformatics significant information can be obtained that aids in exploring microorganisms having ability to degrade such pollutants. Thus there is a need to develop specialized database showing potential candidates for waste cleanup.

Acknowledgement

We are thankful to Bhagwan Mahavir College of M.Sc. Biotechnology, Surat for providing laboratory facilities.

References

- Ellis L.B. and Wackett L.P., Use of the University of Minnesota Biocatalysis/Biodegradation Database for study of microbial degradation, *Microb. Inform. Exp.*, 2(1), 1-10 (2012)
- Arora P. and Shi W., Tools of bioinformatics in biodegradation, *Rev. Environ. Sci. Biotechnol.*, 9, 211-213 (2010)
- Andrady A.L., Biodegradation of plastics: monitoring what happens, *Plastics Additives. Springer Netherlands*, 1, 32-40 (1998)

Table-2

Amino Acid Sequence of five selected microorganisms

>splQ88FF8lCHRR_PSEPK Chromate reductase OS=*Pseudomonas putida (strain KT2440)* GN=PP_4138 PE=1 SV=1 MSQVYSVAVVVGSLRKESYNRKVARALSELAPSSLALKIVEIGDLPLYNEDIEAEAPPETWKRFRDEIRRSDAVLFVTP EYNRSVPGCLKNAIDVGSRPYGQSAWSGKPTAVVSVSPGAIGGFGANHAVRQSLVFLDMPCMQMPEAYLGGAASLF EDSGKLNDKTRPFLQAFVDRFASWVKLNRAV

>tr|A3I992|A3I992_9BACI Chromate reductase OS=*Bacillus sp. B14905 GN=BB14905_07074 PE=4 SV=1* MKVVAIVGSIRKESYNMQLAQFIEKRYTEKLDLEVLSLKDLPMYNQDIENEAPQAVLDFKAKVKAADAVLWVTPEY NGTVPGVMINAIDWLSRVDKVMIGKPSIIMGASMGNLGTVKAQLHLRDILFSPGINSPLLSGNDVYIGAVHTKFDAEG NLTDEGTVKFLDVVIDNFLNWAKKYI

>trlJ7LWV5lJ7LWV5_9MICC Putative chromate reductase OS=Arthrobacter sp. Rue61a GN=ARUE_c41610 PE=4 SV=1

MDTFKIGYFVGSLASNSINRVLSKALISVAPPELEFHEIAIKDLPLYSADYDADFPPAGRELKDAIAASDGILFVSPEYNR SIPGALKNAIDWGSRPWGTNSFARKPTGIIGASPGGIGTAVMQSSMRSVLSFLDAPQLNAPEAYIRFVADAYDDDGSV KDEGTAGLLRHYMEEYSAFVQRVLAANAPGHIGDPEPDSAKLTR

>tr|S7U7F5|S7U7F5_9BACI Chromate reductase OS=Geobacillus sp. WSUCF1 GN=I656_00399 PE=4 SV=1 MALSFLLSCSQKEAVGLFKEDIVMNQVIETILQHRSIRRFEDQPLTDEQIRTIVECAQAASTSSYVQAYSIIGVKDPEKKR KLAELAGNQSYVEHNGHFFVFCADFHRHELIGELEGKDVLPSLESTEKFMVALIDTALAAQNAAIAAESMGLGICYIG GLRNNLPEVCALLNVPKRVIPLFGLAVGYPAQTPDQKPRLPFEHVYHEDEYDQDRARFIAQLQRYNETVSTYYEQRTN GRRRDTWTGQMADMLSRQVRMYMKEFVEGKGFNLR

>tr|T1Y622|T1Y622_STAAU Chromate reductase OS=*Staphylococcus aureus subsp. aureus* CN1 GN=SAKOR_00381 PE=4 SV=1

MQYEDFKLIVKYRGVGNVSEHVYNLVKKHHSVRKFKNKPLSEDVVKKLVEAGQSASTSSFLQAYSIIGIDDEKIKENL REVSGQPYVVENGYLFVFVIDYYRHHLVDQHAETDMENAYGSTEGLLVGAIDAALVAENIAVTAEDMGYGIVFLGSL RNDVERVREILDLPDYVFPVFGMAVGEPADDENGAAKPRLPFDHVFHHNKYHADKETQYAQMADYDQTISEYYDQR TNGNRKETWSQQIEMFLGNKARLDMLEQLQKSGLIQR

- 4. Arora P.K., Sasikala C. and Ramana C.V., Degradation of chlorinated nitroaromatic compounds, *Appl. Microbiol. Biotechnol.*, **93(6)**, 2265-2277 (**2012**)
- 5. Arora P.K., Srivastava A. and Singh V.P., Bacterial degradation of nitrophenols and their derivatives, *J. Hazard. Mater.*, 266, 42-59 (2014)
- 6. Karigar C.H. and Rao S.S., Role of microbial enzymes in 10. the bioremediation of pollutants: A review *enzyme*. *Res.*, 2011, 1-11 (2011)
- 7. Sakar P., Bhagavatula S. and Subramanian S., Removal of hexavalent chromium from aqueous solution using marine isolates from Vishakhapatnam beach, *Der Pharmacia Lettre*, 6 (2),118-124 (2014)
- 8. Zhang Z., Leonard S.S., Wang S., Vallyathan V.,

Castranova V. and Shi X., Cr (VI) induces cell growth arrest through hydrogen peroxide-mediated reactions, *Mole. Cell Biochem.*, **1(2)**, 77-83 (**2001**)

