International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Soil-radon fluctuation and local climate parameters - a multifractal cross-correlation study

Author Affiliations

  • 1School of Studies in Environmental Radiation and Archaeological Sciences, Department of Physics, Jadavpur University, West Bengal, India
  • 2School of Studies in Environmental Radiation and Archaeological Sciences, Department of Physics, Jadavpur University, West Bengal, India
  • 3School of Studies in Environmental Radiation and Archaeological Sciences, Department of Physics, Jadavpur University, West Bengal, India

Int. Res. J. Earth Sci., Volume 6, Issue (12), Pages 1-11, December,25 (2018)

Abstract

The use of Radon (Rn) gas as an effective precursor for earthquake detection have been well established, but the correlation of Rn time series with other climatic parameters such as rainfall, humidity is often neglected. But these parameters do play an outstanding role in the domain of pre-seismic surveillance. Fractal analysis of complex time series data provides efficient means of characterizing and quantifying the long range temporal correlations present in the signal. In this work, we have applied robust nonlinear tools like Detrended Fluctuation Analysis (DFA), Multifractal DFA (MFDFA) to characterize time series data of Rn, temperature, rainfall and humidity for the last 10 years ranging from September 2005-August 2014. Also, we have used the Multifractal Detrended Cross-Correlation Analysis, MFDXA for the assessment of the degree of association present between the different time series data mentioned above. The results show that the Rn time series has the strongest amount of correlation with the temperature time series data. This study with rigorous methods presents interesting results that should be taken care of as a caution before confident identification of occurrence of earthquakes.

