6th International Virtual Congress (IVC-2019) And Workshop.  International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Structural and tectonic deformation of the Tibetan plateau since Cretaceous: An upshot of Indian-Eurasian collision

Author Affiliations

  • 1Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049 and COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
  • 2Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 3Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 4COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
  • 5Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049 and COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
  • 6Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049
  • 7Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Science,No.19(A) Yuquan Road, Shijingshan District, Beijing, P.R. China 100049

Int. Res. J. Earth Sci., Volume 6, Issue (9), Pages 9-18, September,25 (2018)


The Himalaya, Tibet, and the Karakorum are the most spectacular upshot resulted in response to the Indian and Eurasian plate collision.The collision resulted in the crustal thickening and shortening of the region during the Cenozoic era with an estimated magnitude of >50%. Tibet is further distributed into North, Central, and the Southern segments, which are constrained and parted by different faults/thrusts and sutures zones. A number of geophysical and geological researcheshave been approved and are still continuing to understand the tectonic activities going on in the area. Late Cenozoic has been marked as an important era in developing of most noticeable changes occurred in the region including of;east-western crustal extension alongthe central Tibet, as well as the clockwise rotation of the Tibetan plateau (since ~10-13 Ma). This extension lead to the generationof grabens, strike-slip faults and resultingthe uplift of the central Tibet. The tremendous magmatic activity occurred in Lhasa block during Cambrian era, are believed to be the product of subduction of Proto-Tethyan Ocean underneath the Australian Gondwana. Similarly, the Late Devonian to early Carboniferous magmatism is associated with the back-arc evolved in the Songdo-Tethyan Ocean, while the Late Triassic to Early Jurassic magmatism is associated with the development of Indus-Yarlung-Zangbo Tethyan back-arc basin. However, climatic research of thesouthAsia highlighted that the uplift period of the Tibetan plateau was initiated duringLate-Miocene (~8 Ma). The calculated NS crustal shortening and EW extensional rates of the Central Tibetan plateau alongAltyn Tagh Fault are about ~10-12mm/yr. and ~8-10mm/yr., respectively withless than 20km of the slip; which is identical to the GPS studies of the region. The cooling and exhumation events (not later than ~22-25Ma) in the southcentral Tibetan plateau are the product of the Cenozoic collision.


  1. Dewey J.F., Shackleton R.M., Chengfa C. and Yiyin S. (1988)., The Tectonic Evolution of the Tibetan Plateau., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327, 379-413. doi:10.1098/rsta.1988.0135.
  2. Coleman M. and Hodges K. (1995)., Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension., Nature, 374(6517), 49.
  3. Molnar P. and Pandey M.R. (1989)., Rupture zones of great earthquakes in the Himalayan region., Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 98(1), 61-70.
  4. Royden L.H., Burchfiel B.C. and van der Hilst R.D. (2008)., The geological evolution of the Tibetan Plateau., science, 321, 1054-1058.
  5. Molnar P. (1988)., A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications., Phil. Trans. R. Soc. Lond. A, 326(1589), 33-88. doi:DOI 10.1098/rsta.1988.0080.
  6. Airy G.B. (1855)., On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys., Philosophical Transactions of the Royal Society of London, 145, 101-104. doi:10.1098/rstl.1855.0003.
  7. Watts A.B. (2001)., Isostasy and Flexure of the Lithosphere., (Cambridge University Press, 2001).
  8. Wang C., Zhao X., Liu Z., Lippert P.C., Graham S.A., Coe R.S., Yi H., Zhu L., Liu S. and Li Y. (2008)., Constraints on the early uplift history of the Tibetan Plateau., Proc Natl Acad Sci U S A, 105, 4987-4992. doi:10.1073/pnas.0703595105.
  9. Argand, E.1924 La tectonique de l`Asie. Intl. Geol. Cong. Resp. Sess. 13. 170-372., undefined, undefined
  10. Wang C.S., Dai J.G., Zhao X.X., Li Y.L., Graham S.A., He D.F., Ran B. and Meng J. (2014)., Outward-growth of the Tibetan Plateau during the Cenozoic: A review., Tectonophysics, 621, 1-43. doi:10.1016/j.tecto.2014.01.036.