- 9. Flores A. and Perez J. M., Cytotoxicity, apoptosis, and in vitro DNA damage induced by potassium chromate, *Toxicol. Appl. Pharmacol.*, **161(1)**, 75-81 (**1999**)
- 10. Lurie P. and Wolfe M. S., Continuing exposure to hexavalent chromium, a known lung carcinogen: an analysis of OSHA compliance inspections, 1990-2000, *Am. J. Ind. Med.*, **42**(5), 378-383 (2002)
- **11.** Losi M.E., Amrhein C. and Frankenberger W.T., Environmental biochemistry of chromium, *Rev. Environ. Contam. Toxicol.*, **136**, 91-115 (**1994**)

Multiple Structure Anginient of enfomate reductase of selected microol gamsins									
Pair:	Lengths	Energy	N_matches	RMSD	sid	Z Score	P value		
model_Arthrobacter.pdb	352	1286 605	249	2.2	25	12.0	4 17 09		
model_Bacillus.pdb	358	1280.003	548	5.5	55	12.8	4.176-08		
model_Arthrobacter.pdb	352	261 122	79	20	7	1.0	1 52 01		
model_Geobacillus.pdb	492	-301.125	78	2.8	/	1.0	1.52e-01		
model_Arthrobacter.pdb	352	206.051	249	1.0	122	13.0	3.22e-08		
model_Pseudomonas.pdb	356	-290.931	540	1.9					
model_Arthrobacter.pdb	352	352 023	13	3.0	3	0.0	1.680.01		
model_Staphyococcus.pdb	497	-332.923	43	5.0	3	0.9	1.066-01		
model_Bacillus.pdb	358	256 070	51	26	2	0.0	1 500 01		
model_Geobacillus.pdb	492	-330.979	51	2.0	5	0.9	1.396-01		
model_Bacillus.pdb	358	1200 714	345	26	72	12.8	3.010.08		
model_Pseudomonas.pdb	356	1290.714	545	2.0	12	12.0	5.910-08		
model_Bacillus.pdb	358	367 135	71	27	5	1.0	1.45e.01		
model_Staphyococcus.pdb	497	-307.135	/ 1	2.1	5	1.0	1.450-01		
model_Geobacillus.pdb	492	405 222	101	28	4	1.4	9.40= 02		
model_Pseudomonas.pdb	356	-403.222	101	2.0	4	1.4	9.406-02		
model_Geobacillus.pdb	492	1760 578	480	0.7	208	13.6	1 450 08		
model_Staphyococcus.pdb	497	-1709.378	+07	0.7	200	13.0	1.450-08		
model_Pseudomonas.pdb	356	378 062	78	27	Q	1 1	1 270 0		
model_Staphyococcus.pdb	497	-376.902	/0	2.1	0	1.1	1.276-0		

 Table-3

 Multiple Structure Alignment of chromate reductase of selected microorganisms

- O'Brien J.C., and Patierno S.R., Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest, *Mole. Cell Biochem.*, 222, 173-182 (2001)
- Stearns D.M., Kennedy L.J., Courtney K.D., Giangrande P.H., Phieffer L.S. and Wetterhahn K.E., Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro, *Biochemistry*, 34(3), 910–919 (1995)
- 14. http://www.atsdr.cdc.gov/spl/previous/07list.html, (2015)
- http://www.epa.gov/airtoxics/hlthef/chromium.html, (2015)
- 16. Park C.H., Keyhan M., Wielinga B., Fendorf S. and Matin A, Purification to Homogeniety and Characterization of a novel *Pseudomonas putida* Chromate Reductase, *Appl. and Env. Microb.*, 66, 1788-1795 (2000)
- http://pir.georgetown.edu/pirwww/search/textsearch.shtm l, (2015)
- http://pir.georgetown.edu/pirwww/search/pairwise.shtml, (2015)
- **19.** APHA, Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington DC, 1992, (**1193**)
- Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T.G., Bertoni M., Bordoli L. and Schwede T., SWISS-MODEL: modelling

protein tertiary and quaternary structure using evolutionary information, *Nucleic Acids Research*, **42** (W1), W252-W258 (2014)

- Arnold K., Bordoli L., Kopp J., and Schwede T., The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling, *Bioinformatics*, 22, 195-201(2006)
- 22. Kiefer F., Arnold K., Künzli M., Bordoli L. and Schwede T., The SWISS-MODEL Repository and associated resources, *Nucleic Acids Research*, **37(Database Issue)**, D387-D392 (**2009**)
- 23. Guex N., Peitsch M.C. and Schwede T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective, *Electrophoresis*, 30(S1), S162-S173 (2009)
- 24. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, *Nucleic Acids Res.*, **25**, 3389-3402 (1997)
- Remmert M., Biegert A., Hauser A. and Soding J., HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment, *Nat. Methods.*, 9, 173-175 (2012)
- 26. Micheletti C. and Orland H., MISTRAL: a tool for energy-based multiple structural alignment of proteins, *Bioinformatics.*, 25, 2663-2669 (2009)

International Research Journal of Biological Sciences _ Vol. 4(10), 36-47, October (2015)

- 27. Kaur H., Kumar A. and Kaur H., Bioremediation of hexavalent chromium in wastewater effluent by *Pseudomonas putida* (MTCC 102), *Inter. Jour. of Res. In Earth and Environ. Sciences.*, **1(4)**, 18-24 (**2014**)
- Elangovan R., Abhipsa S., Rohit B., Ligy P. amd Chandraraj K., Reduction of Cr(VI) by a *Bacillus sp.*, *Biotechnology Letters.*, 28, 247–252 (2006)
- **29.** Mistry K, Desai C., Lal S., Patel K. and Patel B., Hexavalent Chromium Reduction by *Staphylococcus Sp.* Isolated From Cr (Vi) Contaminated Land Fill, *Inter. Jour. of Biotech. and Biochem.*, **6**(1), 117–129 (**2010**)