References

  1. Nazaroff W. and Nero A. (1988), Radon and its decay products in indoor air., Wiley, New York.
  2. Vogiannis E. and Nikolopoulos D. (2015)., Radon sources and associated risk in terms of exposure and dose., Front Pub Heal Env Heal, 2, 1-10.
  3. Nikolopoulos D. and Louizi A. (2008)., Study of indoor radon and radon in drinking water in Greece and Cyprus: implications to exposure and dose., Rad Meas, 43(7), 1305-1314.
  4. Planinic J., Radolic V. and Culo D. (2000)., Searching for an earthquake precursor: Temporal variations of radon in soil and water., Fizika B, 75-82.
  5. Garavaglia M., Braitenberg C. and Zadro M. (1998)., Radon monitoring in a cave of North-Eastern Italy., Physics and Chemistry of the Earth, 23(9-10), 949-952.
  6. Talwani P. (1979)., An empirical earthquake prediction model., Phys Earth Planet Inter, 18(4), 288-302.
  7. Ramola R.C., Singh S. and Virk H.S. (1988)., A model for the correlation between radon anomalies and magnitude of earthquakes., International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 15(1-4), 689-692. DOI: 10.1016/1359-0189(88)90229-4.
  8. Swakoń J., Kozak K., Paszkowski M., Gradziński R., Łoskiewicz J., Mazur J. and Olko P. (2005)., Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area., Journal of Environmental Radioactivity, 78(2), 137-149.
  9. Singh M., Kumar M., Jain R.K. and Chatrath R.P. (1999)., Radon in ground water related to seismic events., Radiation Measurements, 30(4), 465-469.
  10. Amrani D., Cherouati D.E. and Cherchali M.E.H. (2000)., Groundwater radon measurements in Algeria., Journal of Environmental Radioactivity, 51(2), 173-180.
  11. Alekseev V.A., Alekseeva N.G. and Jchankuliev J. (1995)., On relation between fluxes of metals in waters and radon in Turkmenistan region of seismic activity., Radiation Measurements, 25(1-4), 637-639.
  12. İnceöz M., Baykara O., Aksoy E. and Doğru M. (2006)., Measurements of soil gas radon in active fault systems: a case study along the North and East Anatolian fault systems in Turkey., Radiation Measurements, 41(3), 349-353.
  13. Segovia N., Tamez E., Peña P., Carrillo J., Acosta E., Armienta M.A. and Iturbe J.L. (1999)., Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities., Applied radiation and isotopes, 50(3), 589-598.
  14. Ilić R., Rusov V.D., Pavlovych V.N., Vaschenko V.M., Hanžič L. and Bondarchuk Y.A. (2005)., Radon in Antarctica., Radiation measurements, 40(2-6), 415-422.
  15. Segovia N., Mena M., Seidel J.L., Monnin M., Tamez E. and Pena P. (1995)., Short and long term radon in soil monitoring for geophysical purposes., Radiat. Meas., 25(1-4), 547-552.
  16. Tsvetkova T., Przylibski Tadeusz, Nevinsky I. and Nevinsky V. (2005)., Measurement of radon in the East Europe under the ground., Radiation Measurements, 40(1), 98-105.
  17. King C.Y. (1978)., Radon emanation on San Andreas fault., Nature, 271, 516-519.
  18. Hauksson E. (1981)., Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis., J. Geophys. Res., 86(B10), 9397-9410.
  19. Walia V., Bajwa B.S., Virk H.S. and Sharma N. (2003)., Relationships between seismic parameters and amplitudes of radon anomalies in N-W Himalaya, India., Radiat. Meas., 36, 393-396.
  20. Walia V., Virk H.S., Yang T.F., Mahajan S., Walia M. and Bajwa B.S. (2005)., Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: a case study., Terr. Atmos. Ocean. Sci., 16, 775-804.
  21. Das N.K., Chaudhuri H., Bhandari R.K., Ghose D., Sen P. and Sinha B. (2006)., Continuous monitoring of Rn222 and its progeny at a remote station for seismic hazard surveillance., Radiat. Meas, 41, 634-637.
  22. Ramola R.C., Prasad Y., Prasad G., Kumar S. and Choubey V.M. (2008)., Soil-gas radon as seismotectonic indicator in Garhwal Himalaya., Applied Radiation and Isotopes, 66(10), 1523-1530.
  23. Barman C., Chaudhuri H., Deb A., Ghose D. and Sinha B. (2015)., The essence of multifractal detrended fluctuation technique to explore the dynamics of soil radon precursor for earthquakes., Natural hazards, 78(2), 855-877.
  24. Reddy D.V., Nagabhushanam P., Sukhija B.S. and Reddy G.R. (2010)., Continuous radon monitoring in soil gas towards earthquake precursory studies in basaltic region., Radiat. Meas., 45(8), 935-942.
  25. Deb A., Gazi M. and Barman C. (2016)., Anomalous soil radon fluctuations-signal of earthquakes in Nepal and eastern India regions., Journal of Earth System Science, 125(8), 1657-1665.
  26. Zhou W.X. (2008)., Multifractal detrended cross-correlation analysis for two nonstationary signals., Physical Review E, 77(6), 066211.
  27. Mandelbrot B.B. (1982)., The fractal geometry of nature., New York: WH freeman, 1.