  11. Zhao J.M., Shah S.T.H., Zhang H., Zhang X.K., Yao C.L., Li Y.S., Liu H.B., Xu Q., Deng G., Hu Z.G. and Bhatti Z.I. (2017)., Density and magnetic intensity of the crust and uppermost mantle across the northern margin of the Tibetan Plateau., Physics of the Earth and Planetary Interiors, 265, 15-22. doi:10.1016/j.pepi.2017.02.003.
  12. Harrison T.M., Copeland P., Hall S.A., Quade J., Burner S., Ojha T.P. and Kidd W. (1993)., Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits., The Journal of Geology, 101, 157-175.
  13. Edwards M. and Harrison T. (1997)., When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite., Geology, 25, 543-546.
  14. Edwards M.A., Kidd W.S., Li J., Yue Y. and Clark M. (1996)., Multi-stage development of the southern Tibet detachment system near Khula Kangri. New data from Gonto La., Tectonophysics, 260, 1-19.
  15. Spicer R.A., Harris N.B., Widdowson M., Herman A.B., Guo S., Valdes P.J., Wolfe J.A. and Kelley S.P. (2003)., Constant elevation of southern Tibet over the past 15 million years., Nature, 421, 622.
  16. Zhang J., Wang Y., Zhang B. and Zhao H. (2015)., Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China., Journal of Asian Earth Sciences, 97, 10-23. doi:10.1016/j.jseaes.2014.10.002.
  17. Najman Y., Appel E., Boudagher Fadel M., Bown P., Carter A., Garzanti E. and Parrish R. (2010)., Timing of India Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints., Journal of Geophysical Research: Solid Earth, 115(B12).
  18. Zhang X., Teng J., Sun R., Romanelli F., Zhang Z. and Panza G.F. (2014)., Structural model of the lithosphere-asthenosphere system beneath the Qinghai-Tibet Plateau and its adjacent areas., Tectonophysics, 634, 208-226. doi:10.1016/j.tecto.2014.08.017.
  19. Xia L., Li X., Ma Z., Xu X. and Xia Z. (2011)., Cenozoic volcanism and tectonic evolution of the Tibetan plateau., Gondwana Research, 19(4), 850-866.
  20. Spicer R., Yang J., Herman A., Kodrul T., Aleksandrova G., Maslova N., Spicer Teresa, Ding Lin, Xu Qiang, Shukla Anumeha, Srivastava Gaurav, Mehrotra Rakesh, Liu Xiao-Yan and Jin Jian-Hua (2017)., Paleogene monsoons across India and South China: Drivers of biotic change., Gondwana Research, 49, 350-363. doi:10.1016/j.gr.2017.06.006.
  21. Zhu D.C., Zhao Z.D., Niu Y., Dilek Y., Hou Z.Q. and Mo X.X. (2013)., The origin and pre-Cenozoic evolution of the Tibetan Plateau., Gondwana Research, 23(4), 1429-1454.
  22. Augusto G. (1964)., Geology of the Himalayas., Regional geology series, 300.
  23. Taylor M. and Yin A. (2009)., Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism., Geosphere, 5(3), 199-214.
  24. Cowgill E., Yin A., Harrison T.M. and Wang X.F. (2003)., Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures and heterogeneous crustal strength n forming the Tibetan Plateau., Journal of Geophysical Research, 108. doi:10.1029/2002JB002080.
  25. Peltzer G. and Tapponnier P. (1988)., Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision-An experimental approach., Journal of Geophysical Research, 93, 15085-15117. doi:10.1029/JB093iB12p15085.
  26. Meriaux A.S., Ryerson F.J., Tapponnier P., Van der Woerd J., Finkel R.C., Xu X.W., Xu Z.Q. and Caffee M.W. (2004)., Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh., J Geophys Res-Sol Ea, 109. doi:Artn B0640110.1029/2003jb002558.
  27. Meriaux A.S., Tapponnier P., Ryerson F.J., Xu X.W., King G., Van der Woerd J., Finkel R.C., Li H.B., Caffee M.W., Xu Z.Q. and Chen W.B. (2005)., The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate., J Geophys Res-Sol Ea, 110. doi:Artn B0440410.1029/2004jb003210.
