International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Wildlife Forensic Case Study for Identification of Species from Pangolin Scales Using Mitochondrial DNA

Author Affiliations

  • 1Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India
  • 2Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India
  • 3Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India
  • 4Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India
  • 5Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India
  • 6Centre for Wildlife Forensic Sciences, Advanced Institute for Wildlife Conservation, Tamil Nadu Forest Department, Chennai, Tamil Nadu, India

Res. J. Forensic Sci., Volume 10, Issue (2), Pages 13-20, July,29 (2022)

Abstract

Pangolins are considered the most traded mammals worldwide. In India, the species found are Indian and Chinese pangolins (Manis crassicaduata and Manis pentadactyla) which are protected under the ambit of the Wildlife (Protection) Act, 1972- Schedule I and CITES- Appendix I. Pangolins are poached for their scales which are deemed to possess traditional medicinal properties and for meat, usually consumed as a delicacy. Analysis of mitochondrial DNA can be used for species identification from pangolin scales, to provide evidence of illegal wildlife trade. Eight sub-samples from a single seized consignment containing suspected pangolin scales were processed for DNA analysis by amplifying and sequencing partial fragments of mitochondrial genes Cytochrome b and 12S rRNA. Sequences generated from all 8 sub-samples matched with Manis crassicaudata sequences in GenBank database with a percentage identity of 99-100%. Based on evidence of percentage identity, genetic distance and maximum-likelihood phylogenetic trees of the two mtDNA genes, seized material was concluded to be from Indian pangolin (Manis crassicaudata).The study demonstrates the utility of DNA analysis using mitochondrial DNA markers for the identification of species from keratinized products (such as scales)and can serve as evidence of illegal trade of wildlife products for prosecuting with reference to the Indian Wildlife (Protection) Act, 1972.

References

  1. Singh, A., Priyambada, P., Jabin, G., Singh, S.K., Joshi, B.D., Vekatraman, C., Chandra, K., Sharma, L.K., & Thakur, M. (2020)., Pangolin indexing system: implications in forensic surveillance of large seizures., Intl. J. Legal Med., https://doi.org/10.1007/s00414-020-02362-5.
  2. Kumar, V.P., Rajpoot, A., Srivastav, A., Nigam, P., Kumar, V., Madhanraj, A., & Goyal, S.P. (2018)., Phylogenetic relationship and molecular dating of Indian pangolin Manis crassicaudata with other extant pangolin species based on complete cytochrome b mitochondrial gene., Mitochon. DNA Part A, 29(8), 1276-1283. https://doi.org/10.1080/ 24701394.2018.1445241.
  3. Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. and Baillie, J. E. (2007)., Mammals on the EDGE: conservation priorities based on threat and phylogeny., PloS one, 2(3), e296.
  4. Gaubert, P. (2011)., Family Manidae., In: Wilson DE, Mittermeier RA, editors, Handbook of the mammals of the world 2011; Vol. 2. Hoofed mammals. Barcelona (Spain): Lynx Edicions. 82–103.
  5. Mwale, M., Dalton, D.L., Jansen, R., De Bruyn, M., Pietersen, D., Mokgokong, P.S. & Kotze, A. (2017)., Forensic application of DNA barcoding for identification of illegally traded African pangolin scales., Genome, 60(3), 272-284. https://doi.org/10.1139/gen-2016-0144.
  6. Pietersen, D.W., McKechnie, A.E., & Jansen, R. (2014)., Home range, habitat selection and activity patterns of an arid-zone population of Temminck’s ground pangolins, Smutsia temminckii. African Zool., 49(2), 265–276. doi:10.3377/004.049.0215.
  7. Khwaja, H., Buchan, C., Wearn, O.R., Bahaa-el-din, L., Bantlin, D., Bernard, H.,…..& Brodie, J. (2019)., Pangolins in global camera trap data: Implications for ecological monitoring., Global Ecol. Conserv., 20, e00769. https://doi.org/10.1016/j.gecco.2019.e00769.
  8. Xie, X., Ye, H., Cai, X., Li, C., Li, F., Tian, E., & Chao, Z. (2021)., DNA mini-barcodes, a potential weapon for conservation and combating illegal trade of pangolin., Trop. Conserv. Sci., 14, 1-10. https://doi.org/10.1177/19400829211017361.
  9. Hsieh, H.M., Lee, J.C., Wu, J.H., Chen, C.A., Chen, Y.J., Wang, G.B., Chin, S.C., Wang. L.C., Linacre, A., & Tsai, L.C. (2011)., Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales., Forensic Sci. Intl., 5, 303-307.
  10. Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. & Wilson, A.C. (1989)., Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers., PNAS, 86 (16), 6196-6200. https://doi.org/10.1073/pnas. 86.16.6196.
  11. Hall, T.A. (1999)., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT., Nucleic Acids Symp. Ser., 41, 95–98.
  12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990)., Basic local alignment search tool., Journal of molecular biology, 215(3), 403-410.
  13. Kimura, M. (1980)., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences., J. Mol. Evol., 16(2), 111–120.
  14. Tamura, K. & Nei, M. (1993)., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees., Mol. Biol. Evol., 10, 512-526.
  15. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018)., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms., Mol. Biol. Evol., 35, 1547-1549.
  16. Kumar, V.P., Rajpoot, A., Mukesh, Shukla, M., Kumar, D., & Goyal, S.P. (2016)., Illegal trade of Indian pangolin (Manis crassicaudata): genetic study from scales based on mitochondrial genes., Egypt. J. Forensic Sci., 6, 524-533.
  17. Zhang, H., Ades, G., Miller, M.P., Yang, F., Lai, K. & Fischer, G.A. (2020)., Genetic identification of African pangolins and their origin in illegal trade., Glob. Ecol. Conserv., 23: e0119. https://doi.org/10.1016/j.gecco.2020.e 01119
  18. Zhang, H., Miller, M.P., Yang, F., Chan, H.K., Gaubert, P., Ades, G. & Fischer, G.A. (2015)., Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia., Global. Ecol. Conserv., 4, 414–422.
  19. Shrestha, S., Bashyal, A., Dhakal, A., McGreevy, T.J., Buffum, B.,…. & Khanal, S.N. (2020)., Mitochondrial DNA analysis of crticially endangered Chinese Pangolins (Manis pentadactyla) from Nepal., Mitochon. DNA Part B, 5(3), 3275-3279.
  20. Nash, H.C., Wirdateti, Low, G.W., Choo, S.W., Chong, J.L., Semiadi, G., Hari, R., Sulaiman, M.H., Turvey, S.T., Evans, T.A., & Rheindt, F.E. (2018)., Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia., Conserv. Genetics., https://doi.org/10.1007/s10592-018-1080-9.
  21. Ewart, K.M., Lightson, A.L., Sitam, F.T., Ryan, J.F., ….& McEwing, R. (2021)., DNA analyses of large pangolin scale seizures: species identification validation and case studies., Forensic Sci. Int. 1, 100014. https://doi.org/10.1016/j.fsiae.2021.100014.
  22. Gaubert, P., Antunes, A., Meng, H., Miao, L., Peigne, S., Justy, F., Njiokou, F., Dufour, S., Danquah, E., Alahakoon, J., Verheyen, E., Stanley, W.T., O’Brien, S.J., Johnson, W.E. & Luo, S.J. (2018)., The complete phylogeny of pangolins: scaling up resources for the molecular tracing of the most trafficked mammals on Earth., J. Heredity, 347-359