  28. Petraki E., Nikolopoulos D., Fotopoulos A., Panagiotaras D. and Koulouras G. (2013)., Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece., App Rad Isot, 72, 39-53.
  29. Nikolopoulos D., Petraki E., Vogiannis E., Chaldeos Y., Yannakopoulos P., Kottou S. and Stonham J. (2014)., Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ileia (Greece)., Journal of Radioanalytical and Nuclear Chemistry, 299(1), 203-219.
  30. Eftaxias K., Balasis G., Contoyiannis Y., Papadimitriou C., Kalimeri M., Athanasopoulou L., Nikolopoulos S., Kopanas J., Antonopoulos G. and Nomicos C. (2010)., Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L, Natural Hazards and Earth System Sciences, 10(2), 275-294.
  31. Eftaxias K. (2010)., Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L'Aquila earthquake hidden in a pre-seismic EM emission., Physica A: Statistical Mechanics and its Applications, 389(1), 133-140.
  32. Nikolopoulos D., Petraki E., Nomicos C., Koulouras G., Kottou S. and Yannakopoulos P.H. (2015)., Long-memory trends in disturbances of radon in soil prior to the twin ML= 5.1 earthquakes of 17 November 2014 Greece., J. Earth Sci. Climatic Change, 6(1), 1-10.
  33. Telesca L., Lovallo M., Lapenna V. and Macchiato M. (2007)., Long-range correlations in two-dimensional spatio-temporal seismic fluctuations., Physica A: Statistical Mechanics and its Applications, 377(1), 279-284.
  34. Koscielny-Bunde E., Kantelhardt J.W., Braun P., Bunde A. and Havlin S. (2006)., Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies., Journal of Hydrology, 322(1-4), 120-137.
  35. Ghosh D., Deb A., Sengupta R., Patra KK. and Bera S. (2007)., Pronounced soil-radon anomaly-Precursor of recent earthquakes in India., Radiation Measurements, 42 (3), 466-471.
  36. Ghosh D., Deb A., Sengupta R., Bera S., Sahoo S.R., Haldar S. and Patra K.K. (2011)., Comparative study of seismic surveillance on radon in active and non-active tectonic zone of West Bengal, India., Radiation Measurements, 46(3), 365-370.
  37. Ghosh D., Sengupta R., Sanyal S. and Banerjee A. (2018)., Musicality of Human Brain Through Fractal Analytics., Springer Singapore.
  38. Hardstone R., Poil S.S., Schiavone G., Jansen R., Nikulin V.V., Mansvelder H.D. and Linkenkaer-Hansen K. (2012)., Detrended fluctuation analysis: a scale-free view on neuronal oscillations., Frontiers in physiology, 3, 450.
  39. Kantelhardt J.W., Zschiegner S.A., Koscielny-Bunde E., Havlin S., Bunde A. and Stanley H.E. (2002)., Multifractal detrended fluctuation analysis of nonstationary time series., Physica A: Statistical Mechanics and its Applications, 316(1), 87-114.
  40. Figliola A., Serrano E., Rostas J.A.P., Hunter M. and Rosso O.A. (2007)., Study of EEG brain maturation signals with multifractal detrended fluctuation analysis., AIP Conference Proceedings, AIP, 913(1), 190-195.
  41. Podobnik B. and Stanley H.E. (2008)., Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series., Physical Review Letters, 100(8), 084102.
  42. Podobnik B., Horvatic D., Ng A.L., Stanley H.E. and Ivanov P.C. (2008)., Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes., Physica A: Statistical Mechanics and its Applications, 387(15), 3954-3959.
  43. Podobnik B., Grosse I., Horvatić D., Ilic S., Ivanov P.C., and Stanley H.E. (2009)., Quantifying cross-correlations using local and global detrending approaches., The European Physical Journal B, 71(2), 243-250.
  44. Xu N., Shang P. and Kamae S. (2010)., Modeling traffic flow correlation using DFA and DCCA., Nonlinear Dynamics, 61(1-2), 207-216.
  45. He L.Y. and Chen S.P. (2011)., Multifractal detrended cross-correlation analysis of agricultural futures markets., Chaos, Solitons and Fractals, 44(6), 355-361.
  46. Jiang Z.Q. and Zhou W.X. (2011)., Multifractal detrending moving-average cross-correlation analysis., Physical Review E, 84(1), 016106.
  47. Wang F., Liao G.P., Zhou X.Y. and Shi W. (2013)., Multifractal detrended cross-correlation analysis for power markets., Nonlinear Dynamics, 72(1-2), 353-363.
  48. Ghosh D., Dutta S. and Chakraborty S. (2014)., Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status., Chaos, Solitons and Fractals, 67, 1-10.
  49. Movahed M.S. and Hermanis E. (2008)., Fractal analysis of river flow fluctuations., Physica A: Statistical Mechanics and its Applications, 387(4), 915-932.
  50. Podobnik B., Jiang Z.Q., Zhou W.X. and Stanley H.E. (2011)., Statistical tests for power-law cross-correlated processes., Physical Review E, 84(6), 066118.
  51. Feder J. (2013)., Fractals., Springer Science and Business Media.