  28. Cowgill E. (2007)., Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China., Earth and Planetary Science Letters, 254, 239-255. doi: 10.1016/j.epsl.2006.09.015.
  29. He J. and Chery J. (2008)., Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling., Earth and Planetary Science Letters, 274, 50-58. doi:10.1016/j.epsl.2008.06.049.
  30. Xiao Q., Zhang J., Zhao G. and Wang J. (2013)., Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet: Tectonic implications., Tectonophysics, 601, 125-138. doi:10.1016/j.tecto.2013.05.003.
  31. Zhang Z.J., Bai Z.M., Klemperer S.L., Tian X.B., Xu T., Chen Y. and Teng J.W. (2013)., Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation., Tectonophysics, 606, 140-159. doi:10.1016/j.tecto.2013.02.040.
  32. Zhang Z.J., Chen Y., Yuan X.H., Tian X.B., Klemperer S.L., Xu T., Bai Z.M., Zhang H.S., Wu J. and Teng J.W. (2013)., Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift., Tectonophysics, 606, 178-186. doi:10.1016/j.tecto.2013.03.019.
  33. Zhao J.M., Mooney W.D., Zhang X.K., Li Z.C., Jin Z.J. and Okaya N. (2006)., Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan plateau and tectonic implications., Earth and Planetary Science Letters,241, 804-814. doi:10.1016/j.epsl.2005.11.003.
  34. Peltzer G., Crampe F. and Geoffrey K. (1999)., Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manyi (Tibet) earthquake., Science, 286, 272-276. doi:10.1126/science.286.5438.272.
  35. Klinger Y., Michel R. and King G.C.P. (2006)., Evidence for an earthquake barrier model from Mw similar to 7.8 Kokoxili (Tibet) earthquake slip-distribution., Earth and Planetary Science Letters, 242, 354-364. doi:10.1016/j.epsl.2005.12.003.
  36. Klinger Y., Xu X., Tapponnier P., Van der Woerd J., Lasserre C. and King G. (2005)., High-resolution satellite imagery mapping of the surface rupture and slip distribution of the M w∼ 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China., Bulletin of the Seismological Society of America, 95(5), 1970-1987. doi:10.1785/0120040233.
  37. Lasserre C., Peltzer G., Crampe F., Klinger Y., Van der Woerd J. and Tapponnier P. (2005)., Coseismic deformation of the 2001 Mw=7.8 Kokoxilli earthquake in Tibet, measured by synthetic aperture radar interferometry., Journal of Geophysical Research, 110. doi:10.1029/2004JB003500.
  38. Van der Woerd J., Ryerson F.J., Tapponnier P., Meriaux A.S., Gaudemer Y., Meyer B., Finkel R.C., Caffee M.W., Guoguang Z. and Zhiqin X. (2000)., Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics., Geophysical Research Letters, 27, 2353-2356. doi:10.1029/1999gl011292.
  39. Van Der Woerd J., Tapponnier P., Ryerson F.J., Meriaux A.S., Meyer B., Gaudemer Y., Finkel R.C., Caffee M.W., Zhao G.G. and Xu Z.Q. (2002)., Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from Al-26, Be-10, and C-14 dating of riser offsets, and climatic origin of the regional morphology., Geophysical Journal International, 148, 356-388. doi:DOI 10.1046/j.1365-246x.2002.01556.x.
  40. Kirby E., Harkins N., Wang E., Shi X., Fan C. and Burbank D. (2007)., Slip rate gradients along the eastern Kunlun fault., Tectonics, 26(2). doi:10.1029/2006TC002033.
  41. Taylor M., Yin A., Ryerson F.J., Kapp P. and Ding L. (2003)., Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau., Tectonics, 22. doi:10.1029/2002TC001361, 2003.
  42. Molnar P. and Chen W.P. (1983)., Focal Depths and Fault Plane Solutions of Earthquakes under the Tibetan Plateau., Journal of Geophysical Research, 88, 1180-1196. doi:DOI 10.1029/JB088iB02p01180.
  43. Zhang X. and Wang Y. (2007)., Seismic and GPS evidence for the kinematics and the state of stress of active structures in south and south-central Tibetan Plateau., Journal of Asian Earth Sciences, 29(2-3), 283-295.
  44. Ding L., Zhong D.L., Yin A., Kapp P. and Harrison T.M. (2001)., Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)., Earth and Planetary Science Letters, 192, 423-438. doi:10.1016/S0012-821X(01)00463-0.
  45. Lu Z.W., Gao R., Li Y.T., Xue A.M., Li Q.S., Wang H.Y., Kuang C.Y. and Xiong X.S. (2013)., The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data., Tectonophysics, 606, 171-177. doi:10.1016/j.tecto.2013.07.019.
  46. Klemperer S.L. (2006)., Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow., Geol Soc Spec Publ, 268, 39-70. doi:Doi 10.1144/Gsl.Sp.2006.268.01.03.
  47. Gan W.J., Zhang P.Z., Shen Z.K., Niu Z.J., Wang M., Wan Y.G., Zhou D.M. and Cheng J. (2007)., Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements., J Geophys Res-Sol Ea, 112. doi:Artn B08416-10.1029/2005jb004120.
  48. Zhang P.Z., Shen Z., Wang M., Gan W.J., Burgmann R., Molnar P., Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Hanrong Sun and Xinzhao You (2004)., Continuous deformation of the Tibetan Plateau from global positioning system data., Geology, 32, 809-812. doi:10.1130/G20554.1.
  49. Taylor M. and Peltzer G. (2006)., Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry., J Geophys Res-Sol Ea, 111. doi:Artn B1240210.1029/2005jb004014.
  50. Wang Y., Zhang X., Sun L. and Wan J. (2007)., Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission track thermochronology., Journal of Asian Earth Sciences, 29, 266-282. doi:10.1016/j.jseaes.2005.11.001.
  51. Quanru G., Guitang P., Zheng L., Chen Z., Fisher R.D., Sun Z., Ou C., Dong H., Wang X., Li S., Lou X. and Fu H. (2006)., The Eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges and geologic evolution., Journal of Asian Earth Sciences, 27, 265-285. doi:10.1016/j.jseaes.2005.03.009.
  52. Chevalier M.L., Ryerson F.J., Tapponnier P., Finkel R.C., Van Der Woerd J., Haibing L. and Qing L. (2005)., Response to comment on "Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion., Science, 309-1326. doi:10.1126/science.1112629.
  53. Chevalier M.L., Tapponnier P., Van der Woerd J., Ryerson F.J., Finkel R.C. and Li H.B. (2012)., Spatially constant slip rate along the southern segment of the Karakorum fault since 200 ka., Tectonophysics, 530, 152-179. doi:10.1016/j.tecto.2011.12.014.
  54. Shah S.T.H., Zhao J., Baral U., Khan N.G. and Bhatti Z.I. (2018)., India-Asia collision, structure and convergence in western Himalayan syntaxis along Pamir- Tajikistan - A short review., International Research Journal of Earth Sciences, ISCA.
  55. Banerjee P. and Burgmann R. (2002)., Convergence across the northwest Himalaya from GPS measurements., Geophysical Research Letters, 29(13), 30. doi:10.1029/ 2002GL015184.
  56. Chen Q., Freymueller J.T., Yang Z., Xu C., Jiang W., Wang Q. and Liu J. (2004)., Spatially variable extension in southern Tibet based on GPS measurements., Journal of Geophysical Research, 109. doi:10.1029/2002JB00235.
  57. Wright T.J., Parsons B., England P.C. and Fielding E.J. (2004)., InSAR observations of low slip rates on the major faults of western Tibet., Science, 305(5681), 236-239. doi:10.1126/science.1096388.
  58. Murphy M.A., Yin A., Kapp P., Harrison T.M., Lin D. and Jinghui G. (2000)., Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip., Geology, 28(5), 451-454. doi:10.1130/0091-7613.
  59. Robinson A.C. (2009)., Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen., Earth and Planetary Science Letters, 279, 123-130. doi:10.1016/j.epsl.2008.12.039.
  60. Searle M.P., Weinberg R.F. and Dunlap W.J. (1998)., Transpressional tectonics along the Karakoram fault zone, northern Ladakh: constraints on Tibetan extrusion., Geological Society, London, Special Publications, 135, 307-326. doi:10.1144/gsl.sp.1998.135.01.20.
  61. Klemperer S.L., Kennedy B.M., Sastry S.R., Makovsky Y., Harinarayana T. and Leech M.L. (2013)., Mantle fluids in the Karakoram fault: Helium isotope evidence., Earth and Planetary Science Letters, 366, 59-70. doi:10.1016/j.epsl.2013.01.013.
  62. Leech M.L. (2008)., Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya?., Earth Planet Science Letter, 276, 314-322. doi:10.1016/ j.epsl.2008.10.006.
  63. Rolland Y., Mahe'o G., P^echer A. and Villa I. (2009)., Syn-kinematic emplacement of the Pangong metamorphic and magmatic complex along the Karakorum fault (N Ladakh)., J. Asian Earth Science, 34, 10-25. doi:http://dx.doi.org/10.1016/j.jseaes.2008.03.009.
  64. Shah S.T.H., Zhao J., Xiao Q., Bhatti Z.I., Khan N.G., Zhang H., Deng G. and Liu H. (2018)., Electrical resistivity structures and tectonic implications of Main Karakorum Thrust (MKT) in the western Himalayas: NNE Pakistan., Physics of the Earth and Planetary Interiors, 279, 57-66. doi:10.1016/j.pepi.2018.02.003.
  65. Molnar P. and Qidong D. (1984)., Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia., Journal of Geophysical Research: Solid Earth, 89(B7), 6203-6227.
  66. Dunlap W.J., Weinberg R.F. and Searle M.P. (1998)., Karakoram fault zone rocks cool in two phases., Journal of the Geological Society, 155, 903-912. doi:DOI 10.1144/gsjgs.155.6.0903.
  67. Lee H.Y., Chung S.L., Wang J.R., Wen D.J., Lo C.H., Yang T.F. and Ji J. (2003)., Miocene Jiali faulting and its implications for Tibetan tectonic evolution., Earth and Planetary Science Letters, 205(3-4), 185-194.
  68. Molnar P. and Tapponnier P. (1978)., Active Tectonics of Tibet., Journal of Geophysical Research, 83, 5361. doi:DOI 10.1029/JB083iB11p05361.
  69. Cogan M.J., Nelson K.D., Kidd W.S.F., Wu C.D. and Team P.I. (1998)., Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data., Tectonics, 17, 46-61. doi:Doi 10.1029/97tc03025.
  70. Zhang Z.J., Deng Y.F., Teng J.W., Wang C.Y., Gao R., Chen Y. and Fan W.M. (2011)., An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings., Journal of Asian Earth Sciences, 40(4), 977-989. doi:10.1016/j.jseaes.2010.03.010.
  71. Chen Z., Burchfiel B.C., Liu Y., King R.W., Royden L.H., Tang W., Wang E., Zhao J. and Zhang X. (2000)., Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation., Journal of Geophysical Research: Solid Earth, 105, 16215-16227. doi:10.1029/2000JB900092.
  72. Liu C., Zhu B. and Yang X. (2015)., How does crustal shortening contribute to the uplift of the eastern margin of the Tibetan Plateau?., Journal of Asian Earth Sciences, 98, 18-25. doi:http://dx.doi.org/10.1016/j.jseaes.2014.10.037.
  73. Bai D., Unsworth M.J., Meju M.A., Ma X., Teng J., Kong X., Sun Y., Sun J., Wang L., Jiang S., Zhao C., Xiao P. and Liu M. (2010)., Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging., Nat. Geoscience, 3, 358-362. doi:http://dx.doi.org/ 10.1038/ngeo830.
  74. Zhao G., Unsworth M.J., Zhan Y., Wang L., Chen X., Jones A.G., Tang J., Xiao Q., Wang J., Cai J., Li T., Wang Y. and Zhang J. (2012)., Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data., Geology, 40(12), 1139-1142. doi:10.1130/g33703.1.
  75. Wang X., Zhang G., Fang H., Luo W., Zhang W., Zhong Q., Cai X. and Luo H. (2014)., Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau., Tectonophysics, 619, 143-148. doi:10.1016/j.tecto.2013.09.011.
  76. Yang T., Chen J., Yang X., Wang H. and Jin H. (2013)., Differences in magnetic properties of fragments and matrix of breccias from the rupture of the 2008 Wenchuan earthquake, China: Relationship to faulting., Tectonophysics, 601, 112-124.